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Prediction of hemophilia A severity using a small-input
machine-learning framework
Tiago J. S. Lopes 1✉, Ricardo Rios2,3, Tatiane Nogueira 2,3 and Rodrigo F. Mello3,4

Hemophilia A is a relatively rare hereditary coagulation disorder caused by a defective F8 gene resulting in a dysfunctional Factor
VIII protein (FVIII). This condition impairs the coagulation cascade, and if left untreated, it causes permanent joint damage and poses
a risk of fatal intracranial hemorrhage in case of traumatic events. To develop prophylactic therapies with longer half-lives and that
do not trigger the development of inhibitory antibodies, it is essential to have a deep understanding of the structure of the FVIII
protein. In this study, we explored alternative ways of representing the FVIII protein structure and designed a machine-learning
framework to improve the understanding of the relationship between the protein structure and the disease severity. We verified a
close agreement between in silico, in vitro and clinical data. Finally, we predicted the severity of all possible mutations in the FVIII
structure – including those not yet reported in the medical literature. We identified several hotspots in the FVIII structure where
mutations are likely to induce detrimental effects to its activity. The combination of protein structure analysis and machine learning
is a powerful approach to predict and understand the effects of mutations on the disease outcome.
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INTRODUCTION
Hemophilia A (HA) is an X-linked heritable disease affecting
approximately 1 in every 5000–10,000 live male births1. People
with hemophilia A (PwHA) have endogenous defective copies of
the coagulation factor VIII gene, which in turn dramatically affects
the blood coagulation cascade. As a result, depending on the type
of mutation on the F8 gene, disease symptoms may vary from
mild (when PwHA only experience rare bleeding episodes, clotting
activity level 5–40%), to moderate (where these episodes are more
frequent, clotting activity 1–5%), and severe (when there is a
permanent risk of bleeding complications and chronic joint
damage2, clotting activity <1%).
Although it is a relatively rare disorder, the coagulation pathway

is well-characterized and treatment options are improving since
the 1950s, evolving from blood-derived FVIII concentrates2 to
recombinant proteins3 and a recent monoclonal antibody4. These
so-called replacement therapies aim to replace the defective FVIII
protein through constant supplementation of one of these
products.
Although the life expectancy and the quality of life of PwHA

improved considerably in the last decades2,5, current treatment
options still have issues to be addressed; for instance, it is
necessary to improve the half-life of recombinant FVIII proteins
(currently ~12–19 h, considering the standard and extended half-
life products), as well as its immunogenic profiles to avoid the
development of neutralizing antibodies3. Finally, it is also
important to develop recombinant proteins suitable for both
prophylaxis and treatment of severe bleeding episodes6.
To overcome these drawbacks, a thorough understanding of

the FVIII protein structure is essential. Reported mutations include
deletions and inversions of large parts of its encoding gene, as
well as single-nucleotide polymorphisms that do not change the
reading frame, but replace an amino acid and generate a defective
protein. Using gene information and protein structure properties,

previous studies revealed fundamental aspects of single amino
acid changes and their relation to severe or mild forms of HA7–12.
However, the lack of strict data curation and the analysis of each
property in isolation prevented these methods from predicting
and mechanistically understanding the occurrence of mild,
moderate, and severe phenotypes.
Therefore, we created a different representation of the FVIII

protein structure and used machine learning (ML) methods to
analyze all protein properties in conjunction. We named this
framework Hema-Class (Fig. 1a). To uncover hidden patterns in the
data, ML methods require large amounts of input information, but
since HA is a rare disease, we did not have the amount of data
usually employed by ML in biomedical applications. We solved this
problem by establishing a systematic data curation strategy, and
after training Hema-Class with a limited amount of data, we
challenged it with prediction tasks of increasing difficulty to
gradually fine-tune its parameters. Importantly, we designed
Hema-Class as an open-source system that can be immediately
retrained when new HA mutations appear in the literature.
Finally, we used Hema-Class to make predictions of the severity

of all possible FVIII mutations—including those not yet reported in
the medical literature. We grounded the reliability of these
predictions in the close agreement between Hema-Class and
in vitro mutagenesis assays, as well as hundreds of clinical reports
of FVIII mutations.
In summary, the contributions of this study are twofold: first, we

established an ML approach based on limited clinical and
molecular data, and second, we used this system to advance
the understanding of the FVIII protein by indicating which
mutations are neutral or detrimental to its function. We anticipate
that this study will enable other rare diseases to benefit from ML
and will contribute to the engineering of better recombinant FVIII
therapeutics.
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RESULTS
Properties of FVIII protein indicate differences in disease
severity
As an essential part of the coagulation cascade, the FVIII protein
works as a co-factor, binding activated coagulation factor IX (FIXa),
coagulation factor X (FX), and the phospholipid membrane of
platelets1,2. In this delicate interaction with multiple molecular
partners, even single nucleotide changes can destabilize the FVIII
protein structure and compromise its function. Therefore, we
collected several properties of all amino acids of the FVIII
structure13 (Protein Data Bank (PDB) accession 2R7E), including
the surface exposure area, hydrophobicity and torsion angles of
the amino acids, and searched for clinical reports that described
HA cases caused by mutations at each of those residues. In
addition, we verified that the properties of the structure we used
in this study strongly correlated to the properties of another
structure published recently14 (PDB accession 6MF2—Supplemen-
tary Fig. 1), thus, we did not use the 6MF2 structure for the
analyses.
As it happens with rare diseases, the size of the input data often

hampers its use for robust statistical analyses; we circumvented
this issue by a careful and strict data sanitation strategy
(“Methods”). We designed an input set with 443 non-
synonymous mutations at 364 different FVIII positions (202 mild,
77 moderate, and 164 severe), maximizing the amount of
information without biasing the dataset toward any particular
variable (Fig. 1a).
Similar to previous studies7–11, we found that mutations at

positions with low solvent-accessible and low solvent-excluded
surface areas, as well as in highly conserved residues are related to

more severe phenotypes (Fig. 1b and Supplementary Fig. 2). As it
happens with other proteins15,16, this indicates that the substitu-
tion of conserved FVIII amino acids buried at the core of FVIII
interferes with its conformation, function, and ability to bind other
proteins17–19.
Next, we created a residue interaction network (RIN) of the FVIII

protein. In this network, each amino acid corresponds to a node,
and two nodes are connected by an edge if the amino acids are in
close proximity to each other in the protein structure (Fig. 1a). This
type of representation provides valuable information about the
importance of amino acids and has been used to design new
peptides and to understand the fundamental properties of
proteins (reviewed extensively by others20).
In our RIN we found that the degree and the Burt’s constraint21

values are good indicators of the disease phenotype. These
centrality measures quantify respectively the number of connec-
tions a node has, and how central or isolated a node is in the RIN
(i.e., low constraint indicates a central amino acid and high
constraint indicates a peripheral or isolated residue—Fig. 1b).
We found that mutations to amino acids that are central to the

network (i.e., high degree and low constraint values) are related to
more severe phenotypes. For instance, among the top 1% most
connected amino acids in the RIN network, 34 out of 44 have
reported mutations associated with HA (77%); on the other end,
among the 1% least connected amino acids, only 21 out of 74
have cases reported (28%).
Residues Phe447 and Lys444 are among the most central

residues in the FVIII RIN, and upon mutation to Ser and Arg/Thr/
Asn, respectively, a severe form of HA ensues22–24. On the other
hand, substitutions of amino acids that are peripheral in the
residue network tend to cause mild or moderate symptoms. The

Fig. 1 Structural and nonstructural properties of the FVIII protein. a To assemble the dataset we combined structural properties from the
FVIII protein structure, from a multiple sequence alignment (i.e., the conservation of residues), and from a residue interaction network (RIN). In
a RIN, each amino acid is a node, and two nodes are connected if the two residues are at close proximity in the structure (i.e., if their main- or
side-chains are less than ~5 Å from each other). The FVIII RIN had 1336 nodes and 4074 edges. b Distribution of values of the variables related
to the HA severity. Depicted is the solvent-accessible (areaSAS) and the solvent-excluded (areaSES) surface areas, the conservation of the FVIII
residues (conservation score—smaller values indicate higher conservation). The degree is the number of connections that a node has, and
Burt’s constraint21 quantifies the strategic location of a node between groups that would not be connected otherwise. The boxplots depict
the median (centerline), the first and third quartiles (lower- and upper-bounds), and 1.5 times the inter-quartile range (lower- and upper
whiskers). Each dot in the plot is an amino acid mutation (i.e., a clinical case report). Statistics: one-way ANOVA followed by Tukey’s post hoc
test. In all cases, we used n= 171 (mild), n= 70 (moderate), and n= 123 (Severe). *** indicate Tukey’s post hoc p values < 0.001; **p value <
0.01; *p value < 0.05.
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mutations Ala394Ser, Thr454Ile, and Val578Ala in the A2 domain
result in mild HA phenotypes25,26. A comprehensive characteriza-
tion of the FVIII RIN is presented in a separate study (Lopes et al.,
submitted).
Taken together, our results indicate that in addition to the

properties inferred directly from the protein structure, properties
derived from the RIN offer a distinct perspective on the
importance of the residues in FVIII and their relation to HA
phenotypes.

Development of an ML classifier for HA
Although the study of individual characteristics of the FVIII protein
helps to understand the disease severity caused by mutations,
these properties are all interrelated (e.g., more conserved residues
usually have less surface exposure27). Therefore, we studied not
only protein properties in isolation but how they jointly determine
the severity of HA.
For this purpose, we used supervised ML classifiers. These

algorithms receive as input the characteristics of the FVIII protein
and a class label indicating the phenotype that a mutation causes.
They output a score indicating the probability that a single point
mutation will cause a severe HA phenotype (we named it the
Severity Score) (Supplementary Table 1).
Using the maximally informative dataset that we created

previously (443 instances, 164 severe, and 279 mild/moderate),
and a cross-validation procedure (“Methods”), we compared six
classification algorithms with and without data augmentation28,29.
Overall, we obtained an accuracy of 66–87% in our classification

(Fig. 2a, b), suggesting that a small but informative training set
augmented by a reliable statistical technique contained enough
information to effectively induce the classifiers to learn the hidden
patterns of the data.
Next, we posed the first challenge to all classifiers: to predict

experimental mutations on the FVIII protein that were not used
during the training phase.
We used an in vitro mutagenesis screening where almost all of

the residues of the A2 and the C2 domains were mutated to
alanine30,31. The A2 domain is important for the FVIII activity
because in addition to its role in stabilizing the protein structure32,
it contains a binding site for FIXa (ref. 33). In a similar fashion, the
C2 domain is critical because it contains hydrophobic residues
involved in interactions both with the von Willebrand factor as
well as with the phosphatidyl-l-serine containing membrane34.
Importantly, due to the amino acid composition of these domains,
the binding sites to coagulation factors also form epitopes
targeted by the different inhibitor antibodies developed by
patients during treatment35,36.
In those alanine mutation assays, 344 mutant FVIII constructs

were expressed in COS-1 cells, and the products were subject to a
chromogenic assay to measure their level of thrombin production.
The ELISA assay was used to assess the efficiency of FVIII mutant
constructs expression and secretion (often referred as antigen
assay because they measure both functional and nonfunctional
FVIII proteins by the amount of FVIII antigen (protein) immobilized
on the ELISA plate. Two commercial kits were used to apply the
“sandwich” method, where the antigen (FVIII construct) is
captured between two layers of antibodies30,31.

Fig. 2 Machine-learning classifier properties. a Comparison of the accuracy of the different classifiers. These are the averages of 10-fold
cross-validation for each classifier. The bars depict mean values and error bars, the standard deviation. b The AUC (Area Under the Receiver
Operating Characteristic curve depicts the relation between the true positive and the false-positive rates. Points close to (0,1) indicate a better
classification. The diagonal line represents a random classifier for a class-balanced dataset, i.e., any result below this line is worse than
assigning labels randomly. c Distribution of the Severity Scores of two classifiers and an ensemble, and their relation to the in vitro
chromogenic activity and the expression/secretion ability of the in vitro FVIII mutant constructs. In total, 344 alanine mutants were used (205
for A2 and 139 for C2). The boxplots depict the median (centerline), the first and third quartiles (lower- and upper-bounds), and 1.5 times the
inter-quartile range (lower- and upper whiskers). Each dot in the plot is an amino acid mutation (i.e., an in vitro alanine mutant construct). d
The Severity Score prediction of two classifiers for the chromogenic activity of FVIII mutants. The lack of correlation indicates that the
classifiers are assigning different probabilities for the same instance—namely, having a different perspective about the real classification of
mutants; this observation led us to combine their prediction values to come closer to the real activity of FVIII mutants. In all cases, we used the
unpaired, two-sided Wilcoxon test (*** indicate p values < 0.001; **p value < 0.01; *p value < 0.05). SVM support vector machine, DT decision
tree, NB naïve Bayes.
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We used the 6 algorithms to predict the effects of the alanine
mutations on each residue and found that two of the algorithms
successfully identified mutants that did not impair the production
of thrombin and its secretion (>50% wild type) (Fig. 2c, d,
Supplementary Fig. 3). In most cases, the mutants with lower
chromogenic and secretion activities had significantly higher
Severity Scores, indicating that the classifiers successfully learned
the hidden properties of the clinical and molecular data and made
inferences about unseen FVIII variants. Importantly, these results
made clear that only considering the accuracy of a training/testing
procedure would be misleading; thus, presenting the classifiers
with unseen data was essential to select the best algorithms for
the next steps.
Interestingly, we verified that the two classifiers that performed

better in this challenge outputted different Severity Scores for the
same instances (Fig. 2e). Thus, we leveraged on this difference and
created a bagging-based ensemble of classifiers by averaging the
Severity Scores of both classifiers—we named this ensemble the
Hema-Class.
We found that Hema-Class predictions had less variance than

either algorithm alone (Fig. 2c, d). As demonstrated in previous
studies37,38, ensembles of classifiers closely approximate predic-
tions to the real values of instances and avoid the biases that all
algorithms inevitably have.
Along these lines, one aspect that we did not address in the

present study are the so-called cross-reactive material (CRM+)
mutations, where the mutant protein exhibits relatively high
antigen binding, but low chromogenic activity (in clinical reports
and in the in vitro data we observed less than 100 such cases). As
more data becomes available, Hema-Class can be retrained using
CRM+ and CRM− input sets separately.
Nevertheless, our results indicate that even with limited input

data—as is often the case for rare diseases—it was possible to
build a ML framework that had a close agreement with in vitro
and clinical data. Finally, Hema-Class succeed in one of the critical
tasks of ML, namely, to be trained using one type of input data
(clinical and molecular), and to predict another (in vitro
mutagenesis).

Predicting the severity of all possible FVIII mutations
With the confidence that Hema-Class effectively generalized to
unseen FVIII mutations, we decided to make predictions about the
HA severity that ensues upon mutating all FVIII positions to all 19
remaining amino acids. The most up-to-date database contains
point mutations in only ~730 positions (~30–50% of the FVIII
residues, depending on the stage of its life cycle); therefore,
predictions of unseen amino acid substitutions are relevant to
understand which regions and mutations are detrimental to the
FVIII activity.
We created a dataset with mutations in all of the wild-type FVIII

positions to each of the remaining 19 amino acids. In total, this
dataset had more than 25,000 instances—more than 50 times the
size of our training set. Different from our previous analyses, the
values of the properties derived from the 3D structure remained
constant for the same amino acid, and only the distance between
the wild-type residue and the new amino acid varied. For example,
the instances with mutations Leu26Arg and Leu26Pro have the
same surface exposure values, degree, and Burt’s constraint (of the
leucine at position 26), the only difference between them is the
distance between arginine and leucine, and proline to leucine (we
describe the distance measure in the Methods section); this
setting (i.e., varying only one feature while keeping the others
constant), is a major challenge for ML classifiers because it tests
the sensibility of the classifiers to small changes in a single
variable.

We used Hema-Class to predict the Severity Score of 530 point-
mutations described in the literature but previously unused in our
study (Supplementary Table 2).
We opted to classify less instances, but with greater accuracy;

therefore, we varied the Severity Score thresholds to create a “gray
zone”, where instances were classified as unknown instead of
receiving an incorrect classification (Fig. 3a). After close inspection
of the Severity Score and the accuracy behavior, we defined that
instances with Severity Scores in the interval [0.39–0.63) would be
classified as “unknown” (161 instances).
With these thresholds, Hema-Class yielded an overall accuracy

of 62% (Fig. 3b). We confirmed these results predicting the
severity of ~1000 reported mutations of the CHAMP database
(Methods—Supplementary Fig. 4), indicating that although the
correlation is not perfect, severe HA phenotypes are consistently
associated with higher Severity Scores.
Next, these results enabled us to predict the Severity Score of

previously unreported ~17,500 FVIII mutations.
We found that ~4000 mutations had high Severity Scores, and

Fig. 3b shows that there are regions of the FVIII protein that are
more prone to cause severe HA symptoms if mutated. For
instance, while most regions of the C1 and C2 domains might
tolerate different substitutions, the buried regions of the A1 and
A3 domains are more likely to cause severe HA symptoms
independently of the amino acid replacement (Fig. 3c, all
predictions are listed in Supplementary Table 2). Interestingly,
we found that Thr68, Leu117, Asp186, Met339, Trp1854, and
Gly1942 are the most sensitive positions and received high
Severity Scores for most amino acid substitutions. In accordance
with previous studies, our results indicate that the FVIII protein
core is composed of a complex network of inter-atomic
interactions, and mutations leading to disruption of this intricate
architecture leads to the loss of FVIII activity9–11,39.
Taken together, our results demonstrate that it was possible to

train Hema-Class using a small input set, and after confirming its
agreement with in vitro and clinical data, we were confident to
make predictions about unseen hypothetical mutations. The
ability to adjust the Severity Score thresholds added flexibility to
the framework and created a trade-off between a smaller accuracy
and more instances classified, or fewer instances classified but
with more certainty.

DISCUSSION
In this study, we analyzed single amino acid mutations to identify
the properties of the FVIII protein structure that are strong
indicators of HA severity. After proper data sanitation, we obtained
a compact yet informative dataset of HA characteristics and used
it as input to an ML classifier (the Hema-Class framework, Fig. 1a).
After verifying the agreement of our predictions to in vitro and
clinical reports, the Hema-Class was subsequently used to make
predictions about the severity of HA for all possible FVIII non-
synonymous mutations—including those not yet reported in the
scientific literature.
In its activated form, the FVIII protein interacts with FIXa, FX, and

the platelet’s phospholipid membrane. These transient and
precise interactions can be disturbed by even one amino acid
substitution—and the degree of disruption depends on the
position and the type of amino acid replacement27. Similar to
previous studies, we verified that the surface exposure and the
conservation of a residue have a strong relation to the HA
phenotype7–12. Notorious examples are mutations at residues
Asp186 and Met339, buried inside FVIII and whose side-chains are
involved in a complex hydrogen-bond network and contribute
with major energy in copper binding26,40.
Next, we created a representation of the FVIII protein structure

(RIN), and with this convenient and intuitive representation we
visualized and quantified the “centrality” of all residues in the
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structure; we present a complete characterization of this network
in a separate study (Lopes et al., submitted). We verified that
substitutions to the critical residues of the FVIII proteins (i.e., the
most centrally connected ones) caused detrimental effects on the
FVIII function (Fig. 1b). In general, the most connected residues
were those buried at the core of the A1 and A3 domains that kept
the FVIII structure stable13,41. In most proteins, substitutions of the
highly conserved hydrophobic residues (usually at the core), lead
to disruption of the protein structure due to side-chain clashes
and separation of hydrogen and non-covalent bonds27. In the
protein world conformation equals function, and it is a direct
consequence that substitutions at these sites impair the FVIII
activity.
With the structural properties collected and evaluated, the next

step was to use them in conjunction to make predictions about
HA severity—and for this purpose, we built a small yet highly
informative input dataset for our ML framework (the Hema-Class).
After proper training and validation, we used Hema-Class to

predict the severity of 344 alanine mutations in the A2 and C2
domains. We verified a close agreement between the in silico and
in vitro results, as evidenced by the fact that the most dramatic
reductions in the chromogenic and secretion activities of the FVIII
protein were accompanied by high Severity Scores (Fig. 2c, d). For
instance, Lys444Ala and Phe447Ala in the A2 domain (Severity
Scores 0.97 and 0.91, respectively) had 0% of the wild-type

chromogenic activity31. These encouraging results gave us
confidence that Hema-Class captured FVIII properties that were
previously only observable using in vitro assays.
Finally, the Hema-Class framework enabled us to make

predictions of all possible mutations in the FVIII protein. Predicting
more instances than are used during training is a notorious
problem in ML42, but we addressed this issue using point-
mutation data not used during the training phase to estimate the
most appropriate Severity Score thresholds. With the data
available at present, we achieved an accuracy of 62% (Fig. 3a)
and identified the “hot-spots” of the FVIII protein at the core
regions of the A1 and A3 domains (Fig. 3b, c). Supported by
hundreds of clinical reports, we are confident that changes to
these residues are detrimental to the FVIII function.
The agreement between Hema-Class predictions and the

in vitro and clinical reports is not perfect. These discrepancies
exist because clinical reports often have conflicting information
(e.g., lack of agreement between chromogenic activity and clinical
symptoms), and contacting the authors is infeasible, given that
some studies were published decades ago. In addition, there are
different methods to measure the FVIII co-factor activity (e.g., one-
stage aPTT clotting assays and chromogenic substrate assay), and
although their results agree in most cases43, these methods
sometimes have discrepancies that induce the incorrect diagnos-
tic and consequently affect the quality of the results outputted by

Fig. 3 Hema-Class refinement and predictions. a The accuracy of the severe and the mild/moderate classes varies depending on the Severity
Score cutoffs. Changing the Severity Score cutoffs effectively creates a “gray zone” where fewer instances are classified, but with higher
accuracy. Depicted is the landscape created by varying the cutoff values. b Each dot is a combination of a minimum and maximum Severity
Score cutoffs, and the blue circle depicts the values that enabled Hema-Class to achieve the best classification of FVIII point-mutations not
seen during the training phase (~60% for both severe and mild/moderate classes). c Predicted Severity Score of all possible mutations of the
FVIII amino acids in the FVIII structure (available in Supplementary Table 2). d FVIII structure colored by the Severity Score of each amino acid.
Red indicates a higher probability of loss of function.
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Hema-Class. Moreover, the in vitro assays are not completely
realistic because they lack components that are present in the
human circulation (e.g., activated platelets, other host proteins,
and the blood flow). Additionally, due to technical constraints at
the time, the 2R7E structure13 was determined at a low-resolution
(3.7 Å) and have regions that were not modeled or contain
unfavorable torsion angles (Supplementary Fig. 5); for this reason,
although the results presented here pave the way for the in silico
prediction of disease severity, they should be interpreted with
care in the light of these limitations.
Nevertheless, the Hemophilia community is actively working on

these issues, and even with these adversities the Hema-Class
framework uncovered meaningful patterns from clinical and
molecular data; importantly, we designed the Hema-Class
architecture in a way that it can be easily retrained as new data
becomes available (see “Data availability”).
In summary, we have established a ML framework to study and

anticipate the severity of HA-based on the characteristics of the
FVIII protein structure. The incremental difficulty of the challenges
presented to Hema-Class posed a formidable challenge to its
capacity and gave us the confidence in its predictions. We believe
that the challenge of designing a recombinant FVIII with a longer
half-life and better immunogenic profile remains; however, being
able to mechanistically study mutations in silico brings us a step
closer to this goal.

METHODS
Protein structure and its properties
We used the FVIII protein structure deposited in the PDB with the
accession 2R7E (ref. 13). We extracted the structural properties from this
structure using Chimera version 1.14 (ref. 44). The measures obtained using
Chimera were areaSAS, areaSES, kdHydrophobicity, PSI, PHI, and the
bFactor (Supplementary Table 1).
Next, we transformed this protein in an undirected, unweighted graph

using RINerator version 0.5.1 (ref. 45) with the default parameters. We
considered that two residues interacted if there was at least one edge
between them, independently of the edge type. To analyze the RIN, we
used R version 3.6.3 (https://www.R-project.org/) and the iGraph package,
version 1.2.5 (ref. 46). With the iGraph package, we used the function
simplify to remove redundant edges and self-interactions. Next, we
calculated the degree, betweenness, closeness, Burt’s constraint21,
Authority Score, Page Rank-like, KCore, and the Authority Score measures.
We obtained the conservation score from the ConsurfDB webserver47

and created the Ramachandran plot using a webserver from Anderson
et al.48.

Database sanitation
We manually queried the EAHAD database49 on 25th June 2020. We
selected “Point” and “Polymorphism” (on type), and “Missense” (on variant
effect) on the advanced search. It returned a total of 6051 rows. Next, we
removed mutations on the signal peptide regions, or outside the mature
form of the protein, as well as instances with 1-st/2-st FVIII:C > 100. We also
removed non-numerical values on the FVIII:C column, substituted the
values >5 for 5, <10 for 10, <11 for 11, “<1” or “<1” for “0”. We also
removed instances with FVIII:C values that would lead to ambiguous
diagnostics (e.g., “0 to 2”, “<1 to 2”, <2, etc).
We substituted FVIII:C that contained ranges (e.g., “10–24”) to the

average value (in this example, 17). We removed instances without FVIII:C
and without inhibitor information, and instances with discrepancies
between “FVIII:C% (presumed 1-st)*” and “FVIII:C% (2-st/Chr)”, and one
mutation encoding a stop-codon.
Finally, we removed instances with ambiguously reported classifications

(e.g., “mild/moderate”, or “moderate/severe”).
For the ML validation step, we downloaded the CHAMP FVIII database

(https://www.cdc.gov/ncbddd/hemophilia/champs.html), and considered
only non-synonymous substitutions at single nucleotides, removed
instances with ambiguously reported severities (e.g., “mild/moderate”, or
“moderate/severe”), removed duplicated instances as well as mutations
that would lead to stop codons, as well as mutations outside the coding

regions. After this data sanitations step, ~1000 unique reported mutations
were left.

Amino acid distance index
We used the R package seqinR (ref. 50) to obtain 544 numerical properties
for each amino acid. Next, we used the package AMAP (ref. 51) to perform a
principal component analysis of this set, and reduced the number of
properties to 19 components, while retaining 99% of the information in
the dataset. We calculated the Euclidean distance between all amino acids,
considering all 19 component values. This gave us a 20 × 20 matrix which
was the distance index used in our analyses (Supplementary Table 1).

Classifier methodology
Supervised learning is a subarea of ML focused on producing the best
possible mapping (model) f:χ→Ƴ of examples xi in some input space χ to
class labels yi in the output space Ƴ (ref. 52). In the context of this work,
input examples are composed of protein features and class labels are the
HA severities. Here we describe the mapping strategy adopted by the ML
algorithms that we used.

Experimental setup
The experimental setup designed to create the Hema-Class followed the
following steps: preprocessing, training, and testing. Besides the pre-
processing tasks already mentioned in the Results section, we also
normalized all attributes to make sure our framework is not biased by data
scales. We also removed all examples where values in at least one attribute
was missing. We employed the tenfold cross-validation method to reduce
the chances of estimating overfitted models, and to ensure that the same
sets of examples were considered by the different ML algorithms. This
enabled a fair training and testing for all algorithms. Finally, before
proceeding with model training, we used a strategy of data augmentation
to balance the dataset classes, given it was composed of examples of the
classes “Severe” (n= 152) and “Mild/Moderate” (n= 263). The Adaptive
Synthetic Sampling Approach for Imbalanced Learning (ADASYN)29 was
used to balance the dataset by employing a weighted distribution for
different minority class examples according to their level of difficulty in
learning. ADASYN yields more synthetic data for the minority class
examples that were harder to be predicted, thus improving the learning
process by reducing the bias introduced by the class imbalance, and
adaptively shifting the classification decision boundary towards the more
complex examples. After using ADASYN, our augmented dataset contained
296 examples of the Severe and 263 of Mild/Moderate classes.
The training and test steps were performed using a grid search strategy

to look for the best parametrization for all ML methods. To model the
dataset using Decision Tree, we varied the minimum number of
observations in a node before splitting the data within the interval
minsplit= [2, 50]. The minimum number of observations (minbucket) in a
terminal node (leaf) was searched in the interval [1, 20]. Finally, the
complexity parameter (cp) lied in range [0.0001, 1].
The Random Forest (RF)28 was trained varying three parameters: a

number of trees (ntree) in the interval [4,100]; the number of variables
randomly sampled as candidates at each split (mtry) in the interval [2, 7];
and minimum size of terminal nodes or leaves (nodesize) between [1, 5].
The Support Vector Machine was assessed using the two best kernels

according to a first empirical set of experiments: radial 2ð�y½x�ω�2Þ , and
polynomial (yω'x+c)d, given ω,x is two position vectors representing
examples. For the radial kernel, we analyzed the following parameters y=
{0.01, 0.02, …, 1.5}, while the polynomial kernel was assessed using c=
{0.1, 0.15, …, 2}, c= {0.1, 0.15, …, 2}, d= {2, 3, …, 5}.
The model obtained with Naïve Bayes has no parameter estimation.
Finally, the XGBoost method53 was estimated by running a grid search

on the following parameters: maximum depth of a tree in {1, …, 25}, y is
the L2 regularization (Ridge Regression) term on weights in the range [0, 1]
to define the number of samples taken into consideration, ɳ∈[0,1] defining
the learning rate by scaling the contribution of each tree, and obj is the
loss function.
The best models obtained during the training phase with the tenfold

cross-validation strategy were chosen by their relative performances in
terms of the Kappa index and the Area Under the ROC Curve. The Kappa
index measures the agreement between the predicted and expected
values, thus emphasizing that the results were not obtained by chance.
This coefficient subtracts the expected from the observed agreement to
quantify the probability of correct classifications by chance54.

T.J.S. Lopes et al.

6

npj Systems Biology and Applications (2021)    22 Published in partnership with the Systems Biology Institute

https://www.R-project.org/
https://www.cdc.gov/ncbddd/hemophilia/champs.html


Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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