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Metabolic modelling reveals broad changes in gut microbial
metabolism in inflammatory bowel disease patients with
dysbiosis
Almut Heinken1,2, Johannes Hertel1,2,3 and Ines Thiele 1,2,4,5✉

Inflammatory bowel diseases, such as Crohn’s Disease, are characterised by an altered blood and faecal metabolome, and
changes in gut microbiome composition. Here, we present an efficient, scalable, tractable systems biology framework to
mechanistically link microbial strains and faecal metabolites. We retrieve strain-level relative abundances from metagenomics
data from a cohort of paediatric Crohn’s Disease patients with and without dysbiosis and healthy control children and
construct and interrogate a personalised microbiome model for each sample. Predicted faecal secretion profiles and strain-
level contributions to each metabolite vary broadly between healthy, dysbiotic, and non-dysbiotic microbiomes. The reduced
microbial diversity in IBD results in reduced numbers of secreted metabolites, especially in sulfur metabolism. We demonstrate
that increased potential to synthesise amino acids is linked to Proteobacteria contributions, in agreement with experimental
observations. The established modelling framework yields testable hypotheses that may result in novel therapeutic and dietary
interventions targeting the host-gut microbiome-diet axis.
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INTRODUCTION
The human gut microbiome plays an important role in human
health and disease. It performs important functions, such as
maturation of the host immune system, digestion of food,
synthesis of short-chain fatty acids, vitamins, and amino acids,
and protection against pathogens1,2. Changes in microbiome
composition have been linked to complex multifactorial diseases,
e.g., type 2 diabetes, metabolic syndrome, and non-alcoholic fatty
liver syndrome2,3, as well as inflammatory bowel disease (IBD)4.
IBD can be separated into two subtypes, Crohn’s Disease and
ulcerative colitis4. Factors contributing to the IBD pathogenesis
include genetics, diet, lifestyle, and the gut microbiome5. There is
an urgent need for a mechanistic understanding of the role of
these complex host-microbiome–environment interactions in
IBD6. Ultimately, personalised treatment approaches targeting
the diet-host-microbiome axis are needed6. A number of studies
have reported differences in the abundances of certain taxa
between IBD patients and healthy controls, identified through 16S
rRNA sequencing or metagenomic approaches6–8. However,
metagenomic approaches alone are insufficient to infer the
functional metabolic activity of the microbiome6. Thus, functional,
pathway-based analyses are required to elucidate not only the
changes in composition in the gut microbiomes of IBD patients
but also the metabolic changes that could serve as a target for
therapeutic interventions.
Several studies have shown differences in the blood and/or

faecal metabolome between IBD patients and cohorts4. Changes
in microbial metabolites, such as short-chain fatty acids, secondary
bile acids, and tryptophan, have been especially implicated in
IBD4. To gain insight into changes in microbiome structure and
function, metabolomic and metagenomic analyses for the same
faecal samples are commonly performed, and subsequently,

positive and negative correlations between species abundances
and specific metabolites are inferred for cohorts of IBD patients
and controls9,10. However, the mechanisms underlying these
correlations remain unclear9 and it is difficult to disentangle the
contributions of microbial and host metabolism to altered
metabolite levels. Mechanism-based computational models that
integrate omics data (e.g., metagenomics, metabolomics, and
metatranscriptomics), as well as dietary information could
mechanistically link changes in microbe abundances and meta-
bolite levels and, ultimately, propose potential disease mechan-
isms, biomarkers, and personalised therapies5.
One such mechanistic modelling approach is constraint-based

reconstruction and analysis (COBRA)11. Briefly, COBRA relies on a
manually curated genome-scale reconstruction of metabolism of
a target organism, which can be converted into a mathematical
model and subsequently interrogated through simulations, using
established methods, such as flux balance analysis12. COBRA
models13 can be readily contextualised by implementing
different types of data as constraints, e.g., metagenomics14,
metabolomics15, proteomics16, or dietary information17. To
enable constraint-based modelling that captures the diversity
of the human gut microbiome, we have assembled a resource of
818 curated genome-scale reconstructions of human gut
microbes, AGORA18. The reconstructions have been built on
the strain level from refined genome annotations and experi-
mental data18. AGORA enables the creation of personalised
microbiome models from metagenomics data that freely allow
host–microbe and microbe–microbe metabolic interactions14.
Thus, these microbiome models have valuable applications in
studying microbe–microbe and host–microbe interactions19.
Several studies have already successfully applied AGORA to
predict microbiome metabolism in IBD, such as predicting
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personalised dietary supplements20, predict the potential for
metabolic cross-feeding were predicted in patients and con-
trols21, stratify subtypes according to their metabolic networks22,
and predict treatment efficacy23.
Previously, Lewis et al.8 have performed metagenomic

sequencing of the microbiomes of paediatric Crohn’s Disease
patients and healthy control children and found that the Crohn’s
Disease microbiomes stratified into two clusters, i.e., a “near
cluster”, which resembled the healthy microbiomes in composi-
tion and a “far cluster” characterised by microbial dysbiosis that
was distinct in composition from both healthy controls and the
near cluster microbiomes. Based on these results, they separated
the patients into two groups, “non-dysbiotic” and “dysbiotic”
IBD8. We have previously constructed personalised models for a
subset of 20 dysbiotic Crohn’s Disease and 25 healthy control
microbiomes from this cohort24. We have then applied the
COBRA approach to predict the bile acid deconjugation and
biotransformation potential of each sample24. The computational
modelling stratified the Crohn’s Disease microbiomes and
healthy microbiomes by their bile acid metabolism profiles24.
Here, we substantially expanded the computation of metabolic
profiles to a wide variety of metabolic subsystems. We system-
atically predicted the potential of each microbiome to secrete
and take up all metabolites, for which biosynthesis pathways and
transport reactions were present in the community models and
identified the metabolites that best stratified the dysbiotic and
non-dysbiotic individuals. For all secreted metabolites, we
computed the respective contributing strains in each micro-
biome. Finally, we validated the predictions for amino acid
metabolites against published metabolomic data from the same
cohort. Taken together, we present a computational systems
biology approach that bridges the gap between metagenomic
and metabolomic data and provides mechanistic, testable
hypotheses for metabolite–microbe associations.

RESULTS
In this study, we aimed at improving the understanding, which
microbial metabolites may be altered in IBD due to altered faecal
microbial community structure. Therefore, we predicted the
metabolic profile, i.e., the combined quantitative potential of all
community members to take up dietary metabolites and secrete
metabolic end products, as well as the strain-level contributions

to these overall fluxes, of 108 analysed microbiomes, corre-
sponding to 20 IBD microbiomes with dysbiosis, 63 non-dysbiotic
IBD microbiomes, and 25 control individuals as defined in ref. 8

(Fig. 1, Methods). We stratified the 108 microbiomes according to
the predicted metabolic profiles. We demonstrate that the
metabolite profiles of microbiomes from individuals with IBD and
dysbiosis were distinct from both healthy microbiomes and IBD
microbiomes with dysbiosis and identify the features that best
separate these groups. Finally, we compared our results with
published metabolomic data from the same individuals. In
agreement with published findings, we predicted that dysbiotic
Crohn’s Disease microbiomes have an increased potential to
synthesise amino acids.

Profiling the range of metabolic capabilities present in the
108 microbiomes
First, we developed a large-scale, computationally efficient
constraint-based modelling approach (Fig. 1). Briefly, we created
a personalised microbiome model for each sample by mapping
the relative strain-level abundances onto the reference set of
reconstructed organisms and by then joining the corresponding
AGORA reconstructions together as described previously24. A
community biomass reaction was formulated that ensured growth
of the strains at experimentally determined ratios (Methods). Each
personalised microbiome model was further contextualised by
simulating the intake of an Average European diet (Methods). The
metabolic profile of each microbiome was then computed as
follows: All dietary, faecal, and strain-specific exchange reactions
present in the model were retrieved, and the minimal and
maximal fluxes through these exchange reactions were computed
using distributed flux balance analysis25 (Methods). This approach
enabled a systematic evaluation of secretion potential, uptake
potential, and strain-specific contributions for each metabolite
that could be transported by at least one microbiome model. The
modelling framework captured the range of metabolic capabilities
encoded by the human gut microbiome, and the variation in
metabolic potential as a function of microbiome composition.

Qualitative metabolic potential in the 108 microbiomes
Overall, the 108 microbiome models accounted for exchange
reactions for 419 metabolites, for which the minimal and maximal
fluxes were computed. We calculated the microbiomes’ theoretical

Fig. 1 Schematic overview of the modelling framework established in this study. Metagenomic reads were mapped onto a reference set of
AGORA18 genomes, and the strain-level relative abundances were retrieved. For each metagenomic sample, a personalised microbiome model
was constructed. The models were parameterised further with a simulated “Average European” diet retrieved from the Virtual Metabolic
Human17 database. The metabolic profile of each microbiome model was then computed with distributed flux balance analysis53. Required
input data are shown in green and required tools are shown in purple.
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potential to take up and secrete metabolites (Supplementary
Table 1). Of the maximally possible 419 metabolites, 143 could be
secreted into the faecal compartment by at least one microbiome
but were not taken up, i.e., they were of microbial origin but not
dietary. Another 59 metabolites could only be taken up by at least
one microbiome and were thus only present in the simulated diet.
Finally, further 86 metabolites were both taken up and secreted
meaning they were both dietary and microbial of origin. The
remaining 131 metabolites that could be neither taken up nor
secreted either lacked the necessary biosynthesis precursors in the
given dietary input or were dead-end metabolites, i.e., metabolites
that only be consumed or produced, in the corresponding AGORA
reconstructions. Some qualitative metabolite biosynthesis capa-
cities were present in almost all microbiomes metabolite while
others were rare (Supplementary Table 1). Taken together, the
systematic in silico metabolic profiling predicted that the analysed
microbiomes could convert the dietary inputs into a variety of
metabolites from diverse subsystems.

Distinct metabolite uptake and secretion potential in
dysbiotic compared with non-dysbiotic microbiomes
Since the microbial composition of the dysbiotic and non-
dysbiotic individuals clearly differed8, we expected these microbial
differences to be reflected in the predicted metabolic profiles. We
performed a statistical analysis (Methods) of the predicted uptake
and secretion fluxes reported in Supplementary Tables 2–3. Of the
229 metabolites that were produced by at least one microbiome,
44 differed statistically significantly between the microbiomes of
IBD patients and healthy controls (Wilcoxon rank sum test
corrected for false discovery rate, Supplementary Table 4a).
Moreover, 122 metabolites had statistically significantly different
production potential in the dysbiotic compared with the non-
dysbiotic IBD cluster (Supplementary Table 4b). Overall, the
production potential for 139 metabolites differed between at
least two of the three groups (Supplementary Table 4a, b). The
clearer separation between the dysbiotic and non-dysbiotic IBD
cluster than between healthy and IBD was in line with our
expectations as the modelling framework was personalised with
only the individuals’ gut microbial compositions and did not
account for other factors (e.g., human metabolism and non-
microbiome-mediated effects of medication). Taken together,
dysbiotic IBD microbiomes were distinct in metabolite secretion
potential as a direct consequence of their distinct microbial
compositions.
The dysbiotic IBD microbiomes were depleted in the produc-

tion potential for metabolites involved in glycan degradation,
fermentation, and B-vitamin biosynthesis (Fig. 2a–f). Metabolites
with increased production potential in the dysbiotic cluster
belonged mainly to the subsystems of amino acid metabolism,
TCA cycle, simple sugars, and lipid metabolism (Fig. 2a–f). For
instance, we predicted an increased secretion potential in the
dysbiotic cluster for lactate, glycine, betaine, hydrogen sulfide,
ethanol, putrescine, and trimethylamine N-oxide (TMAO)
(Fig. 2a–f and Supplementary Table 4b). Increased faecal lactate9

and putrescine26 have been reported for Crohn’s Disease patients.
Hydrogen sulfide has been proposed to both worsen27 and
protect against28 gastrointestinal inflammation. On the other
hand, a reduced secretion potential was predicted for branched-
chain fatty acids, nicotinamide (vitamin B3), and degradation
products of mucins and other glycans (Fig. 2a–f and Supplemen-
tary Table 4b). Reduced faecal isovalerate has been observed in
IBD26. Decreased vitamin B3 levels have also been reported for
IBD patients9,10,26. Riboflavin and reduced riboflavin biosynthesis
were decreased in IBD microbiomes compared with healthy
(Fig. 2d and Supplementary Table 4a). Faecalibacterium prausnitzii,
which is well known to be depleted in Crohn’s Disease patients29,
uses riboflavin as a redox mediator in an extracellular electron

shuttle30 explaining the decreased riboflavin reduction. A
Random forests analysis was performed on the metabolite
secretion fluxes in MetaboAnalyst31 with an out-of-bag (OOB)
error of 0.0648. Among the secreted metabolites that best
stratified the non-dysbiotic and dysbiotic microbiomes were
chorismate, D-ribose, L-lactate, and phenol (Fig. 2g).
To link the predicted metabolite secretion potential to specific

microbes, we calculated the Spearman correlation between
metabolite secretion and uptake potential and species abun-
dances. Strong correlations (>0.75) between species and metabo-
lites were found for 66 secreted metabolites (Fig. 3a). For instance,
glycan degradation products strongly correlated with several
Bacteroides spp., in agreement with Bacteroides being known
glycan degraders32 (Fig. 3a). Secondary bile acids correlated with
species known to biotransform bile acids (Fig. 3a) as observed
previously24. As expected, methane correlated positively with
Methanobrevibacter smithii33, and p-cresol correlated with the
known p-cresol producer Clostridioides difficile34 (Fig. 3a). The
remaining 163 secreted metabolites did not strongly correlate
with specific species. Thus, the uptake and production of these
metabolites was carried out by a combination of multiple taxa.

Absolute and quantitative presence of metabolic functions is
altered in dysbiotic microbiomes
To explain the observed changes in metabolite secretion
potential, we calculated and inspected the absolute presence of
reactions in the microbiomes, as well as the quantitative reaction
abundances on the whole community, class, and genus level. The
absolute presence of 84 and 393 reactions was distinct between
healthy and IBD and between the dysbiotic and non-dysbiotic IBD
cluster, respectively (Fig. 3b and Supplementary Table 4b). Thus,
the dysbiotic IBD microbiomes were depleted or enriched in the
absolute presence of certain pathways. Specifically, reactions
involved in glycan degradation were absent in most dysbiotic
microbiomes (Fig. 3b).
The abundances of 460 reactions on the total community level,

868 reactions on the phylum level, and 37,059 reactions on the
genus level differed significantly between healthy controls and
IBD patients (Supplementary Table 4a). Moreover, 1397 reactions
on the total community level, 5443 reactions on the phylum level,
and 49,376 reactions on the genus level were different in
abundance between the dysbiotic and non-dysbiotic IBD cluster
(Supplementary Table 4b). The abundances of complete pathways
were distinct between groups. For instance, amino acid biosynth-
esis and lipid metabolism pathways had higher abundances in the
dysbiotic cluster (Supplementary Fig. 1). Taken together, the
microbiomes of dysbiotic IBD patients were distinct in the
qualitative and quantitative presence of key reactions and
pathways, which explains their aforementioned altered potential
to consume and secrete metabolites.

IBD microbiomes exhibit reduced metabolic diversity and
altered sulfur secretion patterns
We hypothesised that the reduced species diversity in the IBD
microbiomes with dysbiosis8 would also translate into reduced
metabolic diversity and in a reduced number of secreted
compounds. Thus, we further analysed the qualitative metabolic
potential per microbiome discussed above. Indeed, the number of
compounds that could be theoretically secreted by each
microbiome was highly dependent on the number of strains
found in the stool samples, showing a logarithmic dependency
(Fig. 4a). Additionally, the metabolic diversity in dysbiotic IBD was
more restricted as predicted from the loss in microbial diversity
alone (b=−6.81, 95%CI:(−13.38;−0.25), t(105)=−2.06, p= 0.042)
(Fig. 4a, b).
Next, we analysed the number of secreted sulfur-containing

metabolites, as import breakdown products from microbial sulfur
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metabolism (e.g., hydrogen sulfide) have been repeatedly
implicated in the pathophysiology of IBD27,35,36. While taurine,
hydrogen sulfide, methionine, and cysteine could be secreted by
all microbiomes, the capability to produce other sulfur species,
such as thiosulfate, sulfite, and sulfate, differed strongly between
the three study groups (Supplementary Table 5). Mirroring the

results above, the number of sulfur species that could theoretically
be produced was drastically reduced in dysbiotic IBD microbiomes
in comparison to healthy controls (Fig. 4c). From the 11
independent sulfur species tested, eight showed significantly
increased likelihood (FDR < 0.05) to be present in the secretion
profiles of healthy. Accordingly, the number of statistical

Fig. 2 Predicted metabolite secretion profiles for the 108 microbiomes. a–f Total metabolite secretion fluxes (mmol/person/day) predicted
for the microbiomes of 20 paediatric Crohn’s Disease patients with dysbiosis (IBD_dysbiotic), 63 paediatric Crohn’s Disease patients without
dysbiosis (IBD_nondysbiotic), and 25 healthy control children (Healthy) for selected metabolites of interest. g Random forests analysis showing
the secreted metabolites that best stratified the 20 dysbiotic and 63 dysbiotic IBD microbiomes ranked by their contributions to classification
accuracy (represented by the variable MeanDecreaseAccuracy).
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Fig. 3 Metabolic properties and flux profiles computed for the 108 microbiomes. a Spearman correlations between metabolite secretion
fluxes (mmol/person/day) and species-level relative abundances across all 108 microbiome models. Shown are only the 66 metabolites for
which the positive or negative correlation with at least one species was higher than 0.75 or lower than −0.75, respectively. Rows show
metabolites annotated by subsystem, and columns show species annotated by genus and phylum. b Absolute reaction presence in the 108
microbiome models than differed significantly (p-value corrected for false discovery rate < 0.05, Supplementary Table 4b) between the 20
dysbiotic and 63 dysbiotic IBD microbiomes. Rows show reactions annotated by subsystem, and columns show microbiome models
annotated by group. Red= reaction present, black= reaction absent. c Principal coordinates analysis of all 26,873 strain to metabolite
contributions (mmol/person/day, Supplementary Table 6) computed for the 108 microbiome models.
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independent sulfur species (e.g., not being perfectly correlated in
their occurrence) was classifying healthy controls from dysbiotic
IBD cases nearly perfectly (AUC= 0.95, p= 0.002, Supplementary
Fig. 2). Interestingly, non-dysbiotic microbiomes still showed
reduced capability to produce a variety of sulfur species (p=
0.003), revealing that also non-dysbiotic IBD microbiomes
displayed an altered sulfur metabolism pattern. Consequently,
when analysing the pattern of final breakdown products prevalent
in secretion profiles, we found different distributions for these
patterns across the three study groups (Fig. 4d).
Investigating species that could be causal to this loss in diversity

in sulfur metabolites, we noticed that the species capable of using
host glycans, i.e., chondroitin sulfate and heparan sulfate, as
carbon source were depleted in most dysbiotic communities.
Consequently, the associated glycan degradation reactions were
also absent in these microbiomes (Fig. 3b). Thus, we followed the
hypothesis that breakdown products of heparan and chondroitin
may change systematically the availability of sulfur-containing
metabolites in microbiomes, increasing therefore the metabolic
diversity. Indeed, the presence of any heparan and chondroitin
degrading species was statistically mediating the effect of IBD on
the diversity in sulfur metabolism (mediation effect: 53.11%, 95%-
CI:(28,64%;77.60%), z= 4.29, p= 1.79e-05). Therefore, over 50% of
the difference in number of secreted sulfur compounds between
healthy and dysbiotic IBD communities could be attributed to
the lack of heparan and chondroitin degrading species in IBD.
Consequently, IBD microbiomes containing any heparan and

chondroitin degrading species were more similar to healthy
controls in terms of diversity in sulfur metabolism (Fig. 4c).
Concluding, community modelling delivers a methodology to

investigate the metabolic diversity of microbial communities. We
found that metabolic diversity is reduced in IBD, in particular in
sulfur metabolism. We delivered evidence that the loss of
chondroitin sulfate and heparan sulfate degrading species may
be causal to the loss in metabolic diversity. These species should
be therefore considered as corner-stone species within the human
microbiome.

A wide variety of taxon to metabolite contributions are
altered in IBD microbiomes
Faecal gut metabolite levels are altered in IBD patients, including
many host-microbial co-metabolites, however, the contributions
of specific microbes to these changes are often unknown9. To gain
insight into which microbial taxa are responsible for the altered
metabolic profiles in dysbiotic IBD patients, we modelled the
strain-to-metabolite contributions directly by predicting the
quantitative contribution of each strain to each secreted
metabolite in each individual microbiome.
All 601 strains present in at least one microbiome contributed

to the secretion of at least one metabolite indicating they should
be able to potentially influence host metabolism. In total, 26,873
strain-to-metabolite contributions were predicted, corresponding
on average to 44.71 contributions per strain (Supplementary Table
6). Of the 26,873 strain-to-metabolite contributions, 2609 (9.71%)

Fig. 4 Reduced metabolic diversity in dysbiotic IBD. a Logarithmic dependency of the number of secreted metabolites in dependency on
the number of identified strains. Curves for dysbiotic (red) and non-dysbiotic (blue) microbiomes are statistically different (b=−6.81, 95%−CI:
(−13.38;−0.25), p= 0.042). b Box plots for the number of secreted metabolites for the three study groups. Differences across the three study
groups are significant (p < 1e-08). c Number of secreted not perfectly coupled sulfur species in dependency on study group and the presence
of glycan-degrading species. The presence of glycan producing species mediates significantly the effects of the study group (mediation effect:
53.11%, 95%−CI:(28,64%;77.60%, p= 2.14e-05). d Distribution of secretion patterns of end products of bacterial sulfur metabolism across the
study groups. Abbreviations for metabolites are from https://www.vmh.life. p-values were derived from Fisher’s exact test. In the box plots, the
centre lines represent the median; box limits represent upper and lower quartiles; whiskers represent 1.5x interquartile range.
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and 7828 (29.13%) were statistically significantly different
between healthy and IBD (Supplementary Table 4a), and dysbiotic
and non-dysbiotic IBD (Supplementary Table 4b), microbiomes,
respectively. Hence, a wide variety of metabolic fluxes was distinct
in dysbiotic microbiomes. A principal coordinates analysis of all
26,873 strain-to-metabolite demonstrated that the dysbiotic IBD
microbiomes clustered separately from both the healthy and the
non-dysbiotic IBD microbiomes (Fig. 3c). Again, this separation
was expected as the models directly reflected the distinct
microbiome compositions of the dysbiotic IBD patients.
Next, we investigated the contributions that were distinct in

dysbiotic microbiomes by taxon. The contributions were sum-
marised by phylum and by metabolite subsystem for the three
clusters (Fig. 5a). The contribution flux profiles in the dysbiotic
cluster clearly differed from both the healthy and non-dysbiotic
IBD cluster, showing a drastic reduction in Bacteroidetes
contributions accompanied by an increase in Proteobacteria
and Fusobacteria contributions (Fig. 5a). This result is in line with
observations that the dysbiotic cluster was characterised by an
increase in gammaproteobacterial genera, and a corresponding
decrease in Bacteroidetes and Clostridia8. While the non-dysbiotic
cluster’s phylum to subsystem contributions resembled overall
the profile of the healthy cluster, there was a slight increase in
Fusobacteria and Proteobacteria contributions compared with
the latter (Fig. 5a). This change may indicate that the individuals
in the non-dysbiotic IBD cluster represent an early state in the
development towards pronounced dysbiosis as observed in the
dysbiotic cluster. The altered contribution profiles in the dysbiotic
cluster were observed across all metabolic subsystems (Fig. 4a)
demonstrating a broad effect of microbial composition changes
on metabolite fluxes.
To gain more insight into metabolites of interest that were

enriched or depleted in the dysbiotic cluster, we extracted the
strain contributions (Supplementary Table 6) by metabolite. For
instance, not only the total butyrate production flux was reduced
in dysbiotic IBD microbiomes (Fig. 2a), but the contributing strains
also differed between dysbiotic and non-dysbiotic microbiomes
(Supplementary Fig. 3). As expected, known butyrate producers,
e.g., Roseburia spp., Faecalibacterium praunitzii, and Eubacterium
rectale, contributed the majority of butyrate in healthy and non-
dysbiotic IBD microbiomes, while in dysbiotic microbiomes,
butyrate secretion by these species was reduced (Supplementary
Fig. 3). Reduced butyrate levels in IBD patients with dysbiosis have
previously been attributed to reduced abundance of Roseburia
and Faecalibacterium spp.26,37. For L-lactate, hydrogen sulfide, and
TMAO, the total production potential was increased in dysbiotic
microbiomes (Fig. 2c), and production of these compounds could
mainly be attributed to Gammaproteobacteria genera, e.g.,
Escherichia spp., Klebsiella spp., Enterobacter spp., and Sutterella
spp. (Supplementary Fig. 4–6). On the other hand, nicotinamide,
which was clearly reduced in the dysbiotic cluster (Fig. 2d), was
synthesised by representatives of the Bacteroidia class. (Supple-
mentary Fig. 7). Thus, through metabolic modelling, we could
retrieve a strain and individual-resolved, detailed snapshot of each
metabolite of interest. Butyrate, L-lactate, TMAO, and hydrogen
sulfide were produced by a combination of multiple species
(Supplementary Figs. 4–6), explaining why no strong correlations
with any individual species were observed for these metabolites.
This result highlights that species-metabolite links may be missed
in correlation-based approaches and demonstrates the added
value of strain-and molecule-resolved simulations.
To summarise, we systematically interrogated the gut microbe-

metabolite axis through constraint-based modelling. For each
metabolite, the exact contributing strains were identified (Supple-
mentary Figs. 3–7 and Supplementary Table 6). Overall, commen-
sal and beneficial taxa contributed more to metabolites that
are thought to be relevant for health (e.g., butyrate, B-vitamins),
and taxa associated with dysbiosis (i.e., Proteobacteria, Bacilli)

contributed more to potentially harmful metabolites, such as
lactate, hydrogen sulfide, and TMAO.

Modelling provides evidence for increased proteobacterial
amino acid biosynthesis potential in dysbiosis
It has been proposed that metabolic modelling could be used to
link metagenomic and metabolomic findings38. Previously, faecal
metabolomic profiles were for amino acids determined39 for the
same cohort8 that we used in this study. The patients in the
dysbiotic cluster had distinct faecal metabolomic profiles, which
have been characterised by an increase in amino acids and amino
acid derivatives39. Of the faecal amino acid metabolites measured
metabolomically by Ni et al., 23 overlapped with metabolites
secreted by the microbiome models (Supplementary Table 7).
When comparing significant differences between the non-
dysbiotic and the dysbiotic IBD cluster in the metabolomic data
and in silico, findings agreed in 16 cases and disagreed in 7 cases
(Supplementary Table 7), which refers to an agreement in 69.6%.
However, this agreement failed narrowly to be significantly
different from an agreement by chance (Fisher’s exact test: p=
0.086), and future studies with bigger sample size are needed to
corroborate the effectiveness of COBRA modelling to predict
metabolomic changes in IBD. In agreements with metabolomic
findings, we predicted an increased potential to synthesise
betaine, glutamate, glycine, leucine, phenylalanine, and trypto-
phan in the dysbiotic IBD cluster (Fig. 2a, b and Supplementary
Table 4b). The model additionally predicted that aspartate, GABA,
isoleucine, and tyrosine were higher in the dysbiotic cluster
(Supplementary Table 7). While faecal metabolomic concentra-
tions of these amino acids did not reach significance when
comparing between the non-dysbiotic and dysbiotic cluster, they
were significantly different between healthy controls and IBD
cases39. Note that it was not possible to compare secretion fluxes
with the raw metabolomic data as the latter was not available.
Ni et al.39 also reported that faecal amino acid concentrations

correlated with the abundance of Proteobacteria species and with
the severity of the disease. Based on these findings, they proposed
that increased proteobacterial utilisation of nitrogen for amino
acid biosynthesis plays a role in the development of dysbiosis and
Crohn’s Disease39. We computed the quantitative microbial
contributions to the 23 amino acid metabolites that overlapped
between in silico computed metabolites in this study and
experimentally measured metabolites39. The proteobacterial con-
tributions to amino acid metabolites were indeed substantially
increased in the dysbiotic cluster (Fig. 5b). In contrast, in the
healthy controls and the non-dysbiotic IBD cluster, amino acids
were mainly synthesised by Bacteroidetes and Firmicutes repre-
sentatives (Fig. 5b). Next, the detailed contribution profiles on the
strain level were extracted for the examples of glycine,
phenylalanine, leucine, tyrosine, and tryptophan (Supplementary
Figs. 8–12). In the healthy controls and in the non-dysbiotic
cluster, these amino acids were mainly synthesised by commensal
genera, such as Alistipes, Bacteroides, Faecalibacterium, and
Roseburia spp. (Supplementary Figs. 8–12). In contrast, the
dysbiotic cluster was enriched in contributions by opportunistic
pathogens, such as Bacteroides fragilis, Escherichia, Haemophilus,
Klebsiella and Streptococcus spp. (Supplementary Figs. 8–12). In
summary, modelling revealed an increased biosynthesis potential
for amino acids and increased proteobacterial contributions to
amino acids in the microbiomes of patients with dysbiosis, in
agreement with the findings of Ni et al.39.

DISCUSSION
We have systematically profiled the metabolic potential of 108
individual microbiomes in silico. The metabolic profiles varied
greatly across individual microbiomes reflecting the variation in

A. Heinken et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)    19 



microbial composition. We determined the net production and
uptake potential of each microbiome, the qualitative and
quantitative presence of reactions and pathways in each
microbiome, the correlations between net production potential
and reaction abundance, and finally the quantitative contributions
of all strains present in the microbiomes to all secreted
metabolites.
A wide variety of metabolic network properties and fluxes

differed between dysbiotic IBD microbiomes and non-dysbiotic
microbiomes (Supplementary Table 4b). First, the qualitative and
quantitative presence of reactions and pathways differed in
dysbiotic microbiomes (Fig. 3b and Supplementary Table 4b). As
a result of their disturbed metabolic network structure, dysbiotic
microbiomes also demonstrated an altered potential to take up
and secrete metabolites (Fig. 2 and Supplementary Table 4b). The
quantitative contributions of each strain to each secreted
metabolite differed clearly between non-dysbiotic and dysbiotic
microbiomes (Figs. 3c and 4; Supplementary Table 4b). This
constraint-based modelling framework enabled us link microbes
and metabolites in the context of the gut microbial community
resulting in detailed biosynthesis profiles of each metabolite
(Supplementary Figs. 3–12). We confirmed known microbe-
metabolite links, e.g., butyrate production of Faecalibacterium
and Roseburia spp.37 (Supplementary Fig. 3), and lactate produc-
tion of Lactobacillus, Streptococcus, and Escherichia spp. (Supple-
mentary Fig. 4). In addition, we propose contributing microbes for
less-studied metabolites. For instance, gut microbes regulate
circulating tryptophan levels and impaired tryptophan metabolism

may play a role in IBD40. We here predict that, e.g., Bacteroides,
Coprococcus, and Odoribacter spp. can synthesise tryptophan
(Supplementary Fig. 11) and thus may play a role in mediating
host–microbe interactions in tryptophan metabolism.
Importantly, our results provide clear evidence that reduced

microbial diversity in strains leads to reduced metabolic diversity
(e.g., reduced number of secreted metabolites). In the case of IBD,
this includes particularly microbial sulfur metabolism with
potential clinical consequences. Following a stoichiometric argu-
ment, all sulfur consumed by microbial communities must be
released either by death or secretion. Assuming that the uptake of
sulfur is relatively constant across microbiomes, reduced numbers
in secreted sulfur metabolites must result in higher secretion
potentials for the few secreted compounds. In accordance, the
ubiquitously secreted hydrogen sulfide showed higher secretion
potentials in dysbiotic IBD microbial communities, which dis-
played drastically reduced numbers in secreted sulfur compounds.
Hydrogen sulfide is considered to be pro-inflammatory in the
gastrointestinal environment27,35,36. Subsequently, restoring spe-
cies diversity may reduce the potentially harmful production of
hydrogen sulfide. Interestingly, a recent study has identified a link
between changes in gut microbial sulfur metabolism and Crohn’s
Disease41.
Importantly, the loss in diversity in sulfur metabolism was

mediated by the loss of glycan-degrading species. Host glycan
degradation is mainly attributed to Bacteroides spp.32, the
abundances of which strongly correlated with glycan degradation
product secretion in our study (Fig. 3a). In this regard, we note that

Fig. 5 Strain to metabolite contributions computed for the three clusters summarised by the seven most prominent phyla. Shown are the
contributions (mmol/person/day, Supplementary Table 6) summarised separately for the 25 healthy, 63 non-dysbiotic IBD, and 20 dysbiotic
IBD microbiomes. a Phylum-level contributions to all metabolites summarised by metabolite subsystem. b Phylum-level contributions to 22
amino acid metabolites. Ac= Actinobacteria, Ba= Bacteroidetes, Eu= Eurarchaeota, Fi= Firmicutes, Fu= Fusobacteria, Pr= Proteobacteria,
Ve= Verrucomicrobia. Phyla that did not contribute in a given cluster are omitted for that cluster.
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the oral administration of chondroitin sulfate was already shown
to be effective in IBD in a small clinical trial42. While the authors of
the study attributed this effect to the general anti-inflammatory
properties of chondroitin sulfate42,43, one may speculate that
chondroitin sulfate is a prebiotic, promoting the growth of glycan-
degrading species. Thus, promoting glycan degraders may
improve species diversity, subsequently metabolic diversity, and
may decrease by proxy the production of harmful microbial
metabolites (e.g., hydrogen sulfide). A previous metabolic model-
ling approach already predicted dietary metabolites that could
improve short-chain fatty acid secretion profiles in IBD20. Here, we
additionally propose a mechanistic explanation for potentially
beneficial dietary interventions. In conclusion, by computational
modelling of microbial communities, we identified a potentially
beneficial intervention on gut microbiota in IBD, which could be
applied in a personalised manner in IBD cases specifically lacking
glycan-degrading species. This underlines the utility of analysing
the metabolic capabilities of microbial communities with mechan-
istic, strain-and molecule-resolved modelling tools.
Through computational modelling of IBD microbiomes, we

could contextualise metabolomic findings39 from the same cohort.
While one cannot compare fluxes and concentrations44, the trends
of upregulated and downregulated metabolites in the dysbiotic
cluster can nonetheless be compared. Indeed, for 16 of 23 amino
acid metabolites, in silico fluxes agreed with measured faecal
concentrations (Supplementary Table 7). While this agreement
narrowly failed to be significant, it points towards the utility of
COBRA modelling in predicting real metabolomic changes in IBD.
Larger samples are needed to corroborate these results. Note that
the ability to predict in vivo changes is dependent on the sample
size utilised to reveal significant in vivo changes. In fact, in a
similar constraint-based modelling approach using data from over
600 colorectal cancer patients and controls, good agreement
between model predictions and faecal metabolomic measure-
ments has been found45.
Importantly, the microbiome models used in our modelling

framework only reflected individual microbiomes’ metabolic
capabilities and did not account for host metabolism, moreover,
they were not tailored towards the metabolomic data. Thus, the
computed fluxes emerged entirely as a function of individual-
specific microbiome structure and function. Hence, disagreements
between trends in in silico fluxes and faecal metabolomic
concentrations (Supplementary Table 7) do not necessarily reflect
shortcomings of the modelling but instead point towards additional
influences of human metabolism and/or diet on the seven amino
acid metabolites, for which the model disagreed with the reported
faecal concentrations. Owing to the ability of the modelling to
disentangle microbial influences on faecal metabolites from human
metabolism and diet, the modelling also provides evidence that the
increased faecal amino acid concentrations measured by Ni et al.39

are at least in part due to the gut microbiome rather than only of
dietary origin. Hence, the modelling confirmed the proposed link
between increased abundances of Gammaproteobacteria and
increased faecal amino acid levels.
Taken together, the present study demonstrates that an

integrative, scalable constraint-based modelling framework
enables the comprehensive characterisation of personalised gut
microbiome models and the stratification of individuals based on
flux profiles. Previous studies have already demonstrated that
personalised models built using the AGORA models could stratify
the microbiomes of IBD patients and controls20,21,23, and of
subtypes of IBD22, according to their metabolic networks. In this
study, we demonstrate that microbiome modelling can addition-
ally predict the sample-contributions of each microbe to each
metabolite. Moreover, we validated our results against metabo-
lomic data from the same cohort. As a drawback of the present
study, the raw metabolomic data was not available and could not
be compared on an individual sample level with fluxes. Another

study recently demonstrated that fluxes generated through the
same microbiome modelling approach could be directly corre-
lated with raw faecal metabolomic data and showed a very good
agreement45.
While our results provide additional evidence that the gut

microbiome influences the faecal metabolome, it is also influ-
enced by host metabolism and diet. We have recently demon-
strated that microbiome models as well as dietary information and
physiological data can be integrated with a whole-body metabolic
model of human, enabling personalised, organ-resolved predic-
tions of host metabolic states46. The whole-body human model
also allows the personalised prediction of the urinary, blood and
serum metabolomes46, which have been reported to be altered in
IBD patients47–50. Integrated host-microbiome metabolic model-
ling will allow the personalised prediction of these host blood,
urine, and tissue metabolomes as a function of dietary input and
microbial activity. Ultimately, an iterative pipeline of computa-
tional predictions and experimental validation may yield in the
discovery of novel therapeutic and dietary interventions targeting
the host-gut microbiome-diet axis.

METHODS
Creation of personalised models
Paired end Illumina raw reads of 83 IBD patients in the PLEASE cohort8 and
of 25 healthy controls in the COMBO cohort51 had been previously
retrieved from NCBI SRA under SRA: SRP05702720. The reads had been
preprocessed and mapped onto the reference set of AGORA genomes20.
Publicly available metadata for the samples was retrieved from https://
github.com/chvlyl/PLEASE and the sample stratification into the groups
control, cluster 1 (non-dysbiotic IBD), and cluster 2 (dysbiotic IBD) was
adapted as defined by the original authors8.
Personalised models for the 108 samples were created using Version 1.03

(published on 25.02.2019, available at https://www.vmh.life) of the AGORA
resource18. To build the personalised models, the COBRA Toolbox52

extension Microbiome Modelling Toolbox14 was used. Personalised micro-
biome models were created in MATLAB (Mathworks, Inc.) version R2018b
using the mgPipe module, as described previously24. Each personalised
model contained a community biomass reaction, which was parameterised
by applying the strain-level abundances as stoichiometric values for each
microbe biomass reaction in the community biomass reaction. These
constraints enforced that all strains grew at the experimentally measured
ratios. The models were further contextualised as follows: To simulate a
realistic intake of dietary nutrients in mmol per g dry weight per hour in the
108 microbiome models, an Average European diet was retrieved from the
Diet Designer resource on the Virtual Metabolic Human17 website (https://
www.vmh.life). The diet was converted to uptake fluxes through a dedicated
Microbiome Modelling Toolbox function (convertVMHDiet2AGORA.m). More-
over, to account for host metabolism, the uptake of metabolites of host
origin known to be present in the intestine (e.g., primary bile acids, host
glycans) were allowed using standard COBRA Toolbox functions52. Finally, to
simulate a realistic turnover of microbial biomass, the allowed flux through
the community biomass reaction was set to be between 0.4 and 1 (mmol/
person/day), corresponding to a faecal emptying of once every three days to
once a day.

Prediction of metabolic profiles
Absolute reaction presence and reaction abundances on the total
community, phylum, and genus level were calculated in MATLAB using
dedicated Microbiome Modelling Toolbox functions (calculateReactionPre-
sence.m, calculateReactionAbundance.m). The computation of the total
community metabolite production potential, total community metabolite
uptake potential, and the contribution of each strain to each metabolite
was performed in Julia v0.6.4 (https://julialang.org) using the Julia
implementation of flux balance analysis, COBRA.jl53. COBRA.jl was
performed on a high-performance cluster using the IBM CPLEX solver
(IBM, Inc.) through the CPLEX interface for Julia. A customised Julia script
was used that retrieved all dietary exchange reactions, faecal secretion
reactions, and strain-specific internal exchange reactions for each
microbiome model. This resulted on average in 13,677 exchange reactions
per microbiome model, which were then each minimised and maximised
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using distributed flux balance analysis53. The fluxes were exported from
Julia using the customised Julia script and further analysed in MATLAB.

Statistical analysis
Wilcoxon rank sum test, and correction for false discovery rate (FDR) were
performed in MATLAB using the ranksum and mafdr functions, respec-
tively. Correlations between computed fluxes and species abundances
were calculated using a dedicated Microbiome Modelling Toolbox function
(correlateFluxWithTaxonAbundance.m).
The number of secreted metabolites was calculated from the computed

net production fluxes (Supplementary Table 2). The association between
study group and number of secreted metabolites was assessed in linear
regression (ordinary least squares), introducing the log number of species
as covariate. For investigating the functional dependence of the number of
secreted metabolites fractional polynomials were used. A logarithmic
dependency showed a significant better fit (p < 0.01) than a linear function
and was therefore used. Next, we tested the secretion (binary: yes vs. no)
on association with the study group using Fisher’s exact tests controlling
for the FDR as before. The number of tests to control for was determined
by counting the number of independent dichotomised secretions.
In a third step, we counted the number of sulfur-containing metabolites

independently secreted for each microbiome. We tested this number on
association with the study group in linear regressions. Furthermore, we
explored the classification of healthy microbiomes vs. dysbiotic IBD
microbiomes in logistic regression by the number and calculated the area
under the curve (AUC) as metric of classification accuracy. Then, we
analysed the pattern of final breakdown products of sulfur metabolism
(hydrogen, sulfide, sulfate, methanethiol, sulfite, and thiosulfate) across the
three study groups via Fisher’s exact test. Finally, we checked whether the
presence of any glycan-degrading species statistically mediated the effects
of the study group variable via the Sobel Goodman test, deriving the
confidence intervals by non-parametric bootstrapping with 1000 replica-
tions54. These analyses were performed in STATA 14\MP (Stata Inc., College
Station, USA).

Random forests analysis
Random forests analysis was performed using the online implementation
of MetaboAnalyst 5.031 (https://www.metaboanalyst.ca), which relies on
the MetaboAnalystR55 package. Briefly, the random forests classifier is built
using a customisable number of trees with one-third of the data left out of
the bootstrap sampling process. The left-out data is then used to estimate
the out-of-bag (OOB) error. Metabolite secretion fluxes were imported
through the Statistical Analysis module in the MetaboAnalyst interface
without performing normalisation, transformation, or scaling of the data.
The classifier was built with 5000 trees and the resulting visualisation of
features ranked by their contributions to classification accuracy was
exported.

Visualisation
Phylum to amino acid and subsystem contributions were visualised using
the online implementation of Circos56 (http://circos.ca). All other data was
visualised in MATLAB version R2018b and in R version 3.5.357 (https://www.
r-project.org).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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CODE AVAILABILITY
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