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Multilayer modelling of the human transcriptome and
biological mechanisms of complex diseases and traits
Tiago Azevedo 1,7, Giovanna Maria Dimitri1,2,3,7, Pietro Lió1,2✉ and Eric R. Gamazon 2,4,5,6✉

Here, we performed a comprehensive intra-tissue and inter-tissue multilayer network analysis of the human transcriptome. We
generated an atlas of communities in gene co-expression networks in 49 tissues (GTEx v8), evaluated their tissue specificity, and
investigated their methodological implications. UMAP embeddings of gene expression from the communities (representing nearly
18% of all genes) robustly identified biologically-meaningful clusters. Notably, new gene expression data can be embedded into our
algorithmically derived models to accelerate discoveries in high-dimensional molecular datasets and downstream diagnostic or
prognostic applications. We demonstrate the generalisability of our approach through systematic testing in external genomic and
transcriptomic datasets. Methodologically, prioritisation of the communities in a transcriptome-wide association study of the
biomarker C-reactive protein (CRP) in 361,194 individuals in the UK Biobank identified genetically-determined expression changes
associated with CRP and led to considerably improved performance. Furthermore, a deep learning framework applied to the
communities in nearly 11,000 tumors profiled by The Cancer Genome Atlas across 33 different cancer types learned biologically-
meaningful latent spaces, representing metastasis (p < 2.2 × 10−16) and stemness (p < 2.2 × 10−16). Our study provides a rich
genomic resource to catalyse research into inter-tissue regulatory mechanisms, and their downstream consequences on human
disease.
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INTRODUCTION
The modern science of networks has contributed to notable
advances in a range of disciplines, facilitating complex representa-
tions of biological, social, and technological systems1. A key aspect
of such systems is the existence of community structures, wherein
groups of nodes are organized into dense internal connections
with sparser connections between groups. Community structure
detection in genome-wide gene expression data may enable
detection of regulatory relationships between regulators (e.g.,
transcription factors or microRNAs), and their targets and capture
novel tissue biology otherwise difficult to reach. Furthermore, it
offers opportunities for data-driven discovery and functional
annotation of biological pathways.
We hypothesize that community structure is an important

organizing principle of the human transcriptome, with critical
implications for biological discovery and clinical applications. Co-
expression networks, in fact, encode functionally relevant relation-
ships between genes, including gene interactions and coordi-
nated transcriptional regulation2, and provide an approach to
elucidating the molecular basis of disease traits3. Therefore,
reconstructing communities of genes in the transcriptome may
uncover novel relationships between genes, facilitate insights into
regulatory processes, and improve the mapping of the human
diseasome.
In this work, we develop a model of the human transcriptome

as a multilayer network, and perform a comprehensive analysis of
the communities obtained with this modeling in order to further
our understanding of its wiring diagram and facilitate research
into improved disease diagnosis and profiling. We conduct a
systematic analysis of the tissue or cell-type specificity of the

communities in the transcriptome in order to gain insights into
gene function in the genome, and enhance our ability to identify
disease-associated genes. Our study represents an effort to fill an
important gap in our understanding of the role of gene expression
in complex traits, i.e., how a gene’s phenotypic consequence on
disease or trait4 is mediated by its membership in tissue-specific
biological modules as molecular substrates. Methodologically, we
demonstrate an approach to integrating the communities into
transcriptome-wide association studies (TWAS)5–7, and a deep
neural network methodology for generating biologically-
meaningful latent representations of gene expression8,9. Finally,
the inter-tissue analysis of the transcriptome holds promise for
identifying novel regulatory mechanisms, enhancing our under-
standing of trait variation and pleiotropy, and opening up new
possibilities for translational applications.

RESULTS
Study design
Here, we provide a brief overview of our study design. We
performed a comprehensive intra-tissue and inter-tissue network
analysis of the human transcriptome. We leveraged the GTEx v8
dataset to generate an atlas of communities in co-expression
networks in 49 human tissues. Furthermore, we investigated the
methodological implications of the communities derived from
gene expression. Figure 1 is a schematic of our analytic workflow.
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Spurious co-expression and confounding due to unmodelled
factors
Disambiguating true co-expression from artefacts is an important
concern in the presence of hidden variables. We therefore applied
sva analysis to investigate unmodelled and unmeasured sources
of expression heterogeneity10. The number of factors or compo-
nents identified by this analysis was significantly correlated (r ≈
0.95, p ≈ 5.4 × 10−26) with the number of distinct samples across
tissues (see Fig. 2a). Notably, the greater number of such surrogate
variables that we regressed out for tissues with larger sample sizes
recapitulates the approach used by the GTEx Consortium of using
more inferred factors for tissues with larger sample sizes, in order
to optimize the number of eGenes from the eQTL analysis11.
Specifically, the GTEx Consortium uses PEER, a related adjustment
method, with 15 factors for tissue sample size N < 150 and up to
60 factors for N ≥ 350.
We then quantified the impact of confound correction (see Fig.

2b) in co-expression analysis. The distribution of Pearson
correlation values has more mass closer to zero with less variance
after correction, suggesting that unmodelled factors may induce
spurious (or artificially inflate) correlations in gene expression. The

effect of unmodelled factors is further illustrated in Fig. 2b–d,
where the distribution of correlation values for the covariate Age is
shown for whole blood. Before correction, those values are spread
between around −0.4 and 0.4, whereas after correction the
corresponding values move towards the center (zero) and become
less dispersed. Notably, the variable Cohort (with possible values
being Postmortem and Organ Donor in available tissues, except for
some which also have Surgical values) seems to have undergone
the largest change in the correction process. This suggests that
estimation of cohort effect on gene expression can be substan-
tially improved by accounting for unmodelled factors.

Atlas of communities across human tissues
For each tissue, we identified communities in the co-expression
networks, using the Louvain algorithm (see “Methods” section), to
develop an atlas across human tissues. On average, a tissue was
found to have 108 communities (standard deviation [SD] = 31)
(see Fig. 3). We observed the highest number of communities (n
= 251) in "Kidney cortex” and the lowest number (n= 73) in
"Muscle skeletal”. The nonsolid tissues, consisting of "Cells EBV”
and "Whole blood”, have the highest number of genes (i.e., at least

Fig. 1 Study design. We leverage the matrix of gene expression in 49 GTEx tissues. Surrogate variable analysis (SVA) is applied to the high-
dimensional dataset to adjust for unknown or unmodelled confounders. Tissue-dependent communities are generated, analysed, tested for
enrichment for known biological processes, and exploited towards identification of new functional gene sets. Uniform Manifold
Approximation and Projection (UMAP) embeddings of gene expression data defined by the communities, and the persistence of the global
structure, are evaluated to identify biologically-meaningful clusters. Notably, new datasets can be embedded into the derived models to
facilitate additional discoveries. Potential external applications of the resource of gene expression communities are varied. Here, we
implement two community-based applications, including a deep learning (variational autoencoder) model and transcriptome-wide
association studies (TWAS) using the TCGA and the UK Biobank datasets, respectively.

T. Azevedo et al.

2

npj Systems Biology and Applications (2021)    24 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



4300 for each) that belong to a community. The size of a
community varies considerably within each tissue and its
distribution differs across tissues (see Supplementary Table 1
and Supplementary Fig. 1 for the distribution in all tissues). The
brain tissues show significantly higher variability (median SD =
9.9, Mann–Whitney U-test p= 1.55 × 10−4) than non-brain tissues
(median SD = 5.18). Thus, tissues and tissue classes may differ in
the overall topology of the communities in co-expression
networks, which likely contains considerable tissue information.
We noticed that after removing the weaker correlations (−0.80 < zij

< 0.80), most of the subnetworks were already highly segregated from
the rest of the entire network, indicating that the Louvain
communities could almost be completely formed by just this removal
process. In order to evaluate the segregation of such communities, we
calculated the number of connections coming out of communities of
each size. We found that for every tissue the mode was zero, and the
maximum number was never over 17. Given the thousands of genes
in each tissue’s co-expression network, the observed maximum
number of connections between different communities (i.e., at most
17) illustrates how strong the segregation is prior to the application of
the Louvain community analysis.
More information on these communities is available on

github repository (see "Code availability” section): notebook
09_community_info.

UMAP of community-defined gene expression manifold
reveals tissue clusters
To generate a lower dimensional representation of the original
transcriptome dataset, we performed Uniform Manifold Approx-
imation and Projection (UMAP)12 (see “Methods” section). Nearly
18% of the genes belong to a community in at least one tissue.
Notably, gene expression from this subset was able to recover the
tissue clusters (see Fig. 4a) as fully as the complete set of genes
analysed here (see Supplementary Fig. 2).
Drawing conclusions about relationships between clusters

(tissues) from UMAP and similar approaches must be done with
caution due to some known caveats13 (see next section for more
details). However, starting from known relationships between
tissues, we found that the subset of community-based genes
yielded biologically consistent embeddings from UMAP. Indeed,
the clustering of related tissues (based on organ membership),
such as the 13 brains regions, or the clustering of other related
tissues (based on shared function), such as the hypothalamus-
pituitary complex (which controls the endocrine system14), could
be observed for the genes that belong to communities. Taken
together, these results show that gene expression from the
identified communities encodes sufficient information to distin-
guish the various tissues in a biologically-meaningful low-

Fig. 2 Confounding due to unmodelled factors. a Relationship between the number of inferred factors and tissue sample size. Fitted line (r ≈
0.95, p ≈ 5.4 × 10−26) corresponds to a linear least-squares regression. The two-sided p-value is based on the null hypothesis that the slope is
zero, using the Wald Test with t-distribution for the test statistic. b The difference in the variance of the distribution of Pearson correlation
values for each tissue over all genes, before and after correction. Empty cells correspond to tissues in which only one value of the confound is
available. The "Cohort'' variable undergoes the most substantial change after the correction across all tissues. c Distribution of Pearson
correlation between the expression of a gene in whole blood and age, before and after correction. After the correction, the correlation values
move towards zero and show considerably less dispersion. d The p-value distribution from panel c’s, in logarithmic space. The enrichment for
significant (low) p-values is greatly attenuated after the correction, suggesting that unmeasured variables can induce spuriously significant
correlations.
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dimensional representation. We note, however, that not all sets of
genes with correlated expression produce the distinct separation
of tissues observed for the set of genes that belong to the
communities (see below).
In theory, additional clusters may be present at different scales,

such as within a tissue. Therefore, we performed UMAP analysis on
the single-tissue "Whole Blood” to test for the presence of
additional clusters. Notably, no well-defined clustering was
observed with respect to cohort (Supplementary Fig. 3), BMI
(Supplementary Fig. 4), and the other covariates, indicating that
the sva analysis was successful in removing potential confounders
(see Fig. 2b).
External transcriptome data can be embedded into the trained

model generated from the GTEx communities. Indeed, using TCGA
data for 33 cancer types, we found that the embeddings into the
learned space recapitulate recent findings on cancer-testis (CT)
genes (see Supplementary Material). In addition, UMAP represen-
tations of the genes that belong to a GTEx-derived community
recovered the cancer types (see Supplementary Fig. 5) in (external)
TCGA data, showing the cross-study relevance of the model.

Persistence of the UMAP embeddings
We developed an approach to quantify the conservation and
variability of the UMAP global structure and estimate the sampling
distribution of the local structure, i.e., the distance d(i, j) for a given
pair of tissues i and j (see “Methods” section). Using 500
bootstrapped manifolds, we found that on average related tissues
tended to cluster closely together (see Fig. 4b). Examples of such
clusters are the 13 brain regions, the colonic and esophageal
tissues, and various artery tissues. Supplementary Fig. 6 shows the
relationship between the average distance between tissue clusters
and the variance in the distance, showing a significant positive
correlation (Spearman ρ ≈ 0.38, p < 2.2 × 10−16). Reassuringly, the
tissue pairs ("Brain Cerebellum”, "Brain Cerebellar”) and ("Skin Not
Sun Epsd”, "Skin Sun Epsd”) had the lowest average distance
between clusters among all tissue pairs; the first pair consists of
known duplicates of a brain region in the GTEx data15 and is thus
expected to cluster together. Among the tissue pairs with the
highest average distance, "Adipose Subcutaneous” had an average
distance greater than 17 with each of the colonic tissues ("Colon
Sigmoid” and "Colon Transverse”), and a low variance comparable

to tissue pairs with some of the smallest average distance.
Additional global patterns can be easily observed. For example,
the relationships of related tissues (e.g., "Skin Sun Epsd” and "Skin
Not Sun Epsd” with Cði0;i1Þ � 0:62, p= 3.4 × 10−5) to the remaining
tissues were found to be strongly preserved, using our clustering
conservation coefficient (see “Methods” section).
We also quantified the conservation and variability of the UMAP

global structure using the TCGA data from 33 cancer types. The
application of the GTEx communities (with only 18% of all
analysed genes) in the TCGA data generated biologically
consistent UMAP clustering of the cancer types (see Supplemen-
tary Fig. 7).

Prediction of tissues by communities
We then tested individual communities for their ability to predict a
tissue. By definition, we consider that a set of genes can predict a
tissue when the average F1 score is above 0.80 (see “Methods”
section). Some broad patterns are noteworthy. Most of the
communities from "Whole Blood” do not have prediction power
for the other tissues (Fig. 5a) partly due to the stringency of our F1
threshold, which is likely to produce false negatives. This
observation indicates that the member genes in each such
community from the source tissue ("Whole Blood”) cannot
"separate” the test tissue (say, "Lung”) from the remaining tissues
possibly, due to lack of tissue specificity of the gene expression
profile of the community. However, a community of only five
genes can predict the brain region nucleus accumbens (basal
ganglia). To perform the classification, we used a linear classifier,
and the so-called "kernel trick” may work in the non-linearly
separable gene expression profiles, though perhaps at the
expense of biological interpretability. For these communities, the
member genes, collectively, are "differentially expressed” between
the test brain region and the remaining tissues. Thus, although the
genes are present in "Whole Blood” (as a community), the
expression profile in the test brain region is substantially different
or tissue-specific. "Cells cultured fibroblasts” is the tissue which
can be predicted by the largest number of "Whole Blood”
communities (three) and, consistently, the largest number from
the other tissues.
We note that, consistent with our observations for the

communities, 197 Reactome pathways are not sufficient to predict

Fig. 3 Summary statistics on identified communities. a Histogram shows the distribution of community count in the various tissues (mean =
108, SD = 31). b The scatter plot displays the community count and mean community size for each tissue, showing a significant correlation
(Spearman ρ= 0.39, p= 0.006). The highest number of communities was observed in "Kidney Cortex'' (n= 251). c Plot provides the number of
genes that belong to a community in each tissue. The nonsolid tissues, "Cells EBV'' and "Whole Blood'', show the highest number of genes
with membership in a community.
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Fig. 4 Lower-dimensional UMAP representation of the transcriptome data restricted to the communities and conservation of global
structure. a UMAP generates embedded structures through a low-dimensional projection of the submatrix consisting of only the genes that
belong to a community in at least one tissue (n= 3259). This subset of genes (17.7% of total) contains sufficient information to recover the
tissue clusters. In addition, known relationships between tissues, based on organ membership and, separately, on shared function, are
reflected in the UMAP projection. b Using bootstrapped manifolds (see “Methods” section), we estimated the persistence of the global
structure and pairwise relationships across tissue clusters. Here, we show the upper-triangular matrix of the average pairwise distances across
the bootstrapped manifolds. We found consistent clustering of known related tissues, including the 13 brain regions, the colonic and
esophageal tissues, and various artery tissues. Additional patterns were observed. For example, as reflected in the heatmap, we found a highly
correlated relationship, i.e., high "clustering conservation coefficient'' (Cði0 ;i1Þ � 0:62, p= 3.4 × 10−5) (see “Methods” section), of the two skin
tissues to all the other tissues.
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any tissue (available on github: output output_06_02), while 164
are tissue-specific (i.e., can predict only one tissue) (see details in
Supplementary Material).

Enrichment of communities for known biological processes
We quantified the extent to which the communities in the various
tissues reflect current biological knowledge (as encoded in the
Reactome pathways). We identified 114 communities (8.28% of all
the communities with more than three member genes) enriched
for some Reactome pathway (i.e., at an adjusted p < 0.05 for level
of enrichment), thus contributing in complex ways to multiple
biomolecular processes. "Whole Blood” was the only tissue
without any community enriched for known pathways, and the
"Esophagus Mucosa” was the tissue with the most communities
enriched for known pathways, with a total of five communities.
Since the entire set of communities could fully recover all tissues
as clusters in the UMAP embeddings, these results suggest that
the remainder of the communities are likely to capture previously
inaccessible and novel tissue biology.
Notably, our analysis may uncover the role of these commu-

nities in human diseases. For example, a community of 15 genes
in the "Brain Hippocampus” showed a significant enrichment for
diseases associated with glycosaminoglycan metabolism (adjusted
p-value = 0.026; see Fig. 5). Glycosaminoglycans, which are major
extracellular matrix components whose interactions with tissue
effectors can alter tissue integrity, have been shown to play a role
in brain development16, modulating neurite outgrowth and
participating in synaptogenesis. Alterations of glycosaminoglycan

structures from Alzheimer’s disease hippocampus have been
implicated in impaired tissue homeostasis in the Alzheimer’s
disease brain17.

Multiplex analysis of the transcriptome
We analysed five multiplex networks to model the various tissue
interactions, of clear biological interest, in the GTEx dataset (see
“Methods” section). For each multiplex architecture, only the
specific component tissues were used to construct the multiplex
network, and consequently we calculated the global community
index for each multiplex architecture separately. The five
architectures analysed were:

● All tissues: Each layer represents one of the 49 tissues
analysed. This architecture allows us to investigate gene
communities that are shared across all tissues, with potentially
universal function.

● Brain and gastrointestinal tissues: The 16 layers correspond to
the brain tissues and three gastrointestinal tissues. This
architecture may provide insights into the gut-brain axis,
which has attracted recent attention in the literature, such as
in studies of neuropsychiatric processes and of the interaction
between the CNS and the enteric nervous system in
neurological disorders18,19.

● Brain tissues and whole blood: This multiplex model consists
of the 14 layers corresponding to these tissues. This
architecture allows us to study brain-derived communities
for which the easily accessible whole blood can serve as a

Fig. 5 Communities and their properties. We developed tools (available on github) to query a community for its characterization. a
Prediction power of "Whole Blood'' communities, in F1 scores thresholded over 0.8. Most communities in "Whole Blood'' do not have
prediction power for the remaining tissues. Notable exceptions include a 13-member community, which can predict multiple tissues,
including "Brain Anterior cingulate'', "Small Intestine'', and "Colon Transverse''. b A 15-member community in the hippocampus is shown here
as an example. An edge indicates Aij > 0.80 for genes i and j. The gene TNR, which is expressed primarily in the central nervous system and
involved in its development, is connected via an edge to twelve member genes while HIP1R is connected to only one. c Enrichment analysis
was performed on all communities to identify known biological processes. For example, the hippocampal community in b was found to be
significantly enriched for Reactome pathways. p-value refers to raw p-value. Red line corresponds to the raw p < 0.05 threshold. Color gradient
reflects the adjusted p-value. All Reactome pathways shown meet adjusted p < 0.05. d Heatmap displays the correlation values for the member
genes of the community in b.
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proxy tissue.
● Non-brain tissues: The 36 layers consist of all tissues outside

the brain. This architecture may stimulate investigations into
developmental and pathophysiological processes outside
the CNS.

● Brain tissues: The 13 layers correspond to the various brain
regions. This architecture facilitates identification of commu-
nities that may play a functional role throughout the central
nervous system (CNS).

Multiplex analysis provides an inter-tissue framework for the
analysis of high-dimensional molecular traits, such as gene
expression. The global multiplexity matrix was obtained for each
of the five proposed architectures. We extracted from the global
multiplexity matrices the groups of genes with the maximal global
multiplexity index in the five architectures, i.e., the groups of
genes that share a value of 49, 16, 14, 36, and 13 respectively,
equal to the number of layers (tissues) in the respective
architectures. Among these groups of genes with the highest
global multiplexity index, we obtained the sub-clusters for each
architecture, identifying the groups of genes that always appear in
the same community across the various layers. Revealing the
shared community structure across the layers improves our
understanding of the functional and disease consequences of
the clusters of genes. We investigated the biological pathways
(Reactome) in which such subgroups were involved for each
architecture. Our goal was to test the communities for enrichment
for known biological pathways, and therefore quantify the degree
to which the communities capture current understanding of
biological processes as encoded in the knowledge base.
We illustrate this approach here. In Fig. 6a, we show an example

of a multiplex network. In this case, the multiplex network is
constructed from data in two brain tissues: "Brain Hippocampus”
and "Brain Putamen” (basal ganglia). Each layer represents a tissue,
and nodes are labeled as the genes to which they correspond. In
the example, we see the presence of two communities formed by
groups of genes randomly drawn from the full set: {FGA, ORM1,
and FGB} and {MYH11, ACAT2, and MYL9}), with the intralayer and
interlayer connections shown. We note that, based on our analysis,
these two communities are indeed part of the "Brain Tissues”

multiplex architecture, present in all 13 component layers (brain
regions). Notably, all three genes that belong to the first
community have been previously implicated as biomarker and
therapeutic target candidates for intracerebral hemorrhage20. This
observation is interesting given our Reactome pathway analysis
results; the community is enriched for "Common Pathway of Fibrin
Clot Formation” (adjusted p= 8.8 × 10−4) and "Formation of Fibrin
Clot (Clotting Cascade)” (adjusted p= 1.7 × 10−3), indicating the
genes’ involvement in coagulation. All three members of the
second community are myelin-associated genes21. We found a 17-
member community in the "Brain Tissues” multiplex that is
significantly enriched for the nonsense-mediated decay (NMD)
pathway (adjusted p= 1.01 × 10−37), which is known to be a
critical modulator of neural development and function22. The
pathway accelerates the degradation of mRNAs with premature
termination codons, limiting the expression of the truncated
proteins with potentially deleterious effects. The community’s
presence in all brain regions underscores its crucial protective
function throughout the central nervous system.
The multiplex analysis we performed can also be used to

investigate the relationship between two distinct systems. Here
we illustrate this using the CNS and the gastrointestinal system,
possibly reflecting a coordinated transcriptional regulatory
mechanism between the CNS and the enteric nervous system
(ENS). The ENS is a large part of the autonomic nervous system
that can control gastrointestinal behavior 23. We found a 14-
member community in the "Brain and Gastrointestinal Tissues”
multiplex, whose presence in all 16 layers suggests a strong
interaction between (in addition to shared function across) the
CNS and ENS. Consistent with this hypothesis, the community was
found to be significantly enriched for the "metabolism of vitamins
and cofactors” (adjusted p= 6.5 × 10−7), which has been shown to
be responsible for altered functioning of the CNS and ENS24.
Although the involvement of the individual member genes in this
pathway is known, the finding that the genes are organized as a
community structure, within co-expression networks, which
persists across the entire 16 layers of the various brain regions
and the gastrointestinal tissues examined here was made possible
by the unique transcriptome dataset.

Fig. 6 Multiplex analysis. a An example of a multiplex network in "Brain Hippocampus'' and "Brain Putamen'' (basal ganglia). Each layer
denotes a tissue, and nodes are the genes, which are connected via the interlayer connections. In the multiplex example, we see the presence
of two communities. These two communities are indeed part of the "Brain Tissues'' multiplex architecture, present in all 13 layers (brain
regions). All genes in the community {FGA, ORM1, FGB} have been implicated as biomarker and therapeutic targets for intracerebral
hemorrhage. b Histograms show the empirical distribution of the global multiplexity index for each multiplex architecture (with positive
index). The index quantifies how many times two genes belong to the same communities across layers. The proportion at each value k of the
index is an estimate of the πk (see “Methods” section). The maximum value corresponds to the number of layers or tissues of the multiplex
network. Histograms, from the top, correspond to: all tissues, brain and gastrointestinal tissues, brain tissues and whole blood, non-brain
tissues, brain tissues. c We performed UMAP on the subset of communities that exist across all layers of the central nervous system ("Brain
Tissues'') multiplex. This set does not yield complete clustering of tissues.
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The empirical distribution of the global multiplexity index is
presented in Fig. 6b for each of the five architectures. The maximal
global multiplexity index in the five architectures represents the
groups of genes that share a value of 49, 16, 14, 36, and 13
respectively, equal to the number of layers (i.e., tissues) in the
respective architectures. These genes appear in the same
community across all layers of the respective architectures.
For comparison with the UMAP embeddings of the set of all

communities, we performed similar analyses in the various
multiplex networks. For example, we tested whether the complete
tissue clustering could be observed using just the subset of
communities that exist across all layers of the central nervous
system multiplex. We discovered a different clustering pattern,
with cultured fibroblasts clustering separately from the rest of the
tissues, which no longer show well-defined clustering (Fig. 6c).
This finding suggests the presence of a hierarchy of clusters in the
transcriptome at increasingly finer scales.
The complete results for all five architectures can be

found on our github repository in the jupyter notebook
11_multiplex_enrichment.

Communities and transcriptome-wide association studies of
disease
Leveraging the communities may have important methodological
implications on the search for disease-associated genes. We asked
whether incorporation of the communities would improve our
ability to detect significant gene-level (TWAS/PrediXcan) associa-
tions (see “Methods” section). We chose to perform a TWAS of CRP
in 361,194 UK Biobank subjects, as CRP is a biomarker of chronic
low-grade inflammation, with elevated CRP levels associated with

a broad array of complex diseases, including cardiovascular
disease, Alzheimer’s disease, and schizophrenia25. Notably, we
found a significantly greater enrichment for associations with CRP
(defined as adjusted p < 0.05) among the set of genes that belong
to a community than among the complement set of genes. In
particular, the genes in communities showed a greater departure
from the null (expected) distribution than the complement set of
genes (Fig. 7a). This observation suggests that the use of the
communities can substantially improve the signal-to-noise ratio in
TWAS even in the case where the dataset is already highly-
powered to detect causal associations. The estimated true positive
rate bπ1 (see “Methods” section) for association with the trait for the
set of genes in communities was 0.45 while the estimate for the
complement set was 0.37. Our top association with CRP among
the community-located genes was OASL (p= 1.56 × 10−55; see Fig.
7d for the chromosomal positions of the top associations), which
has been previously implicated as a CRP and cardiovascular
disease associated gene26. A similar performance gain in TWAS
was observed for other traits (e.g., hemoglobin concentration and
white blood cell [leukocyte] count for whole blood gene
expression; see Supplementary Material and Supplementary Figs.
8 and 9), further demonstrating generalizability.

Variational autoencoder model of communities and
phenotypic consequences
Methodologically, the communities may also enable discovery of
biologically-meaningful features in high-dimensional molecular
data. We implemented a variational autoencoder (VAE) model (see
“Methods” section) of the communities in 11,060 samples across
33 different cancer types in the TCGA data, customizing the Tybalt

Fig. 7 Integrating communities into TWAS and Variational Autoencoder. Leveraging the communities in genomic studies of disease may
improve identification of disease-associated genes and enable unique biological insights. a We performed a transcriptome-wide association
study (TWAS) of C-reactive Protein (CRP) in 361,194 UK Biobank individuals using PrediXcan. CRP is a biomarker for a wide range of complex
diseases. The set of genes in the communities (red) displayed a greater departure from the null expectation (i.e., greater enrichment for
significant associations) than the complement set of genes (blue), as shown by the leftward shift in the Q–Q plot. b We implemented a
variational autoencoder (VAE) to leverage the power of neural networks in high-dimensional molecular data. Using 11,060 samples across 33
cancer types from TCGA, the VAE learned biologically-meaningful latent spaces from the communities. For example, latent feature three
separates metastatic tumors from primary tumors and normal solid tissues (Mann–Whitney U-test p < 2.2 × 10−16 for each comparison),
representing a potential mechanism for metastasis. Median line and scatter points are shown. Box edges show interquartile range. c The VAE
model learned a stemness index significantly associated (p < 2.2 × 10−16) with a DNA-methylation-based index. Least-squares regression line is
shown. d Manhattan plot shows TWAS associations with CRP for the genes in the communities (dashed line is Bonferroni-adjusted p < 0.05).
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approach8. One benefit of a VAE is that it offers a probabilistic
model, allowing us to do inference on the latent variable z, i.e., P
(z∣X). The marginal log-likelihood, log PðXÞ, is generally intractable,
which poses a challenge to this inference; however, Eq. (14)
provides a variational lower bound on this marginal. In the VAE
model, we assumed that the approximating posterior distribution
Q(z∣X) is multivariate Gaussian, whose mean μ(X) and diagonal
covariance matrix σ2(X)I are learned by a neural network, so as to
leverage the "reparametrisation trick”27. The second stage, which
is also implemented as a neural network, generates a recon-
structed representation of X from the stochastic z. In our
implementation, we randomly split the input into a training set
(80%) and a test set (20%). The encoded layer is compressed into a
vector of size 100 consisting of a mean and variance. We assumed
a learning rate of 0.0005, 50 epochs, and batch size of 50. We used
Rectified Linear Unit (ReLU) activation for the encoder and
sigmoid activation for the decoder. The optimization algorithm
Adam was applied in the training to minimize the VAE loss, i.e., the
negative of the Evidence Lower Bound Objective (ELBO) given by
Eq. (14). The VAE loss as a function of epoch number (showing the
training performance) and the reconstruction accuracy for the
communities are largely equivalent to the corresponding results
for the full transcriptome (Supplementary Fig. 10) in the
TCGA data.
Notably, the latent representations learned by the VAE model

from the communities encode biologically-meaningful features.
The model learned to stratify metastatic tumors from primary
tumors and normal solid tissues (Fig. 7b) (Mann–Whitney U-test p
< 2.2 × 10−16). This held robustly after adjusting for race, sex, age
at diagnosis, or stage (logistic regression p < 2.2 × 10−16 for each)
or disease (p= 8.9 × 10−5). Cancer progression may be character-
ized by oncogenic dedifferentiation (i.e., steady loss of differ-
entiated phenotype) and acquisition of stemness (i.e., self-renewal
and generation of differentiated progeny). The VAE model learned
a stemness index that was significantly associated (Spearman ρ ≈
− 0.27 in log2 transformed space, p < 2.2 × 10−16), across the
spectrum of tumor types, with a recently developed DNA-
methylation based index (Fig. 7c)28 (see “Methods” section).
Again, adjustment for race, sex, age at diagnosis, stage, or disease
did not affect the result (linear regression p < 2.2 × 10−16).

DISCUSSION
We developed an inter-tissue multiplex framework for the analysis
of the human transcriptome. Given the complexity of pathophy-
siological processes underlying complex diseases, intra-tissue and
inter-tissue transcriptome analysis should enable a more complete
mechanistic understanding. For these phenotypes, studying the
interaction among tissues may provide greater insights into
disease biology than an intra-tissue approach. Communities in co-
expression networks were here shown to be enriched for some
known pathways, encoding current understandings of biological
processes; however, we identified other communities that are
likely to contain novel or previously inaccessible functional
information. Methodologically, use of the communities in TWAS
and a neural network demonstrated substantial gain in the
identification of disease-associated genes and discovery of
biologically-meaningful information.
UMAP embeddings of the transcriptome of the entire set of

communities (representing only 18% of all genes) fully revealed
the tissue clusters. Low-dimensional representation of the subset
of communities that are in the multiplex networks did not recover
the tissue clusters, but uncovers other clustering patterns,
suggesting a hierarchy of clusters at increasingly finer scales. We
developed an approach to quantify the conservation of, and
uncertainty in, the UMAP global structure and estimated the
sampling distribution of the local structure (e.g., distances among
tissue clusters), with broad relevance to other applications such as

cell population identification in single-cell transcriptome studies.
New gene expression data can be embedded into our models,
facilitating integrative analyses of the large volume of transcrip-
tome data that are increasingly available. Notably, in external
TCGA data, UMAP representations of the genes that belong to a
GTEx-derived community induced clustering by cancer type,
demonstrating the cross-study relevance of our approach. We
provide a publicly available resource of co-expression networks,
communities, multiplex architectures, enriched pathways, and
code to stimulate research into network-based studies of the
transcriptome.
Using the global multiplexity index, we investigated the tissue-

sharedness of identified communities. In fact, communities that
are shared across multiple tissues may suggest the presence of a
tissue-to-tissue mechanism, that controls the activity of member
genes across the layers in the network. Such regulatory
mechanisms have been relatively understudied in comparison
with intra-tissue controls.
We identified tissue-dependent communities that are enriched

for human diseases. For example, we found a 15-member
community in the "Brain Hippocampus” that is enriched for
diseases associated with glycosaminoglycan metabolism. These
genetic disorders are due to mutations in the biosynthetic
enzymes for glycosaminoglycans, such as glycosyltransferases
and sulfotransferases. Sulfated glycosaminoglycans include the
chondroitin sulfate and dermatan sulfate chains that are
covalently bound to the core proteins of proteoglycans, which
are present in the extracellular matrices and at cell surfaces.
Mutations affecting the biosynthesis of these chains may lead to
genetic diseases that are characterized by craniofacial dysmorph-
ism and developmental delay29. The community structure we
identified proposes a cooperative role for these genes, and the
fact that they span multiple chromosomes suggests the presence
of coordinated transcriptional regulation.
Some of the communities are shared across multiple tissues;

their dysregulation may thus lead to pleiotropic effects and
contribute to known and novel comorbidities. We modeled these
communities as belonging to layers of multiplex networks. For
example, we identified a 17-member community in the "Brain
Tissues” multiplex network (i.e., spanning across all brain regions
sampled here), consisting primarily of ribosomal proteins. This
community was enriched for proteins involved in translation
(adjusted p= 2.53 × 10−35), with significant overrepresentation for
the viral mRNA translation pathway (adjusted p= 1.06 × 10−38),
NMD (adjusted p= 1.01 × 10−37), and other Reactome pathways.
Viral mRNAs in the cytoplasm can be translated by the host cell
ribosomal translational apparatus, and indeed viruses have
evolved strategies to recruit the host translation initiation factors
necessary for the translation initiation by host cell mRNAs30. NMD,
a surveillance pathway that targets mRNAs with aberrant features
for degradation, may interfere with the hijacking of the host
translational machinery31. In the brain, NMD, as a post-
transcriptional mechanism, affects neural development, neural
stem cell differentiation decisions, and synaptic plasticity; thus,
defects in the pathway can cause aberrant neuronal activation and
neurodevelopmental disorders22. Detecting this co-expression
network of ribosomal proteins therefore provides a sanity check
to our approach, but the identified community structure and the
presence of this in the multiplex may suggest a highly
coordinated regulatory mechanism across the tissues.
Leveraging the communities in TWAS of CRP in 361,194 subjects

resulted in substantial performance gain in the discovery of trait-
associated genes. Future methodological work that integrates
community detection and additional omics data may further
optimize the performance gain. A variational autoencoder
implementation applied to the genes in the communities
identified disease-relevant latent subspaces. Notably, this model
learned a latent representation that significantly distinguishes
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metastastic from primary tumors and another related to stem cell-
associated molecular features, across the 11,060 samples in TCGA
data. Prediction of metastasis and the biology of the stemness
phenotype can be further investigated through the genes and
their communities identified here, but more definitive conclusions
will require extensive biological and clinical validation studies.
Nevertheless, methodologically, a deep learning framework that
explicitly exploits the topological structures in co-expression
networks holds promise for uncovering critical biological insights
into disease mechanisms, for example via integration of perturba-
tions of the community topology or of the pleiotropic impact of
communities shared across certain layers or tissues).
In summary, we performed network analysis on the most

comprehensive human transcriptome dataset available to gain
insights into how structures in co-expression networks may
contribute to biological pathways and mediate disease processes.
The rich resource we generated and the network approach we
developed may prove useful to other omics datasets, facilitating
studies of inter-tissue and intra-tissue regulatory mechanisms,
with important implications for our mechanistic understanding of
human disease.

METHODS
GTEx dataset
The GTEx V8 dataset11,15 is a genomic resource consisting of 948 donors
and 17,382 RNA-Seq samples from 52 tissues and two cell lines. The
resource provides a catalog of genetic effects on the transcriptome and a
broad survey of individual- and tissue-specific gene expression. Of the 54
tissues and cell lines, 49 include samples with at least 70 subjects, forming
the basis of the analysis of genetic regulatory effects11. In this study, we
leveraged the 49 tissues because of their sample size (see Supplementary
Table 2) and our interest in shared transcriptional regulatory programs for
co-expressed genes.

Data preprocessing
We restricted our analyses to protein-encoding genes based on the
GENCODE Release 26 (GRCh38) annotation. Although the GTEx dataset had
annotated genes with Ensembl IDs, we removed duplicates (using GENE
IDs) and unmapped genes from downstream analyses. After this
preprocessing step, the resulting dataset is characterized by the following
count statistics:

● Unique genes across all tissues: 18,364.
● Genes present in only 1 tissue: 412.
● Genes present in all 49 tissues: 12,557.

Accounting for unmodelled factors
In order to correct for batch effects and other unwanted variation in the
gene expression data, we used the sva R package (v3.34.0), which is
specifically targeted for identifying surrogate variables in high-dimensional
data sets32. For each tissue gene expression matrix, the number of
components (latent factors) was estimated using a permutation procedure,
as described by Buja and Eyuboglu33.
Subsequently, using the function sva_network, residuals were generated

after regressing out the surrogate variables. The residual values, rather
than the original gene expression values, were used in the downstream
analyses. For convenience, we refer to the residual values as the “gene
expression data”, since they represent the expression levels that have been
corrected for (unwanted) confounders.

Tissue-dependent correlation and adjacency matrices
For each tissue, a correlation matrix C= [zij] was created by calculating the
Pearson correlation coefficient rij for every pair (i, j) of genes. Fisher
z-transformation was then applied:

zij ¼ 0:5 ´ ln
1þ rij
1� rij

� �
; (1)

where ln is the natural logarithm function.

For each correlation matrix, we retained only the strongest correlations
(i.e., transformed zij less than −0.8 and greater than 0.8) to generate a co-
expression network. An adjacency matrix A= [Aij] was defined, for each
tissue, such that Aij is equal to zij if gene i and gene j are co-expressed
(retained), and zero otherwise. We assumed undirected networks without
self-loops, which implies Aij= Aji and Aii= 0.

Community detection
We sought to detect groups of genes in each tissue, with the aim of finding
communities whose internal connections are denser than the connections
with the rest of the co-expression network. We applied the Louvain
community detection method34 in each tissue to generate a comprehen-
sive atlas of communities. An asymmetric treatment for the negative
correlations was used, thus inducing negatively correlated genes to belong
to different communities35. The algorithm identifies communities by
maximizing the modularity index36, Q*, as the algorithm progresses:

Q� ¼ 1
vþ

X
ij
wij

þ � eij
þ� �

δMiMj �
1

vþ þ v�
X

ij
wij

� � eij
�� �

δMiMj : (2)

Here, a positive connection between nodes i and j is denoted as wij
þ and

has a value between 0 and 1; likewise, a negative connection is
represented wij

� and can also have a value between 0 and 1. eij ± is the
chance-expected within-module connection weight and calculated, for
each positive/negative correspondent, as

s±i s±j
v ± , where s±i is the sum of

positive or negative connection weights of node i. v± is the sum of all
positive or negative edges, and δMiMj ¼ 1 when nodes i and j are in the
same module or zero otherwise. In particular, the Louvain method initially
assigns each node to its own community and iteratively evaluates the gain
in modularity, if one node is moved from one formed community to
another of its neighborhood. We leveraged the Brain Connectivity Toolbox
Python package v0.5.0 (available on github: aestrivex/bctpy). The
resolution parameter γ was set to its default value, 1.

UMAP embeddings of community-defined gene expression
To produce a lower dimensional representation of the original dataset, we
applied Uniform Manifold Approximation and Projection (UMAP)12, a
manifold learning technique. Our goal was to generate a map that reveals
embedded structures and test whether biologically relevant clusters can
be recovered from the gene expression data. Towards this end, we
analysed both the full master matrix M of scaled gene expression (in the
range [0, 1]), consisting of all genes (i.e., 18,364), and a submatrix
consisting of only those genes that belong to a community in at least one
tissue (i.e., 3259). (Similarly to all of the results in the rest of the paper, we
considered only Louvain communities with at least four genes.)
We chose UMAP because of the substantial improvement in running

time on our data (compared to t-SNE, with its known computational and
memory complexity that is quadratic in the sample size37), and UMAP’s
theoretical grounding in manifold theory12. UMAP can also capture non-
linear effects in gene expression, and this was another reason why we
chose it, over more traditional dimensionality reduction techniques such as
principal component analysis. Additional implementation details can be
found in Supplementary Fig. 2.

Persistence of the UMAP global structure
We quantified the conservation of, and variability in, the UMAP structure,
including the relation among biologically-meaningful clusters, e.g., tissues.
We characterized such a structure using the matrix [d(i, j)] of pairwise
distances for clusters i and j in {1, 2, …, L}. For the actual (original) gene
expression data, we define V(0)= [vij,0] as the resulting matrix of pairwise
distances. Note V(0) is a symmetric matrix with zeros along the diagonal.
We sought to:

● estimate the sampling distribution of d(i, j), and calculate its standard
error and a confidence interval,

● correlate the matrix V(0) and the resulting matrix W from a
perturbation of the original structure.

We approached the quantification problem through a (non-parametric)
bootstrapping procedure. From the master matrix M of gene expression,
we generated a total of B bootstrapped manifolds, each of equal size (here,
each such sample was randomly drawn from 80% of the data points, i.e.,

rows, in M). For the k-th sample, we constructed the matrix VðkÞ ¼
½ ddði; jÞðkÞ� of pairwise distances derived from the UMAP embeddings for
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tissues i and j. Here we used the "induced metric” d : Rm ´Rm ! R from
the embedding ϕ : Mg,!Rm of the Riemannian manifold Mg into
Euclidean space, but our treatment here generalizes to the intrinsic metric
g : Mg ´Mg ! R, with g(ϕ−1(i), ϕ−1(j)), of the original manifold. The set

f ddði; jÞðkÞg
B

k¼1
allows us to calculate the mean and variance of the UMAP-

derived estimator for d(i, j):

dði; jÞ ¼
PB

k¼1
ddði; jÞðkÞ

B
; (3)

dσ2dði;jÞ ¼
PB

k¼1
ddði; jÞðkÞ2

B� 1
�

PB
k¼1

ddði; jÞðkÞ
B� 1

0
@

1
A2

: (4)

This approach provides a maximum likelihood estimate, i.e., dσdði;jÞ, of the
standard error. We used a heatmap to visualize dði; jÞ for each tissue pair (i,
j). An alternative could have been to use a normalized "metric” (which is
more robust to the scale from the embedding ϕ):

d �ði; jÞðkÞ ¼
dði; jÞðkÞ

medians;t21;¼ ;Ldðs; tÞðkÞ
; (5)

but we found this normalization to be unnecessary in the GTEx data.
For two tissues i0 and i1, we define a "clustering conservation coefficient”

to quantify the preservation of the clustering of tissues i0 and i1 relative to
all tissues {j}:

Cði0 ;i1Þ ¼ corrðdði0; jÞ; dði1; jÞÞ; (6)

where corr is the correlation operator. The correlation is calculated for a
pair of UMAP-derived distance estimates across all tissues {j}. In particular,
this statistic allows us to formally test the null hypothesis of no
conservation of global structure for a given pair of tissues under the null
hypothesis,ffiffiffiffiffiffiffiffiffiffiffi

L� 3
1:06

r
arctanhðCði0 ;i1ÞÞ � Nð0; 1Þ: (7)

This coefficient can be extended to a larger set of tissues, i0, …, il (e.g., the
13 brain regions), using the first order statistic:

Ci0 ;¼ ;il ¼ min
s;t21;¼ ;L

Cðis ;itÞ: (8)

Furthermore, we calculated the relationship between the original V(0)

and "perturbed” V(k) for each sample k:

rk ¼ corrðVð0Þ;VðkÞÞ; (9)

and the resulting empirical distribution of the correlation values rk. We
note that UMAP has a stochastic element since it utilizes stochastic
approximate nearest neighbor search and stochastic gradient descent for
optimization; however, the rk derived from a different run V(k) (rather than
from bootstrapping) quantifies the stability of the global structure in the
presence of stochasticity. Collectively, our approach provides a way to
perform statistical inference on the UMAP embedded structures.

Prediction power of communities for tissues
We investigated the extent to which each community’s gene expression
profile was predictive of each of the tissues. The master matrix M,
representing the entire dataset under analysis, has 15,201 rows represent-
ing each RNA-Seq sample from each tissue collected from all subjects, and
18,364 columns representing the total number of genes available. If a value
was non-existent (which may be due to the gene’s expression being tissue-
specific), we assumed a zero value, conveying no expression in that tissue.
For each community, the expression values of the member genes were

selected from M. With this sliced table, 49 binary classifications were
performed using Support Vector Machine (SVM), wherein for each
classification, we predicted each tissue. Essentially, the sliced table, which
comprises the training data, for a k-member community can be viewed as
a collection of vectors fðx1!; y1Þ; ¼ ; ðxn!; ynÞg, where xi

!2 Rk is the gene
expression profile of the k genes for the i-th sample and yi∈ {1,0} indicates
membership in the tissue to be predicted. The goal of the classification is
to separate the tissue to be predicted from the other tissues via the largest
margin hyperplane, which can be generically written as w!� x!þ b ¼ 0,
where w! is normal to the hyperplane. SVM was used with a linear kernel
and weights were adjusted to be inversely proportional to class
frequencies in the input data (this corresponds to setting the class_weight

parameter in scikit-learn to "balanced”). To avoid overfitting, each
classification was performed using a stratified 3-fold cross-validation
procedure, in which the F1 score metric was used to report the prediction
power across the three folds. We decided to use the F1 score instead of
other metrics, given that each binary classification was highly unbalanced,
i.e., a given tissue is the positive outcome and all the other 48 tissues are
the negative outcome. (Louvain communities with less than four genes
were filtered out from this analysis.)

F1 ¼ 2

ðPrecisionÞ�1 þ ðRecallÞ�1 (10)

Enrichment analysis
To evaluate the degree to which a community corresponds to well-known
biological pathways, we performed enrichment analyses using the
Reactome 2016 as reference. We used the gseapy python package to
make calls on the Enrichr web API38. As per the Enrichr official
documentation, the p-value is computed using Fisher’s exact test
(hypergeometric test). We considered significant those pathways with a
Benjamini–Hochberg-adjusted p-value below 0.05. Louvain communities
with less than four genes were considered "not enriched”.

Multilayer analysis
In order to investigate the tissue-shared profiles of gene communities, as
well as the relationships between gene expression traits across tissues, we
proceeded to model our system as a multilayer network39. Formally, a
multilayer network is defined as a pair Λ= (G;D), where G≔ {G1,…, GL} is a
set of graphs and D consists of a set of interlayer connections existing
between the graphs and connecting the different layers. Each graph Gl∈G
is a "network layer” with its own associated adjacency matrix Al. Thus, G
can be specified by the vector of adjacency matrices of the L layers: A≔
(A1,…, AL). Multilayer networks allow us to represent complex relationships
which would otherwise be impossible to describe using single-layer graphs
separately considered.
A special case of multilayer networks is a multiplex network, which we

used to model the GTEx transcriptome data. In this case, all layers are
composed of the same set of nodes but may exhibit very different
topologies. The degree of node i is the vector d½i� ¼ ðd½i�1 ; ¼ ; d½i�L Þ, and d½i�l
may vary across the layers. Interlayer connections are established between
corresponding nodes across different layers. Layers represent different
tissues, nodes represent genes, and edges between two nodes are
weighted according to the correlation weights. In the GTEx data, the
correlation matrices, previously described, define an adjacency matrix Al
for each layer l of the multiplex network.
Using the communities of co-expressed genes for each tissue, we then

computed the so-called global multiplexity index40 to investigate the
relationships of communities across different layers. This index quantifies
how many times two nodes (genes) are clustered in the same communities
across different layers. If, for example, gene i and gene j are clustered
together in the layer of tissue T1 and of tissue T2, then the global
multiplexity index is two. In the matrix [gmi(i,j)] of global multiplexity
indices for a multiplex architecture, each element represents the number
of times that two given genes, i and j, are clustered in the same
community. More formally, if L is the number of layers, N the number of
nodes for each layer, and cgi the community membership of gene i at
graph g, then the global multiplexity index gmi(i, j) for gene i and gene j,
with i and j∈ {0, …, N} is defined as follows:

gmiði; jÞ ¼
XL
g¼1

δðcgi ; cgj Þ; (11)

where δðcgi ; cgj Þ represents the Kroenecker delta function. The value of gmi
(i, j) therefore increases by 1 if the two nodes are found to be part of the
same community in a layer. If two genes share a high value of global
multiplexity index, this may indicate a greater level of connectivity and
suggest greater functional similarity, as they appear multiple times in the
same community across different layers. We define the individual
probabilities:

πk ¼ pð gmi ¼ k j θ Þ; (12)

where θ represents all of the parameters of the model. πk is the probability
that two genes are clustered in the same communities across k layers,
where k ≤ L and L is the number of layers in the network. We estimated the
probability distribution of gmi(i, j) in the GTEx data.

T. Azevedo et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)    24 



We tested whether the UMAP embeddings of the transcriptome profiles
of the communities in a multiplex architecture—a subset of all
communities previously interrogated—could also recover biologically-
meaningful clusters. This analysis allowed us to estimate the topology of
the high-dimensional transcriptome data and test whether additional
clusters could be uncovered at increasingly finer scales.

Application to transcriptome-wide association studies
To evaluate the relevance of the communities for genomic studies of
human disease, we performed TWAS/PrediXcan analysis of C-reactive
protein (CRP)5,7. We chose CRP for its clinical significance as a biomarker for
a wide range of complex diseases, including cardiovascular disease, type 2
diabetes mellitus, Alzheimer’s disease, and age-related macular degenera-
tion41. Briefly, TWAS/PrediXcan estimates the "genetically-determined
component of gene expression” in genome-wide association study (GWAS)
subjects and infers the gene’s association with the phenotype. The
inference can be done using GWAS summary statistics6,18. We hypothe-
sized that prioritization of the communities in TWAS/PrediXcan would
improve the signal-to-noise ratio for detecting gene-level associations. We
applied whole blood (local genetic variation based) gene expression
prediction models5 trained in GTEx v8 data42 to a GWAS of CRP in
361,194 samples (of white-British ancestry) in the UK Biobank43 (nealelab.
is). We compared the associations derived from the set of genes that
belong to a community and from the complement set of genes using a
conditional Quantile–Quantile (Q–Q) plot (i.e., conditional on community
membership status) of empirical quantiles of nominal negative log10ðpÞ
values. The conditional Q–Q plot for each set of genes can be framed in
terms of the false discovery rate (FDR)44; at a p-value threshold, the Bayes
FDR is given by:

FDRðpÞ ¼ π0F0ðpÞ=FðpÞ; (13)

where π0 is the proportion of null genes, F0 is the null cumulative
distribution function (cdf), and F is the cdf for both null and non-null
genes. Under the null hypothesis, F0 is the cdf of the standard uniform
distribution (i.e., F0(p)= p for p∈ [0, 1]) while F can be estimated by the
empirical distribution. We estimated the true positive rate for each of the
two non-overlapping sets of genes defined by community membership
using π1≔ 1− π0, as previously described18.

Variational autoencoder (VAE) model of communities
We implemented a VAE27, a deep learning methodology, to learn
biologically-meaningful latent representations of the transcriptome8 or a
subset, e.g., the genes in the communities. VAE is a two-phase generative
model, and we implemented it to capture major sources of variation with
non-linear effects. In the encoding phase, dimensionality reduction is
performed on the input; the decoding phase performs reconstruction of
the original input from a latent and stochastic representation. The
following equation serves as the basis for the VAE:

logPðXÞ � D½QðzjXÞjjPðzjXÞ� ¼ Ez�Q½logPðXjzÞ� � D½QðzjXÞjjPðzÞ�; (14)

where P(X) is a probability density defined for a data point X in the input
expression data (e.g., the set of genes that belong to the communities), z is
a vector of latent variables with a prior probability density function P(z),
and D is the Kullback–Leibler (KL) divergence between P(z∣X) and some
function Q(z). The first part of the right hand side of the equation, i.e., the
expected negative log-likelihood, gives the reconstruction loss while the
second is the KL divergence between the learned latent distribution and
the prior distribution. Q(z∣X) is the probabilistic encoder which compresses
the data X into the latent variable z, whereas the generative model P(X∣z) is
the probabilistic decoder which reconstructs the latent representation into
the original data.
Using a VAE model of the communities, we tested the extent to which

they could help to identify expression changes associated with disease and
discover biologically-meaningful features8,45. We built on Tybalt, which
uses a Keras implementation. We analysed TCGA Pan-Cancer data,
consisting of batch-effects-normalized mRNA data (in units of
log2ðnorm valueþ 1Þ) in 11,060 samples across 33 cancer types (see
"Data and code availability” section). Expression values were mapped to
[0,1] for each gene using the maximum and minimum values.
We evaluated the performance of the VAE model of the GTEx-derived

communities in TCGA data in two ways. (1) The process of metastasis
remains poorly understood. Classification of the tumors into primary or
metastatic origin enabled us to test whether the VAE model could

successfully discriminate the sample type. (2) The acquisition of a stem cell-
like tumor trait, i.e., stemness, in cancer suggests gene expression
programs that may contribute to progression and treatment resistance.
To determine whether the VAE model successfully learned stemness28, we
used a DNA methylation-based "Stemness Score” from the Pan-Cancer
Stemness working group, specifically the "DNAss” signature, which
combines (a) an epigenetically-regulated DNA methylation-based signa-
ture, (b) a differentially-methylated probes-based signature, and (c) an
enhancer elements/DNA methylation-based signature. For these analyses,
we also adjusted for race, sex, age at diagnosis, stage, or disease as a
potential confounding effect.

Statistical tests
All statistical tests were two-sided.

DATA AVAILABILITY
The protected data for the GTEx project (for example, genotype and RNA-sequence
data) are available via access request to dbGaP accession number phs000424.v8.p2.
Processed GTEx data (for example, gene expression and eQTLs) are available on the
GTEx portal: https://gtexportal.org. TCGA gene expression data and DNA methylation
based stemness scores can be downloaded from the University of California, Santa Cruz
(UCSC) TCGA Pan-Cancer Atlas hub on Xena: https://pancanatlas.xenahubs.net. The UK
Biobank C-Reactive Protein GWAS summary results on which TWAS/PrediXcan was
applied are available for download: https://doi.org/10.5281/zenodo.4681322. We also
deployed the results on Track Hub of the UCSC Genome Browser: https://genome-euro.
ucsc.edu/cgi-bin/hgTracks?hgsid=261097667_sHbFi4mmwke2A6qjRyKmNiVAot6m.
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Code for reproducibility and results are publicly available on Github, with additional
instructions for implementation: https://github.com/tjiagoM/gtex-transcriptome-
modelling.
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