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Computational analysis of fused co-expression networks for
the identification of candidate cancer gene biomarkers
Sara Pidò 1✉, Gaia Ceddia 1✉ and Marco Masseroli 1

The complexity of cancer has always been a huge issue in understanding the source of this disease. However, by appreciating
its complexity, we can shed some light on crucial gene associations across and in specific cancer types. In this study, we
develop a general framework to infer relevant gene biomarkers and their gene-to-gene associations using multiple gene co-
expression networks for each cancer type. Specifically, we infer computationally and biologically interesting communities of
genes from kidney renal clear cell carcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma data sets of The
Cancer Genome Atlas (TCGA) database. The gene communities are extracted through a data-driven pipeline and then
evaluated through both functional analyses and literature findings. Furthermore, we provide a computational validation of
their relevance for each cancer type by comparing the performance of normal/cancer classification for our identified gene sets
and other gene signatures, including the typically-used differentially expressed genes. The hallmark of this study is its
approach based on gene co-expression networks from different similarity measures: using a combination of multiple gene
networks and then fusing normal and cancer networks for each cancer type, we can have better insights on the overall
structure of the cancer-type-specific network.
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INTRODUCTION
Cancer is a complex disease affecting various biological processes
in human cells and causing abnormal cell growth, invasion, and
migration1. Since human cells are complex biological systems,
changes occurring for cancer disease may appear at different
levels of the cell organization1. Thus, system biology is one of the
most commonly used approaches for understanding such
complexity since it studies the molecular interactions determining
particular biological functions within a cell1–5. Biological networks
are the typical computational models used in system biology for
understanding the functional mechanisms in a cell as they can
provide insights about the overall structure of the molecular
interactions1–3. Gene co-expression networks are the most
commonly studied biological networks in network inference
(Supplementary Material Section Gene co-expression network
inference), as their application is suitable for large data sets and
their construction is condition-specific, i.e., they derive from case-
specific gene expression data6. Gene co-expression network
analysis has been applied in various biological studies, especially
in cancer-based research in order to identify candidate cancer
biomarkers, i.e., significant molecules related to cancer develop-
ment and their interactions4,5,7–9. Gene expression studies have
shown that diverse gene expressions are associated with
fundamental differences in clinical and biological features10,11.
The majority of these studies focused on the identification of
individual cancer biomarkers and their prognostic use, without
addressing the main objective of system biology, i.e., a better
comprehension of the functional mechanisms of the found
biomarkers6,12–16. Gene co-expression networks are the best way
to address this aim, leveraging on both biological networks and
gene expression studies.
Here, we propose a novel general approach based on the

construction of multiple gene co-expression networks and its
implementation in a computational framework to identify

interesting gene biomarkers and consequently better distinguish
clinical outcomes across cancer types. Using data from The Cancer
Genome Atlas (TCGA)17, we demonstrate the relevance of the
approach by applying it to three representative cancer types. The
novel hallmark of our method is the integration of multiple gene
co-expression networks for each cancer type. Indeed, a single type
of co-expression network is commonly used in the literature18;
conversely, in this work, we use and combine two different
measures for the computation of co-expression values. This allows
inferring diverse features, depending on the chosen similarity
measures that derive from the expression profiles. We compare our
results with those from both a state-of-the-art method for finding
gene biomarkers and a single type of gene co-expression network.
We also perform knowledge-based systematic evaluations on the
extracted gene biomarkers to evaluate their involvement in the
cancer-type progress. Particularly, we assess their relevance from
the perspective of the gene set enrichment analysis, the literature
and their drug actionability. Our results reveal that the integration
of multiple gene co-expression networks leads to the identification
of new promising prognostic gene modules; this demonstrates
that our new approach contributes to the comprehension of the
molecular mechanisms related to candidate gene biomarkers by
using a novel perspective on gene co-expression networks. We also
compare our results with the ones from differential gene
expression analysis, which is the usual baseline method to identify
biomarkers in biology19.

RESULTS
In this section, we present the results obtained with our approach
applied on TCGA data of KIRC, LIHC, and PRAD cancer types. We
report the communities of genes identified in the fused network
for each cancer type and the evaluation of their relevance, both
computationally and biologically.
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KIRC, LIHC, and PRAD networks
We apply our computational approach on the TCGA gene
expression data for KIRC, LIHC, and PRAD cancer types to build
their gene co-expression networks. Table 1 illustrates the number
of genes in the original TCGA data and after our pre-processing
step. On average, 20% of RNA (protein-coding or long non-coding)
genes and 81% of miRNAs are extracted. These genes are the
nodes of all the networks built in the main steps of our developed
pipeline, whose number of edges is reported in Table 2. In
particular, edges in the Euclidean distance networks for the
normal and cancer condition are those after their 99th percentile
thresholding, whereas edges in the Pearson’s correlation networks
are those filtered using the permutation method and a p-value
percentile threshold such that their number is fairly homogeneous
across the similarity measures. Notably, the number of edges in
the union of the two similarity networks for each condition
(Normal and Cancer) is very similar (less than 1% difference on
average overall) to the sum of the edges in the Euclidean distance
and Pearson’s correlation networks for each condition (respec-
tively fifth and sixth vs. seventh and eighth row of Table 2); thus,
almost all gene relations identified with the two similarity
measures regard different gene pairs. Conversely, the sum of
the edges of the two Normal and Cancer networks is much greater
than the number of edges in their union (Merged) network (KIRC
129%, LIHC 130%, PRAD 128%), with Normal networks that have
more edges than the Cancer ones (about 27% more on average).
The relevant edges selected with the disparity filter in the final
(Fused) networks are on average about 4.9% of the edges in the
Merged ones.

Topological evaluation of fused networks
We evaluate each fused network by using the topological measure
average degree, which helps to understand the network
architecture; it is the average number of edges that each node
has in the network. The average degree of the KIRC, LIHC, and
PRAD fused networks is 28.38, 26.03, and 27.01, respectively, while
their number of nodes and edges is reported in the last row of
Tables 1 and 2, respectively. As expected, since we prune the
networks using the disparity filter (Network Fusion panel in Fig. 5),
the average degree is very low compared to the number of nodes.
Moreover, it is very similar across cancer types, confirming the
homogeneity given by our data processing.
In the KIRC, LIHC, and PRAD fused networks we identify 6, 3,

and 9 gene communities, respectively; Fig. 1 shows them in
different colors. In these networks, overall they include 1,543 KIRC,
839 LIHC, and 3502 PRAD genes (the network IC genes),
respectively. Figure 1 shows that there are three major gene
communities in KIRC and LIHC, whereas PRAD shows a higher
number of relevant gene clusters. However, all IC genes of LIHC
are well-connected among each other, differently from the other
two cancer types where some gene clusters are isolated. The
average degree of the IC genes in each fused network is 261.44
for KIRC, 403.82 for LIHC, and 103.91 for PRAD; as expected, it is
much higher than the one of the entire network. This confirms the
validity of the modularity method presented in “Network fusion
for gene extraction” section, which finds well-connected groups of
genes in the fused networks.
Figure 2 illustrates the scatter plots of IC gene pair relationships,

based on both Euclidean distance and Pearson’s correlation of the
gene expression values in Normal and Cancer co-expression
networks. In these plots, a point represents the edge between a
pair of IC genes, and the point values on the x and y axes
represent the edge weights in the Normal and Cancer network,
respectively. Each gene community is displayed with a specific
symbol and color, and its cardinality is shown in the plot legend.
Moreover, the transparency of the symbol of a point in a plot
shows the number of edges that the point represents: the more
colored is the symbol, the more are the edges that the point
represents. In the scatter plots in Fig. 2, overall the points are
either near the plot diagonal, showing similarity among the
normal and cancer conditions, or on the plot axes, showing
differences in the relationship between the expression values of
the same gene pair in the two conditions. This indicates that the
IC genes have either very similar or very different expression
relationships in the two conditions, proving the validity of the
adoption of the gene Similarity Network Fusion method illustrated
in “Network fusion for gene extraction” section.

Computational evaluation of the IC genes
We start the computational assessment of our pipeline for cancer
biomarker identification by evaluating the ability of the identified
IC genes in discriminating between cancer and normal samples.
According to the TCGA data sets, each sample belongs to one
category, either “Primary Solid Tumor” or “Solid Tissue Normal”.
First, we apply the LASSO regression analysis on the IC genes
using their expression profiles as features, thus extracting a
smaller set of relevant genes (which we call ICL genes) for each
cancer type; these genes can be used for better normal/cancer
classifications. The gene expression profiles of the ICL genes are
given as input features to the Random Forest Classifier so as it can
classify the samples according to their types, i.e., tumoral or
normal. Table 3 contains the total number of ICL genes and the
number of microRNAs present in each ICL gene set of the
considered cancer types. We also demonstrated the indepen-
dence of the identified IC genes from the number of considered
samples (Supplementary Material Section Robustness of IC genes
using different numbers of LIHC cancer samples).

Table 1. Number of RNA genes and miRNAs.

Genes KIRC LIHC PRAD

Original RNA 60,483 60,483 60,483

Original miRNA 1747 1747 1747

Filtered RNA 12,792 11,595 12,097

Filtered miRNA 1397 1421 1411

Filtered Total 14,189 13,016 13,508

RNAs and miRNAs in the initial samples (Original) and in the final ones
(Filtered) used for network construction.

Table 2. Number of edges in each network.

Network KIRC LIHC PRAD

Normal Euclidean 1,006,639 847,082 912,331

Cancer Euclidean 1,006,639 847,082 912,331

Normal Pearson 1,979,654 1,738,560 1,743,387

Cancer Pearson 1,124,575 1,218,642 1,298,722

Normal 2,971,772 2,530,341 2,622,268

Cancer 2,129,102 2,042,152 2,209,407

Normal Euclidean+Pearson 2,986,293 2,585,642 2,655,718

Cancer Euclidean+Pearson 2,131,214 2,065,724 2,211,053

Merged 3,954,994 3,517,068 3,770,395

Normal+Cancer 5,100,874 4,572,493 4,831,675

Fused 201,314 169,404 182,453

From the single measure (Euclidean and Pearson) networks, through the
union of the two measures (Normal and Cancer) networks, until the union
of the normal and cancer networks (Merged) and their fusion (Fused).
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We perform the classification one hundred times and each time
we compute the classification performance of the ICL genes. We
repeat the same classification using the other five gene sets and
compare their performances with the ICL gene ones, reporting the
result boxplots in Fig. 3. The other evaluated gene sets include DEL
genes, which LASSO extracts from the differentially expressed
gene set, RandL genes, extracted by LASSO from a random set of
the network genes with the same IC gene cardinality, EuclICL, and
PearsICL gene sets, which LASSO extracts from the IC genes
identified in the single-type Euclidean distance or Pearson’s
correlation similarity network, respectively, and AllL genes,
extracted with LASSO from all the nodes of our networks. The
performance comparison among these gene sets enables a
thorough evaluation of our method since RandL and AllL represent
the computational baselines, EuclICL and PearsICL represent the
single contribution of each gene similarity network used in our
approach, and DEL is the biologically relevant reference. We also
compute the Wilcoxon signed-rank test between the performance
metrics of the ICL gene set and of each other gene set to evaluate
the statistical significance of their difference, reporting the results
in Fig. 3.
All the ICL boxplots are significantly different from the others,

except the EuclICL F1 score one in PRAD (yet, ICL genes outperform
the EuclICL ones in all the other considered cases and tumors,
except in PRAD Accuracy and in KIRC AUC where their
performance is slightly lower). Compared to DEL genes, ICL genes
have overall similar performances in KIRC (except their much
better AUC) and in LIHC, but much better performances in PRAD.
With respect to PearsICL genes, ICL genes have the same

performance in KIRC AUC and lower performance slightly in KIRC
Accuracy and F1 score and more markedly in PRAD AUC, but they
have better performances in all the other cases. Finally, ICL genes
have always better performances than the baseline AllL and RandL
genes, except for the PRAD AUC of the latter ones, which however
have always a very wide variance as expected.
In Table 3, we report the cardinalities of the All, IC, and DE gene

sets and of their corresponding LASSO reduced sets, together with
the cardinalities of the intersections among these different sets.
Table 3 highlights that IC and ICL gene sets only slightly overlap
the DE gene set. This proves that our pipeline allows identifying
genes that classify well the two normal and cancer conditions
without being differentially expressed. Thus, the ICL genes are
particularly interesting since, although their expression does not
vary significantly across conditions, they do have relevant gene
expression network interactions, an aspect that is not considered
in the differential expression analysis.

Hazard ratio comparison between IC and DE genes
To further evaluate the clinical relevance of IC genes, we compute
their hazard ratios for each cancer type, and we compare the
resulted survival curves with the ones calculated for the DE genes.
For this analysis, we use the patient metadata available in the
TCGA repository, specifically the patient vital status and survival
(days to death and days to follow-up) as the event and the time
variable, respectively, of the Cox proportional-hazards model. The
expression profile of each IC gene in the cancer samples of all
patients for each cancer type is used one by one as a feature

Fig. 1 Gene co-expression networks. a KIRC, b LIHC, and c PRAD gene co-expression networks regarding fused normal and cancer data.
Different colors represent different communities of genes and their relations; these communities are found using the modularity method
implemented in the Gephi software.
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variable of the univariate Cox proportional-hazards model, which
gives as output the hazard ratio and p-value of the gene for the
survival estimation. Then, we select only the genes that are
statistically significantly associated with the overall patient
survival, i.e., those with p-value smaller than 0.05 after multiple
testing correction using the false discovery rate (FDR) procedure20.
Moreover, we remove those genes that have a hazard ratio
between 0.9 and 1.1, since they do not clearly indicate a negative
or positive association with the event probability. Conversely,
genes with a hazard ratio smaller than 0.9 have expression levels
directly proportional to the goodness of the clinical outcome, and
genes with a hazard ratio greater than 1.1 have higher expression
values associated with worse clinical outcomes21.
The univariate Cox proportional-hazards model assessment of

the prognostic power of each IC gene identifies 38, 1, and 5 genes
for KIRC, LIHC, and PRAD, respectively, whereas the same analysis
for each DE gene yields only 4, 7, and 2 genes, respectively. The
higher number of IC genes significantly associated with the survival
event probability (for both KIRC and PRAD cancer types) compared
to one of the DE genes indicates that the IC genes are more
important in terms of survival analysis than the DE ones. To visually
compare these results, we use each group of the significant IC and
DE genes from the univariate analysis to build a multivariate Cox
proportional-hazards model for each cancer and gene type (IC or
DE). In Fig. 4, the survival curve of each multivariate model is
represented with its Concordance statistic (C) and standard error
(SE); the former one is a well-known measure of goodness-of-fit in
survival models, ranging from 0 to 1 with 0.5 denoting random fit
equivalence, values over 0.7 representing good model fit, and 1
indicating best fit22. The model built with the relevant IC genes as

Fig. 2 Gene pair relationships. a KIRC, b LIHC, and c PRAD IC gene pair relationships (edge weights) in Normal vs. Cancer co-expression
networks, based on both Euclidean distance and Pearson’s correlation of gene expression values. Different colors and symbols represent
different gene communities; symbol color transparency shows the amount of IC gene pairs that a point represents.

Table 3. Number of RNA genes and miRNAs in the fused networks.

Gene set KIRC LIHC PRAD

All 14,189 (1397) 13,016 (1421) 13,508 (1411)

AllL 1104 (242) 188 (112) 122 (81)

IC 1543 (727) 839 (57) 3502 (125)

ICL 139 (92) 108 (49) 95 (63)

EuclICL 117 (0) 133 (0) 102 (0)

PearsICL 112 (27) 147 (0) 70 (0)

DE 1059 (54) 434 (27) 218 (24)

DEL 20 (18) 20 (15) 15 (9)

IC ∩DE 57 (35) 30 (2) 67 (8)

IC ∩DEL 2 (12) 1 (2) 4 (7)

ICL ∩DE 6 (11) 4 (2) 2 (6)

ICL ∩DEL 0 (10) 0 (2) 0 (6)

AllL ∩ IC 196 (129) 88 (45) 80 (60)

AllL ∩ ICL 128 (89) 83 (43) 75 (55)

AllL ∩DE 165 (27) 10 (9) 6 (7)

AllL ∩DEL 3 (18) 0 (8) 0 (6)

Number of total genes (and miRNA ones only) in the fused networks, in the
extracted gene sets, and shared between gene sets. All: fused network, IC:
Integrated community, and DE: Differentially expressed genes; AllL, ICL,
EuclICL, PearsICL, DEL: LASSO reduced gene sets (EuclICL and PearsICL are
from the IC genes identified in the single-type Euclidean distance and
Pearson’s correlation networks, respectively).
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variables gives high and much better Concordance statistic than
the one built with the relevant DE genes for PRAD and KIRC (C
equal to 0.923 vs. 0.797 and 0.745 vs. 0.666, respectively), meaning
that the two relevant IC gene sets may have interesting biological
qualities, to be experimentally evaluated. Moreover, the differences
between the DE and IC survival curves are statistically relevant for
KIRC and PRAD (p-value 1.55 × 10−3 and 9.41 × 10−3, respectively).
Instead, for LIHC the two survival curves are very similar (C equal to
0.637 vs. 0.646, respectively).

Knowledge-based evaluation
To complete the assessment of the IC gene set of each cancer
type, we perform three different knowledge-based evaluations.

First, we evaluate the proportion of IC genes known to be
associated with the considered tumor in the literature, then we
check if the IC genes of each cancer type are known to be
druggable, and finally we perform a gene set enrichment analysis
to evaluate the biological functions of the IC gene sets.
We evaluate the significance of the IC-gene/cancer-type

association through a systematic literature evaluation. From
PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), we automati-
cally retrieve all scientific publications that report both the gene
symbol and the related cancer type, and we perform a Fisher’s
exact test23 for the enrichment of the genes associated with the
related cancer type in at least one publication within the IC gene
subset versus all genes in the cancer-type fused network.
The results show a high number of IC genes known to be

Fig. 3 Boxplot of the performances of the classification. Boxplots of the Accuracy, AUC, and F1 score metrics for the normal/cancer
classification of the three cancer types: a KIRC, b LIHC, and c PRAD. Each box in a plot represents the performance of a different gene set; ICL:
Integrated community, DEL: Differentially expressed, RandL: Randomly selected, EuclICL: Euclidean distance network IC, PearsICL: Pearson’s
correlation network IC, and AllL: fused network all genes selected with LASSO. ***, **, and * indicate significant difference from ICL with p-value
0.001, 0.01, or 0.05, respectively.
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associated with the related cancer type (340, 385, and 1341 for
KIRC, LIHC, and PRAD, respectively), with a very significant
statistical enrichment in all considered cancer types (p-values
1.19 × 10−37, 1.05 × 10−12, and 1.25 × 10−43, respectively).
Furthermore, we evaluate the amount of drug actionable IC

genes with respect to all druggable genes in the same fused
network. For each cancer type, we extract the subset of fused
network genes that are considered as pharmacologically active
targets in DrugBank (https://www.drugbank.ca/releases/latest), i.e.,
that are directly related to the mechanism of action of at least one
drug. We perform the Fisher’s exact test for the enrichment of
such genes in the IC gene set, identifying a significant enrichment
for KIRC and LIHC (p-value 8.10 × 10−4 and 2.23 × 10−3). PRAD IC
gene set does not result significantly enriched for drug actionable
targets; yet, it contains 115 hits and 4 of them (ACPP, MAP1A,
VKORC1, and VKORC1L1) are targets of drugs used for the PRAD
treatment. This evaluation clearly shows that several IC genes of
each cancer type are already known as druggable, indicating those
of them that are targets of drugs not yet used for the specific
cancer-type treatment as priorities for effective drug repurposing.
Furthermore, it suggests the chance that other IC genes not yet
annotated as pharmacologically active targets may be drug
actionable and possible targets for new cancer drug treatments.
Finally, we perform the functional analysis of the three

identified sets of IC genes using g:Profiler (https://biit.cs.ut.ee/
gprofiler/gost), a Web server for functional enrichment analysis on
a huge variety of data sources, revealing if the IC genes are related
to important biological processes for each cancer type. KIRC IC
genes are significantly enriched in some interesting Gene
Ontology Biological Processes (GO:BP) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, including gene silencing
by miRNA, sprouting angiogenesis, vasculature development, cell
migration, and microRNAs in cancer. Indeed, angiogenesis is a
fundamental process for cell proliferation in KIRC as reported in
KEGG (https://www.kegg.jp/kegg-bin/show_pathway?hsa05211),
where the PDGFBA, TGFB1, TGFB2, TGFB3, and VEGF genes are
known to be involved in the development of new blood vessels.
KIRC IC genes significantly enriched in angiogenesis are 27
(including 26 miRNAs). Interestingly, among them: DLL1 gene
product interacts with proteins of the VEGF signaling pathway,
while hsa-mir-7, hsa-mir-29c, hsa-mir-125a, hsa-mir-126, hsa-mir-
296, hsa-mir-361, hsa-mir-424, hsa-mir-495, and hsa-mir-503
miRNAs target VEGFA gene, as reported in miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw); instead, hsa-mir-10a, hsa-mir-23b,
and hsa-mir-375 are known to regulate the genes involved in
the TGF-β signaling pathway (TGFB1, TGFB2, and TGFB3), whereas
hsa-let-7b, hsa-let-7f, and hsa-mir-146b target PDGFB gene. Thus,
the majority of KIRC IC genes involved in angiogenesis is also
involved in the main pathways of the KIRC disease. Moreover, the
PAK1 and PIK3R1 genes have a crucial role in cell migration and

mobility in the KEGG renal cell carcinoma pathway, and both of
them have been extracted by our pipeline as KIRC IC genes.
Regarding LIHC IC genes, they are significantly enriched in

several GO:BP particularly relevant for LIHC, including oxidation-
reduction process, organic acid catabolic process, drug metabolic
process, fatty acid metabolic process, and lipid metabolic process.
Indeed, KEGG reports fatty acid oxidation/biosynthesis, adipocy-
tokine signaling pathway, and calcium signaling pathway as
important pathways for cell proliferation and survival in the LIHC
disease (https://www.kegg.jp/kegg-bin/show_pathway?hsa05225).
Furthermore, several of the LIHC IC genes, including EGFR, GSTA1,
GSTO1, MGST1, MGST2, PIK3K1, and TXNRD2, are also known to be
involved in LIHC disease pathways.
PRAD IC genes are instead significantly enriched in GO:BP

metabolic process and regulation of gene expression. Among PRAD
IC genes known to be involved in the KEGG prostate cancer disease
pathway (https://www.kegg.jp/kegg-bin/show_pathway?hsa05215),
BAD, CREB1, CREB3L4, CREBBP, EP300, and TCF7L1 genes are all
involved also in the metabolic pathway known to regulate cell
apoptosis and proliferation, while GSTP1 regulates the carcinogen-
esis of PRAD and it is also involved in the metabolic process;
instead, SPINT1 and ZEB1 regulate gene expression and they also
play an important role in the PRAD pathway by promoting cellular
migration and invasion.

DISCUSSION
The aim of this study is the extraction of relevant cancer gene
biomarkers through the innovative integration of multiple gene co-
expression networks, as proposed in “Building of gene co-
expression networks” section, and the fusion of normal and cancer
condition networks, described in “Network fusion for gene
extraction” section. In order to do so, we compute the Euclidean
distance and Pearson’s correlation similarity measures between the
expression profiles of each pair of genes for the normal and cancer
data sets of each cancer type considered. Then, the so-built
adjacency matrices of the Euclidean distance and Pearson’s
correlation co-expression networks are normalized and summed
together to obtain, for each condition, an integrated network that
represents all the relevant characteristics highlighted by the two
measures. The final cancer-type-specific networks are obtained by
fusing the two condition-specific networks with the SNF algorithm.
IC genes, extracted from each fused network, are of great interest

from the cancer type perspective. They give very good normal/
cancer sample classifications, even better than the ones provided by
cancer biomarker genes identified with the classical differential
expression analysis, as reported in Fig. 3. Comparisons show also
that the integration of multiple co-expression networks outperforms
the single-type co-expression analysis. IC genes exhibit interesting
results also in terms of survival analysis: 44 of all IC genes are
significantly associated with the survival event probability, a
relevantly higher number than the 6 differentially expressed genes
significantly associated with survival. Moreover, the multivariate Cox
proportional-hazards model of the significant IC genes for each
cancer type gives a better Concordance statistic, i.e., a better fit, than
the model built by using the differentially expressed genes as
variables. Finally, the three-fold knowledge-based evaluation proved
that IC genes may be potentially valuable cancer biomarkers,
possibly actionable for drug treatments, significantly enriched in the
main pathways of the disease, and including several genes known
to be of interest for the specific cancer type.
IC genes that may be novel cancer biomarkers are those not

associated with the cancer type in PubMed and that are
actionable (i.e., there are drugs that can target them). In particular,
for KIRC disease, MT-CYB, NDUFV3, PARP3, and TOP1MT gene
products are labeled as actionable in DrugBank and they may
have an important role in the regulation of the MAPK signaling
pathway, and consequently of cell proliferation. Indeed, these

Fig. 4 Survival curves. Survival curves of multivariate Cox
proportional-hazards models with relevant IC (full line) or DE
(dashed line) genes for each cancer type. The curves show the
probability of survival over time (in days) for the considered data
sets. C Concordance statistic, SE standard error.
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gene products are all indirectly associated with KRAS or HRAS (two
of the main genes belonging to the MAPK signaling pathway) by
means of another protein (as reported in BioGRID - https://
thebiogrid.org). Moreover, hsa-mir-7, hsa-mir-29c, hsa-mir-125a,
hsa-mir-296, hsa-mir-361, hsa-mir-424, hsa-mir-495, and hsa-mir-
503 are interesting miRNAs because they regulate two of the
fundamental genes of the VEGF signaling pathway. Also, hsa-mir-
23b and hsa-mir-375 regulate genes in the TCF-β signaling
pathway, another crucial pathway in KIRC, and hsa-let-7b, hsa-
let-7f, and hsa-mir-146b can target PDGFB, which is a well-known
oncogene24. However, PubMed does not contain evidence of the
involvement of these genes in KIRC disease; thus, they are good
candidate biomarkers for experimental investigation according to
our findings.
For LIHC disease, we found 13 actionable IC genes that have not

yet been studied for this disease. Among them, the FGB gene
encodes for the beta component of the fibrinogen, a glycoprotein
that regulates cell adhesion and spreading. Interestingly, accord-
ing to BioGRID, the FGB gene product directly interacts with the
PI3K enzyme family, which has an important role in the LIHC cell
survival pathway. Moreover, ABAT, ETFDH, F7, QPRT, and RAMP1
gene products are druggable and they all indirectly interact with
the PI3K enzyme family by means of another protein; thus, a
deeper examination of their interactions could give important
insights for LIHC disease. There are also IC miRNAs, neglected by
the literature for their association with LIHC disease, that target
the PI3K enzyme family, such as hsa-mir-10b, hsa-mir-30a, hsa-mir-
93, hsa-mir-126, hsa-mir-143, and hsa-mir-375.
Actionable PRAD IC genes, whose involvement in PRAD disease

is not yet annotated, are 24. Among them, ACAA1, GART, PDE9A,
RPL3, TUBA1A, and TUBG1 gene products interact with several
proteins known to be involved in the PRAD pathway and
particularly important for apoptosis inhibition and tumor growth.
Thus, they could be possible PRAD biomarkers. Moreover, there
are several IC miRNAs not yet studied for PRAD that target pivotal
genes involved in the PRAD pathway, and that can also affect the
metabolic process of the disease; they are hsa-let-7b, hsa-mir-23b,
hsa-mir-26a, hsa-mir-26b, hsa-mir-30a, hsa-mir-101, hsa-mir-193b,
and hsa-mir-199a.
All mentioned IC genes seem to be cancer-type-specific, i.e.,

they are uniquely extracted from a single cancer-type-specific
network. However, among all IC gene sets there are three
common miRNAs worth mentioning due to their cancer-related
properties: hsa-let-7b, hsa-mir-23b and hsa-mir-375.
All these findings prove the importance of the use of co-

expression networks and the relevance of the integration of
different similarity measures that we developed. They allow a finer
identification of genes (the IC ones) that, thanks to their relations
in the fused co-expression networks built, provide better normal/
cancer sample classification performance than the DE genes,
which are more commonly used for this task.

Moreover, our pipeline is easy to be extended by, for example,
considering mutation signatures. The similarities among mutation
samples could be combined together with the co-expression
networks using the SNF method. In this way, the fused networks
could identify IC genes whose expression profiles and mutation
signatures are either highly similar or very different between the
normal and cancer condition.

METHODS
This section describes our novel multi-step methodology to identify
candidate cancer gene biomarkers, which is schematically illustrated in Fig.
5. After the extraction and pre-processing of gene expression data from
normal and cancer conditions (Data Extraction and Pre-Processing panel in
Fig. 5), two gene similarity measures are computed and used for the
construction of different gene co-expression networks, which are then
combined to have one normal sample network and one cancer sample
network for each cancer type considered (Network Building panel in Fig. 5).
Finally, the two condition-specific networks of each cancer type are fused
(Network Fusion panel in Fig. 5) in order to extract relevant gene
biomarkers for cancer diagnosis (Gene Extraction panel in Fig. 5).

Data extraction and pre-processing
To infer gene co-expression networks, we extract RNA-Seq and miRNA-
Seq data sets for the human GRCh38 assembly from the TCGA
repository17 using the GenoMetric Query Language (GMQL), an
innovative query language for genomic data and metadata25. The first
data set contains gene expression quantifications, i.e., the number of
reads that map to each gene using the RNA-Seq technique26, whereas
the second data set contains microRNA (miRNA) quantifications derived
from the next-generation sequencing of microRNAs27. Specifically, we
consider the data of three representative tumors: kidney clear cell
carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), and prostate
adenocarcinoma (PRAD). TCGA data sets of these cancer types have a
suitable number of both normal and cancer patients’ samples with both
RNA-Seq and miRNA-Seq data (Table 4), with a balanced ratio of samples
between the two conditions (i.e, whose number of samples is balanced
between the normal and cancer condition). Furthermore, all these
samples have valuable metadata describing patients’ vital status and
survival (days to death and to follow-up).
We organize the extracted data in the form of matrices that have as

elements the values of fragments per kilobase of transcript per million
mapped reads (FPKM) for each gene/sample pair, considering only the
patients with samples in both the two RNA-Seq and miRNA-Seq data sets.
Due to the presence of measurement errors and noisy genes, from RNA-
Seq data sets we get only protein-coding and long non-coding genes;
instead, from miRNA-Seq data sets, we obtain microRNA gene quantifica-
tions. Additionally, we use the normalization method and threshold
reported in Hart et al.28 to distinguish between biologically relevant genes
and noisy ones (by genes we refer to both RNAs and microRNAs). The
selected RNA-Seq data have a mean value of normalized fragments per
kilobase of transcript per million mapped reads (zFPKM) higher than −3.0
in both normal and cancer conditions28. zFPKMs are z-scores of log(FPKMs),
and the threshold equal to −3.0 accurately determines which are the
active genes and which the background ones28.

Fig. 5 Workflow representation of the pipeline. Defined workflow for the identification of candidate cancer gene biomarkers.
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Building of gene co-expression networks
The process we propose for constructing gene co-expression networks can
be split into three main steps: computation of similarity measures between
genes, statistical thresholding to reduce over-connectivity of the networks,
and integration of the similarity measures for each condition, normal or
cancer, for each cancer type.
In a gene co-expression network, the nodes correspond to genes and

the edges represent the relations between the gene expression profiles
found with a not null similarity measure4. There is a huge variety of
similarity measures that can be used; each one quantifies the degree of
association between expression profiles by representing different char-
acteristics29. Here, we consider two types of networks, built by employing
two different similarity measures: one the Euclidean distance and the other
the Pearson’s correlation. The first metric identifies similar or identical
expression regulations having a positive linear correlation, and it is
influenced by the magnitude of changes in the expression profiles30.
Whereas the second one reflects the degree of linear correlation between
two patterns of expression29. Since the two conditions, normal and cancer,
are maintained separate, for each condition and for each cancer type, we
build one Euclidean distance network to highlight linear similarity and one
Pearson’s correlation network to highlight pattern similarity30 between
gene expression profiles. However, the so-created networks in this first
step have a huge number of edges with not null weights.
The over-connectivity of the networks does not allow highlighting the

relevant associations among genes. We deal with this issue in the second
step, by removing all the network edges that can be considered pointless
for our purpose. To do so, we use statistical thresholding methods on the
weight of the edges31. Regarding the Euclidean distance networks, we
keep only the edges with a weight higher than the 99th percentile of the
distribution of the network edge weights. This allows us to consider only
pairs of genes that have a high difference in expression. For the Pearson’s
correlation networks instead, we perform a permutation test that allows
detecting a significant threshold for the Pearson’s correlation values31. By
randomly shuffling 10 times the expression data, we compute the average
permuted distribution of Pearson’s correlation values. Then, we identify its
lower and higher limit values as the significant thresholds, filtering out the
network edges with a Pearson’s correlation value between these thresh-
olds32. We also evaluated the robustness of the permutation test by
considering increasing numbers of times shuffling in the Supplementary
Material Section Permutation tests on LIHC Normal and Cancer networks.
Since the networks created with Pearson’s correlation are very dense, we
use the computed p-value of Pearson’s statistic to further prune the
network edges. We sort these p-values and we consider as a threshold
their percentile that allows having a number of edges similar to the one of
the corresponding Euclidean distance network. This is needed to have the
two metrics balanced while at the same time resolving the over-
connectivity problem of the co-expression networks.
The last step is the union of the two measure networks in order to have

a single network for each condition. The final networks highlight the pairs
of genes in each condition, normal or cancer, that have expression profiles
highly different (based on their Euclidean distance) and/or with a similar
pattern (based on their Pearson’s correlation). In order to do so, since any
network is described by the adjacency matrix of its edge weights, first, we
normalize the logarithm values of the Euclidean distance adjacency
matrices, by dividing them by the maximum logarithmic value in the
matrix, and we compute the absolute values of the Pearson’s correlation
adjacency matrices. Then, we sum the two obtained matrices for each
condition, so to get one adjacency matrix describing the normal sample
network and one the cancer sample network. Each condition-specific
network contains all the meaningful characteristics highlighted by the two
similarity measures considered.

Network fusion for gene extraction
Network Fusion panel in Fig. 5 shows the final processing to fuse normal
and cancer sample networks; we do so by using the Similarity Network
Fusion (SNF) algorithm33, which can fuse different similarity networks (in
this study, normal and cancer co-expression networks) highlighting the
presence of groups of connected genes in the resulting combined
network34. It has been used to integrate different genomic data types of
the same patients33,34, for emphasizing clusters in patient subtyping35, and
for predicting biological associations36,37.
The SNF algorithm consists of two important steps33; here, we briefly

describe them reporting the main formulas of this method. Our normal and
the cancer sample networks are obtained by combining the gene co-
expression networks of two similarity measures (Euclidean distance and
Pearson’s correlation) in normal and cancer condition, respectively. The
vertices of the two networks correspond to the considered genes {g1, g2,…,
gn} and the edges are the gene combined similarities. Suppose W(n) and W(c)

represent the adjacency matrices of the normal and cancer sample networks,
respectively, withW(n)(i, j) andW(c)(i, j) indicating the similarity between genes
gi and gj in normal and cancer condition, respectively. The first step of the
SNF to compute the fused network is the use of the K nearest neighbors
(KNN)33 to measure local affinity in each network and to compute the kernel
matrices S(n) and S(c) for W(n) and W(c), respectively, as follows33:

Sði; jÞ ¼
Wði;jÞP
k2Ni

Wði;kÞ ; j 2 Ni

0 otherwise

8<
: (1)

where S and W are the general kernel matrix and adjacency matrix,
respectively, and Ni is the set of neighbors of gi, i.e., the set of genes that are
directly connected with gi in the network. Once the kernel matrices are
computed, the second most important step of the SNF is the iteratively
update of the similarity matrixW33,36. Specifically for the fusion of normal and
cancer sample networks, we use the following formulas:

WðnÞ
tþ1 ¼ SðnÞ ´WðcÞ

t ´ ðSðnÞÞT (2)

WðcÞ
tþ1 ¼ SðcÞ ´WðnÞ

t ´ ðSðcÞÞT (3)

where WðnÞ
t¼0 ¼ WðnÞ and WðcÞ

t¼0 ¼ WðcÞ represent the initial two matrices, at
iteration t= 0, for the normal and cancer condition, respectively. At each
iteration, the matrices W(n) and W(c) are updated by generating two parallel
intertwined diffusion processes33. The final fused adjacency matrix is
computed after t* iterations as follows33,36:

WðfusedÞ ¼ WðnÞ
t� þWðcÞ

t�

2
(4)

where t* is the iteration that leads to the convergence of the algorithm, i.e.,

when the relative difference of two consecutive iterations (
kWðfusedÞ

tþ1 �WðfusedÞ
t k

kWðfusedÞ
t k ) is

<10−5.
The SNF algorithm filters out weak similarities not shared by the input

networks, reducing the noise. Instead, depending on local affinities, strong
similarities present in one or both networks are preserved, as well as weak
similarities supported by both input networks (i.e., small communities of
weak/mixed edges that are consistent in both networks)33. Therefore, the
method has a de-noising function on the input networks, allowing to
combine them highlighting groups of nodes with common similarities in
the two input networks, or with much higher similarities in one of them34.
With respect to the single input networks, the fused network gives a much
clearer picture of the presence of connected gene clusters33.
Finally, the fused network of each studied cancer type is passed through

an additional pruning step, called disparity filter38; it extracts the backbone
structure of an undirected weighted network without destroying the major
features of the network38. The disparity filter requires a p-value threshold,
which identifies the significance of the comparison between a uniform
distribution of each node of the network and a null model38. We set this
threshold at the 99th percentile of the overall p-value distribution of each
network. Then, gene communities in the fused network are extracted using
the modularity method implemented in Gephi39, a software that allows
representing a network and calculating network measures. The modularity
method measures how well a network decomposes into modular
communities by counting, up to a multiplicative constant, the number of
edges within groups that are not in an equivalent permuted network
(where edges are placed at random)40,41. Genes in these communities are
those selected as relevant in the fused network; we name them Integrated
Community (IC) genes.

Table 4. Samples.

Samples KIRC LIHC PRAD

Cancer 487 370 495

Normal 71 50 52

Total 558 420 547

Number of TCGA patients’ samples considered.
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Computational validation methods and metrics
For the validation of the gene sets that our pipeline extracts we use several
computational methods. First, we use the LASSO regression method42 (“LASSO
regression” section) for the feature selection from the gene sets found in
“Network fusion for gene extraction” section and from the differentially
expressed genes (“Differential gene expression analysis” section) and other
gene sets for reference comparison, whose performances in classifying cancer
versus normal samples are subsequently compared and evaluated using a set
of performance metrics (“Sample classification and performance metrics”
section). Moreover, we evaluate the clinical relevance of the extracted gene
sets by means of survival analysis43, performed through the Cox proportional-
hazards model44 (“Cox proportional-hazards model” section).

LASSO regression. The Least Absolute Shrinkage and Selection Operator
(LASSO) is a regression method commonly used for feature selection; it
allows to obtain better prediction accuracy and interpretability than
standard regression models by shrinkage of feature coefficients and by
providing a sparse solution, i.e., with some feature coefficients null42. Thus,
we use LASSO to select representative genes within the communities
extracted from the fused network, which we name ICL genes, as well as
within other gene sets; this allows us to have much smaller relevant gene
sets, which can be better used for normal/cancer classification.
The basic form of LASSO regression was originally introduced in the

context of least squares42. Let (y1, x1),…, (yp, xp) be p output/input pairs and
consider a linear regression model as follows:

yi ¼ β0 þ β1xi1 þ � � � þ βpxip þ ϵi (5)

where ϵi are random quantities with mean zero42. The objective of LASSO
is to find the β values that minimize the empirical risk for a given loss
function, expressed as follows42:

XN
i¼1

yi � β0 �
Xp
j¼1

βjxij

 !2

(6)

subject to
Pp

j¼1 jβj j � t, where N is the number of observations and t is a
tuning parameter that defines the amount of regularization. The smaller
the value of t, the greater the amount of shrinkage towards zero of the
coefficients; this leads to obtaining a valuable feature selection, i.e., a
sparse subset of variables with non-zero regression coefficients.

Differential gene expression analysis. To compare our selected gene sets
with a baseline set of reference genes, we perform a differential gene
expression analysis to find baseline reference significant genes for each cancer
type. This analysis is a well-known method to extract altered expression genes
that might be involved in cancer development and that might serve as
specific biomarkers for diagnosis45. We leverage the DESeq2 R/Bioconductor
package to identify the differentially expressed (DE) genes46. DESeq2 uses
shrinkage estimators for the dispersion and the expression fold change
between the normal and cancer conditions, which is the ratio between the
expression mean values of cancer over the normal samples. We obtain the DE
genes by selecting those that have an adjusted p-value (i.e., after multiple
testing correction using the Benjamini and Hochberg method) lower than 0.05
and an absolute value of the log2 fold change greater than 2.0.

Sample classification and performance metrics. To evaluate the ability of
the considered gene sets in discriminating between cancer and normal
sample conditions, we use a Random Forest classifier based on 5-fold
stratified cross validation47, and three metrics for classification perfor-
mance evaluation, namely, Accuracy, Area Under the Curve (AUC) and
F1 score48. The Accuracy is the proportion of true results, either true
positive or true negative, in a result population. It measures the degree of
correctness of a test on a condition, as given by:

Accuracy ¼ TP þ TN
N

(7)

where TP are the true positives, TN are the true negatives and N is the
population cardinality. The AUC is the area under the Receiver Operating
Characteristic (ROC) curve. It is a graphic representation of the relationship
between the Sensitivity, or Recall, and Specificity of a binary evaluation,
defined as follow:

Sensitivity=Recall ¼ TP
TP þ FN

; Specificity ¼ TN
TN þ FP

(8)

where FN are the false negatives and FP are the false positives of the
evaluation. The F1 score is the harmonic mean of Precision and Recall,

specified as follow:

Precision ¼ TP
TP þ FP

; F1 score ¼ 2 ´
Precision´ Recall
Precisionþ Recall

(9)

Cox proportional-hazards model. Survival analysis is the evaluation of the
time to an event of interest (usually the time from diagnosis to death)43.
We perform it by means of the Cox proportional-hazards model44, a
regression model commonly used in medical research for testing the
association between the survival time of patients and one (univariate) or
more (multivariate) predictor variables. We use the hazard ratio statistics
instead of the Kaplan–Meier statistics, which is usually used for survival
analysis, due to the inability of the latter one to work properly with
quantitative variables such as the gene expression values. The Cox
proportional-hazards model gives an estimation of how much the
specified variables (e.g., the gene expressions) influence the rate of a
particular event (e.g., death), called the hazard rate44. The hazard function
h(t) denotes the Cox proportional-hazards model and represents the risk of
an event (e.g., of dying) at time t. Suppose (x1, x2,…, xn) indicates a set of
n variables that determine h(t) at a certain (survival) time t, then the hazard
function can be written as follow44:

hðtÞ ¼ h0ðtÞ ´ expðb1x1 þ b2x2 þ � � � þ bnxnÞ (10)

where the coefficients (b1, b2,…, bn) measure the influence of the variables,
h0 is the hazard baseline and exp(bi) is the hazard ratios, i.e., the Cox
regression coefficients for the gene expression measurements of normal
and cancer samples. A hazard ratio greater than 1 indicates a variable (or a
group of variables in the multivariate case) that is positively associated
with the event probability (e.g., death), whereas a variable with a hazard
ratio smaller than 1 is negatively associated with the event probability.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
At https://github.com/DEIB-GECO/GeneNetFusion, we provide the TCGA LIHC data
sets, the LIHC gene co-expression networks, and for all cancer types considered we
also provide the list of IC genes extracted from each of the fused networks. Moreover,
the gene-to-gene associations of each fused network can be easily computed by
following each step described in GitHub.

CODE AVAILABILITY
We used the Python programming language to implement the main steps of our
computational method in separate scripts, respectively regarding the data pre-
processing, matrix creation, and matrix fusion, as well as the feature selection and
cancer classification evaluation, computed after the extraction of the IC genes with
Gephi39. Furthermore, we created a Jupyter Notebook (https://jupyter.org/) for the
easy execution of all the steps of the developed computational pipeline. All
developed software and the Jupyter Notebook are open source and publicly available
at https://github.com/DEIB-GECO/GeneNetFusion.
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