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Predicted ‘wiring landscape’ of Ras-effector interactions in 29
human tissues
Simona Catozzi 1,2, Melinda Halasz2 and Christina Kiel 1,2✉

Ras is a plasma membrane (PM)-associated signaling hub protein that interacts with its partners (effectors) in a mutually exclusive
fashion. We have shown earlier that competition for binding and hence the occurrence of specific binding events at a hub protein
can modulate the activation of downstream pathways. Here, using a mechanistic modeling approach that incorporates high-quality
proteomic data of Ras and 56 effectors in 29 (healthy) human tissues, we quantified the amount of individual Ras-effector
complexes, and characterized the (stationary) Ras “wiring landscape” specific to each tissue. We identified nine effectors that are in
significant amount in complex with Ras in at least one of the 29 tissues. We simulated both mutant- and stimulus-induced network
re-configurations, and assessed their divergence from the reference scenario, specifically discussing a case study for two stimuli in
three epithelial tissues. These analyses pointed to 32 effectors that are in significant amount in complex with Ras only if they are
additionally recruited to the PM, e.g. via membrane-binding domains or domains binding to activated receptors at the PM.
Altogether, our data emphasize the importance of tissue context for binding events at the Ras signaling hub.
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INTRODUCTION
Protein interactions and signaling networks critically coordinate
many cellular functions, such as proliferation, differentiation,
survival, migration, and apoptosis. Dysregulation of such networks
is linked to many diseases, like cancer or degenerative disorders1.
Networks often operate in a cell/tissue-specific manner2–5, and the
need for quantitative data related to gene and protein expression
levels (both cell- and tissue-dependent) has led to several
initiatives aiming at a universal standardized database (e.g. the
Human Protein Atlas6 and the Human Cell Atlas7). Incorporating
these data into mechanistic and quantitative mathematical
models, in order to predict cell/tissue- and context-specific (e.g.
microenvironmental) signaling responses, is of crucial importance
to understand cell behavior in health and disease. We have shown
earlier that if a hub protein at a critical network branch point is
present at a limiting concentration, then the formation of a
specific protein complex is determined by the concentrations of
the binding partners that, in their turn, shape the way the flow of
information is further transmitted along the numerous down-
stream signaling pathways8. We have also shown that the subunits
that are competing for associating to the same hub, tend to be the
ones that undergo a dynamical change during differentiation from
one cell type to another9.
Ras is a prime example of a hub signaling protein. It interacts

with multiple effectors in a mutually exclusive and competitive
fashion8,10,11. The Ras oncoproteins HRAS, KRAS, and NRAS belong
to the family of small GTPases, which cycle between guanosine
diphosphate (GDP)-bound inactive and guanosine triphosphate
(GTP)-bound active states. Ras-mediated signaling pathways are
central to cell life cycles and are triggered by activation of
membrane-associated Ras in response to a variety of extracellular
stimuli. More particularly, active Ras·GTP binds the Ras-binding
domains (RBDs) of effector proteins, thereby recruiting them to
the plasma membrane, and causing activation of downstream
signaling pathways. Recently, we generated a computational

network model using protein concentrations (specific to colon
tissue) and Ras-effector binding affinities as inputs, and we
investigated how effectors differentially and competitively bind to
Ras, comparing colon and colorectal cancer contexts10. In the
present work, we extend the former Ras-effector model to
characterize 29 distinct human tissues, in which we primarily
studied two aspects: (i) the interplay between protein abundances
and binding affinities in shaping the Ras network, and (ii) the
extent of rewiring that can be achieved by altering those two
parameters (i.e. the abundances of 56 effectors and Ras proteins,
and the binding affinities). We found that local affinity changes
generally had a minor impact on the amount of complex
formations, suggesting that competition in a small parameter
range confers robustness to the system. However, global affinity
perturbation sensitivity analyses, which would correspond to
mimicking additional domains in effectors that could be used to
recruit to the membrane upon certain stimuli, greatly increased
the amount of Ras-effectors at the plasma membrane. Further-
more, the model enabled the classification of 56 effectors into (i)
nine effectors that bind efficiently to Ras using the RBD alone, (ii)
32 effectors that need additional recruitment to the PM for
efficient binding, and (iii) 15 effectors that are predicted to be no
true Ras effectors. Altogether, our results suggest that to mean-
ingful interpret signaling of Ras-effector interactions, the addi-
tional extracellular stimuli must be considered, as they have the
most effective impact on rewiring the network.

RESULTS
Competition of effectors for binding to Ras proteins
Effector proteins that bind to the Ras oncoproteins all contain a
domain with a ubiquitin-like topology, an RBD, that constitutes the
binding interface interacting with a GTP-bound Ras. In a previous
study10, we characterized a set of 56 effectors that interact with
Ras proteins with different affinities, from nano- to micromolar Kd
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(i.e. from highest to lowest affinity). These 56 effectors converge
into 12 classes that are linked to cellular processes such as
proliferation, survival, migration, or apoptosis (Fig. 1a). Due to the
nature of mutually exclusive binding, competition among Ras
effectors can occur when Ras proteins are expressed at a limiting
concentration8. It is important to note that such a competition,
alongside numerous other factors such as cell types, tissues, and
microenvironment, seems to play a key role in determining the
signaling rewiring.
In order to gain insights into the formation of tissue-specific

Ras-effector complexes, we relied on a recent deep-coverage
dataset of mRNA and protein expression in 29 normal (healthy)
human tissues12. Of this whole proteomic dataset, a high number
of proteins was directly available from mass spectrometry
measurements (particularly for the three Ras oncoprotein isoforms
and most of the effector proteins); however, some expression

values remained undetected (11.2%), which we estimated from
tissue-specific transcript vs protein expression correlation lines
(see Supplementary Data 1 and Supplementary Note 1). Moreover,
such quantitative data were of high utility, as the prediction of six
distinct tissue subtypes (i.e. epithelial, muscle, adipose, neuronal,
connective, and lymphoid tissue) using marker proteins, agreed
well with the expected tissue subtypes for the 29 tissues (see
Methods section, Supplementary Data 2 and Supplementary Note
2). While Ras and effector proteins are generally expressed in all
tissues, there is a certain level of clustering of specific effectors in
particular tissues, such as in fat (PCLE1,RASSF4, RGL4, RASSF7,
RGL3, ARAP1, RALGDS, ARAP2), brain (RAPGEF2, RGS12, TIAM2,
MYO9B), lung (RADIL, PIK3CA, RAPGEF5), pancreas (ARHGAP20,
RASSF9, RAPGEF4, RAPGEF6), or gallbladder (RIN3, ARAF, PIK3C2G,
MYO9A, RASSF1, MYO10); see Supplementary Figs. 1 and 2.

Fig. 1 The Ras-effector signaling system and protein abundances in 29 human tissues. a Table of effectors and their categorization into 12
classes, to which are associated different signaling pathways and cellular responses. b Bar plot comparing the level of Ras proteins (for 20% or
90% GTP load, in gray) against the level of Ras effectors (class-specific abundance colored as per the legend). Concentrations of active Ras (H-,
K-, and NRAS summed up together) in any of the 29 tissues are generally larger than the concentrations of all the effectors, thus satisfying the
condition of competitive binding. Only exceptions are in brain and duodenum, although limited to the case where all Ras proteins are GTP
loaded (90% active).
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We next analyzed the sum of Ras isoform protein levels for both
low and high levels of GTP-bound Ras (respectively, 20% and 90%)
and compared it to the sum of protein expression of the 56
effectors in each of the 29 tissues (Fig. 1b). We found that in all
tissues, the sum of effector abundances is larger than the sum of
active GTP-bound total Ras, at a basal activation level of 20%. This
holds for most tissues (except for brain and duodenum), even at a
GTP-load of 90%, which would correspond to an overactivation of
Ras due to oncogenic mutations. Thus, in normal tissues, the
conditions of competition among effectors for binding to Ras
apply, with the predicted outcome that a portion of every effector
remains unbound.

Hierarchies of Ras-effector complexes in 29 human tissues
In a recent study, we generated a quantitative network model
that predicted the concentration of effectors in complex with Ras
oncoproteins at equilibrium10. In this model, binding constants
(Kd values) were either available from previous biophysical
measurements or from earlier in silico 3D structure-based
predictions. Using this model, Ras-effector complex abundances
(in nanomolar, nM) were obtained by solving the system of
differential equations derived by mass action kinetics until
reaching their steady state (see Methods section and Supple-
mentary Data 1).
We first analyzed complex formations in 29 tissues that were

relevant to the normal healthy human tissues. Therefore, we
considered typical wild-type Ras·GTP expression levels in all
tissues, i.e. 20% of the total Ras was assumed to be in the active
GTP-bound state (Supplementary Data 1). For better visualization
purposes, the complexes formed between the 56 effectors and
Ras proteins were grouped into 12 effector classes (Supplemen-
tary Data 3), as done previously10. Indeed, the total amount of Ras-
effector complexes varies substantially across the 29 tissues
(Supplementary Fig. 3a) and, as expected, there is a general
correlation between the total amount of Ras and the sum of all
Ras-effector complexes (Supplementary Fig. 4). Notably, each Ras
isoform participates in the total binding by the proportion of its
abundance, which is tissue dependent (Supplementary Fig. 3c).
KRAS-mediated complexes dominate in every tissue, except in
pancreas, where all the three isoforms equally contribute to
binding. From the effector perspective, we note that class 1 (ARAF,
BRAF, and RAF1) dominates in almost all the 29 tissues (Fig. 2b
and Supplementary Fig. 3a). A clustering analysis was performed
to analyze the individual contributions of the 12 effector classes to
complex formations in the 29 tissues (Supplementary Fig. 5). We
found several sets of effector classes clustered together, suggest-
ing their activation is concerted in those tissues. For example, the
effector classes 2, 12, 1, and 4 are clustered together and all linked
to proliferation, growth and survival. Further, effector classes 3, 9,
10, 11, 6, and 7 are all related to pathways activating Ral, Rho, and
Rap proteins. Lastly, effector classes 5 and 8, associated to calcium
signaling and apoptosis respectively, were found in a separate
cluster.
For easier comparison of the different effector pathways that

are activated in each of the 29 tissues, we normalized the Ras-
effector complex values (in nanomolar, nM) by the sum of total
complexes, in order to represent the relative proportions (in
percentage) of each effector bound to Ras (Supplementary Data 3
and Supplementary Fig. 3b). Thus, we considered the contribution
of each class in determining the reference Ras-binding landscape.
For better visualization, we developed a new representation of
these types of quantitative networks (“octopus network”), which
highlights both the amount of Ras-effector complexes and the
hierarchies among the 12 effector classes in binding to the hub
protein Ras (Fig. 2a and Supplementary Note 3). With respect to
individual effectors, we identified a set of nine effectors that are in
significant amount in complex with Ras (≥5%) in one or more

tissues (Fig. 2b). These include most of the well-known effectors,
such as Raf, RalGDS/Rgl, MLLT4/Af6, and RASSF proteins. However,
PI3K is missing in this list, suggesting that additional activation
mechanisms are needed for this effector family (e.g. recruitment
to the PM via association to its regulatory subunits). The number
of effectors that are predicted to be significantly in complex with
Ras showed a tissue-dependent variation (Fig. 2c). Likewise,
binding hierarchies for the nine effectors vary among tissues –
although ARAF always ranks on top, except in ovary, urinary
bladder, and smooth muscle tissue, where the effectors RASSF5 or
RGL2 take the first rank (Fig. 2c).
These nine effectors together contribute to the total Ras

binding for >90%, hence they are representative of the tissue-
dependent abundances. For instance, variation in ARAF complexes
can be up to 50 folds, between duodenum and lymph node;
whereas RASSF7 complexes are uniquely present in fat (although
still in very low amount, ~1.5 nM). The principal binding
differences between the nine effectors can also be used to define
a Kd threshold (of ~1 μM) characteristic of the tissue-specific
impact of effector abundance and complex formation. The high-
affinity effectors (Kd ≤ 1 μM: ARAF, BRAF, RAF1, RGL2, RASSF5, and
RALGDS) can form Ras-effector complexes up to 80% depending
on the tissue-specific effector concentration (Supplementary Fig.
6a, b). In contrast, low affinity effectors (Kd > 1 μM: MLLT4, SNX27,
and RASSF7) rarely form ≥5% of all Ras-complexes and indeed
never engage more than 10% with Ras in any tissue (Supplemen-
tary Fig. 6c, d).
We next analyzed the binding hierarchies with increasing

concentrations of total Ras•GTP (from 50% to 75% to 90%),
which is supposedly the range of the active Ras amount in
cancerous cells, where Ras is mutated and insensitive to
deactivation (Fig. 3a and Supplementary Data 3). It is important
to note that the effector abundances have been kept
unchanged while varying Ras for the sake of simplicity, and in
fact, those quantities may potentially differ between one cell
operating in normal state or in disease. Nonetheless, as Ras
availability is increased (throughout the four panels in Fig. 3a),
we observe a reduction of the competition for Ras proteins,
hence, less-abundant complexes (in blue shades) show an
increase in their portion participating to Ras binding, whereas
high-abundant complexes (e.g. from class 1) decrease. Further-
more, we wish to draw attention to the three main patterns that
seem to be conserved independently of Ras concentration: (i)
across all tissues, class 1 is generally the most favored to
interact with Ras; (ii) class 3 and 9 reveal a more tissue-specific
binding profile; and (iii) whereas the remaining effector classes
seem to have a minor contribution to Ras complexes. Focusing
on the effectors that are significantly in complex with Ras in at
least one tissue at 20% Ras•GTP, we find that the increase in GTP
levels causes changes in the ranking of many effectors (Fig. 3b).
Moreover, additional effectors become key players (≥5% in
complex with Ras) with increased levels of GTP in some tissue
and appear in the ranking (cf. e.g. PIK3C2B and RIN1; Fig. 3b).
Thus, increasing the abundance of active Ras•GTP induces both
qualitative and quantitative changes in the Ras-effector binding
landscape. The formation of such complexes represents the
initial step necessary for the downstream signaling activity of a
specific pathway. Therefore, quantifying these complexes has a
two-fold importance: firstly, in selecting the transduction
pathway(s) to trigger, and secondly, in modulating the signal
intensity necessary for the final output.

Determinants of complex formations at the Ras signaling hub:
binding affinity and effector abundance
The amount of complexes formed between two proteins
interacting with each other in equilibrium is directly related to
their affinity and the concentrations of each compound. For a
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signaling hub protein such as Ras, for which different ranges of
affinity constants and different ranges of concentrations of
effector molecules converge, and for which competition among
effectors is important, predicting the amount of Ras-effector

complexes is less intuitive – hence we calculated tissue-specific
complexes using our mechanistic model. To obtain further
insights into the determinants of complex formation at the Ras
protein hub and to explore how this potentially differs across

Fig. 2 Hierarchies of Ras-effector complexes and key effectors in 29 human tissues. a Example of an “octopus” network representation for
the Ras binding profile by class (in lung tissue). The effector classes are ordered along the x-axis and ranked on the y-axis based on their
relative amount bound to (20% GTP-loaded) Ras, at steady state. The bubbles on the grid show the repartition (in percentage) of such
complexes, according to a discrete and a continuous scale, i.e. size and color variation, respectively. b Tissue-specific variation of Ras-effector
complexes (in nM) for a set of 9 effectors that are in complex with Ras for a proportion of ≥5% in at least one tissue. c Ranking of the
complexes associated to the nine effectors of panel b (deduced from the y-axis of the octopus plots, like in panel a). Color code from highest
(1st) to lowest (6th) ranked (from dark to light blue) shows that these key effectors usually enter the list of the top six most abundant Ras
complexes, if expressed. Tissues on the x-axis are ordered according to the number of involved key effectors per tissue.
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tissues, we related the amount of effectors to the amount of
Ras-effector complexes in every tissue (Fig. 4a, c and Supple-
mentary Note 4). Subsetting the data by Kd values, reveals a
linear relation between effector abundances and formed
complexes, for each individual subset (Supplementary Notes 4

and 5; underlying data in Supplementary Data 1 and 3). This
allowed us to profile the surface in the three-dimensional space
spanned by affinity, abundance and complex amount (Fig. 4a;
data points in black) and, from that, extract the respective
planar projections (Fig. 4b–d) and analyze the parametric space

Fig. 3 Ras-effector complexes for varying PanRas levels. a Heatmap of the predicted Ras-effector complexes (C%) in 29 human tissues, for
different quantities – 20% to 90% – of Ras GTP (here denoted PanRAS, referring to the sum of the three oncoproteins HRAS, KRAS, and NRAS).
b Change in ranking position of the 9 key effectors, for varying PanRas concentration (from 50 to 90% with respect to the 20% PanRas
scenario). Negative/positive values (respectively blue/red) indicate a down-/up-ranking, zero values (gray) show a no-change.
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of our variables. Notably, this revealed that high affinity is
critical for complex formation – even more than high
concentration. Indeed, low affinity (i.e. Kd > 1 µM) inevitably
implies low complex formation (cf. Fig. 4d), while low effector
abundance can be compensated by high affinity and still result
in high-abundance complexes (cf. Fig. 4c).

Furthermore, we studied the tissue specificity of the effector-
complex linear relations (light gray lines in Fig. 4a–d; based on
Supplementary Note 4) by comparing the correspondent slopes
for varying Kd values (Fig. 4e). Remarkably, this shed some light on
the impact of tissue-specific effector abundances on tissue-
specific complex formations (Fig. 4e; tissues were sorted with

Fig. 4 Affinities and effector concentrations as determinants of complex formation at the Ras signaling hub. a–d Three-dimensional data
(affinity, abundances, and complexes) represented in the 3D space and its 2D projections, for lymph node tissue. Surfaces are interpolated
from the linear regressions of complexes (%) vs effector amounts (nM), for fixed affinities Kd values. Such lines are shown in light gray and the
data points in black. (See also Appendices 4 and 5.) e Slopes of the linear interpolations of complexes (%) vs effector amounts (nM) for
different Kd ranges, in 29 human tissues. The slopes for Kd ranges [2.9,50] (i.e. for medium-to-low affinity, cf. panel above) show a consistent
trend; while for higher affinities (Kd in [0.04,1]) we observe more variability. Tissues are sorted by increasing average slope per tissue over the
whole affinity range (Kd in [0.04,50] μM), namely from least to most sensitive to affinity variations.
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increasing average slopes per tissue over all affinity ranges). It is of
note that there is no or almost no correlation between the
average slopes and the total Ras or effector abundances
(Supplementary Fig. 7). This reinforces the need for computational
models to help in unraveling system behavioral properties that
otherwise cannot be predicted from protein concentrations alone.
Besides the trivial observation that less complex formation is

associated with a smaller slope, this comparative analysis showed
the association between low complex formation and low affinity
(i.e. larger Kd values, cf. Fig. 4b and top panel in Fig. 4e). In fact, for
any Kd > 1 µM, the slopes appear to stay relatively small (i.e. <0.2),
and this means that the system is robust to perturbations of low
binding affinities. As expected, the range of slopes increases with
an increase in affinity (lower Kd values), and interestingly the
tissue-specific variation in slopes decreases with lower affinity,
suggesting that lower slopes are associated with a larger
robustness to perturbations and thus have lower sensitivity (Fig.
4b inset; Fig. 4e).

Binding affinity sensitivity analysis
In order to study the extent of network rewiring and re-
adjustment in response to perturbations, we performed a local
and a global sensitivity analysis on the binding affinities (Kd
values) between Ras and its effectors (reported in Supplementary
Data 1). Namely, we analyzed the change in Ras-effector complex
concentrations for one-at-a-time perturbations of the affinity
values, both: (i) for small variations of ±10% around the Kd
reference value, and (ii) over the biological span where the Kd
values lie (i.e. nano to micromolar). This allowed us to assess the
robustness of the system’s output (i.e. the complex abundances)
while accounting for (i) experimental uncertainties on the Kd
values (local sensitivity), as well as for (ii) large variations in the
input parameters (global sensitivity).

Local sensitivity analysis. The values for the dissociation con-
stants Kd have been retrieved either from direct measurements
or computational predictions, and hence are possibly error
prone. To quantify the impact of the input perturbation ΔKd
onto the model output ΔC (in %), we made use of a finite
difference approximation and calculated the ratio ΔC/ΔKd for
the individual variation of Ras-effector affinity (while keeping all
the other affinities unchanged). Figure 5a shows the predicted
sensitivities of the Ras-effector complexes in the 29 tissues
introduced earlier. One can observe that, on one hand, for small
perturbations of ±10%, most of the effectors exhibit a variation
of the output being <0.01%; on the other hand, only a few
effectors (i.e. ARAF, BRAF, RAF1, RALGDS, RGL2, and RASSF5)
consistently vary for >1% across all tissues. The other effectors,
situated in between, however, display a certain degree of
tissue-specific sensitivity. It is noteworthy that sensitivity to
local perturbations (Fig. 5a) is highly correlated to the reference
Ras binding profile (Supplementary Fig. 8) and that, ultimately,
the system is only robust for low-abundance complexes.

Global sensitivity analysis. After the local sensitivity analysis, we
conducted a more extensive exploration of the parameter space
of the binding affinities, and calculated the change in the Ras-
effector complex concentrations for parameters Kd spanning over
the biologically relevant interval from 0.04 to 39 µM (with a step of
~0.5). Hence, we could simulate the effect of larger perturbations,
from very high to very low binding affinity, and we found out that
the system is most sensitive to variations in the region of low Kd
(i.e. ≤1 µM). In other words, changes in the region of highest
affinity result in the maximum variation in the output complexes;
whereas the change in the output gets close to 0, if perturbations
happen in the region of low affinity, e.g. for Kd > 10 µM. In such a
way, we could examine how punctual forced high-affinity affects

the system’s stability. This is especially interesting for those
effectors that – in unstimulated conditions – generally have a low
affinity for Ras (like PIK3C2A, RGL3, RGL4, TIAM1, etc.), but that,
when e.g. an extracellular stimulus recruits them to the plasma
membrane, in proximity to Ras, an increase in the Ras-effector
complexes is recorded, due to the so-called piggyback mechan-
ism13. We calculated the changes in each Ras-effector complex, for
a change in the respective affinity parameter Kd and observed a
general nonlinear monotone decrease of such curves (cf. Fig. 4d),
meaning that sensitivity is highest for smaller Kd values (i.e. higher
binding affinities, 0.04–0.527 μM). In Fig. 5b we compare the
(highest) sensitivities for the different effectors and tissues (cf.
Supplementary Data 4). From those values, we can interestingly
infer that, all tissues confounded, the most sensitive effectors are
(in descending order): SNX27, ARAF, and MLLT4, that have an
associated Kd= 10, 0.07, and 3.03 µM, respectively. Furthermore,
the top four tissues mostly affected by such perturbations, all
effectors confounded, are (in descending order): lymph node,
spleen, pancreas, and adrenal gland.
Overall, it seems that drastic perturbations of the parameter Kd

can induce a diverse palette of variations in the output ΔC, which
is likely brought about by the second determinant factor: the
underlying differences in tissue-specific effector abundances.

Ras isoform-specific rewiring predicts Ras-related cancer
mutation frequencies
Having a mechanistic model of Ras-effector interactions at hand,
we next aimed to use the model to obtain further biological
insights into Ras-effector interaction rewiring in cancer. The three
isoforms of Ras oncoproteins, HRAS, KRAS, and NRAS, are
frequently mutated in a variety of human cancers. However, the
frequencies and types of mutations in the three Ras oncoproteins
differ greatly between tissues – an observation that lacks a
mechanistic explanation yet. In this regard, Li et al.14 proposed the
so called ‘sweet spot’ model, suggesting that a defined window of
pathway activation (downstream of Ras) is needed to optimally
enable tumor initiation. Outside of this narrow region, however,
signaling activation will result in growth arrest or senescence. We
looked into the relation between tumor-inducing (H-, K-, N-) Ras
mutations and – instead of the degree of Ras network activation
as per in Li et al.14, – the degree of network rewiring caused by Ras
mutants. Therefore, we calculated three ‘rewiring scores’ for each
tissue, modeling the effect of one oncogenic mutation at a time
(i.e. setting the active amount of the mutated Ras isoform to 100%,
and to 20% for the other two non-mutated ones, see Methods
section; Supplementary Data 5 reports the rewiring scores). As a
measure of overall (isoform-specific) rewiring, the sum of all Ras-
effector complexes in the mutant condition was compared to (i.e.
divided by) the sum of all Ras-effector complexes formed in the
‘wild type’ condition (where the three Ras isoforms are taken with
20% GTP load); cf. Supplementary Fig. 9. In other terms, we
defined the rewiring score as follows:

8tissue : RS�mut ¼def tot complexes�mut

tot complexesWT ; with� ¼ HRAS; KRAS;NRASf g (1)

and where RS= 1 if there is no network rewiring, RS≳ 1 for weak-
to-medium rewiring, and RS >> 1 for strong rewiring.
We next compared the isoform-specific network rewiring

scores with the isoform-specific mutation frequencies in the
different cancers (Supplementary Data 5). Figure 6a shows that,
overall, weak and strong network rewiring (scores ∼1 and � 1,
respectively) are associated to cancer to a lesser extent, while
the highest mutation frequencies are linked to intermediate
rewiring (and therefore scores). This region is nicely delimited
by the data points associated to tissues which rarely associate
to tumor – i.e. appendix, fat, heart, fallopian tube, placenta,
smooth muscle, small intestine, spleen, and tonsil (see cross
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markers in Fig. 6a) – that lie outside of the medium score range.
Therefore, this happens to be well in agreement with the
Gaussian fit displayed (black solid line), hence with the ‘sweet
spot’ model hypothesis proposed by Li et al.14. It is worth
mentioning, however, that the optimum in tumorigenesis is
mutant-dependent. Whenever we consider the three isoforms
together (Fig. 6a), the optimum is reached for RS ≃ 2.18;
whereas it decreases to 1.72, 2.15, and 1.71 for individual H-,
K-, and NRAS data, respectively (cf. Gaussian fits shown in Fig.
6a inset). This means that one must be careful when talking
about medium rewiring score as defined by some arbitrary
value \1 (since it could be as small as 1.16) and, importantly,
the optimal tumorigenesis region is not guaranteed to be
delimited by such data relative to tissues that rarely are
tumoral. Our approach is, nevertheless, remarkable as it reveals
that oncogenic mutations, which cannot be easily explained by

the underlying protein expression or mRNA levels (Supplemen-
tary Fig. 10), may be described – e.g. through our rewiring score
– as the result of a finely tuned network rewiring. Furthermore,
we considered a variation in mutants’ GTP load from 50% to
150%, which biologically can be understood as one single allele
mutation or a copy number variation. Hence, we calculated the
associated rewiring scores and fitted the data against mutation
frequency for PanRas (Fig. 6b). The comparative analysis of the
Gaussian fits reveals, not surprisingly, an increase of the
network rewiring with the number of mutants. This suggests
that the “sweet spot” model still seems a valid hypothesis, and
the rewiring value can be as small as 1.56 (for 50% mutants) and
as large as 2.57 (for 150% mutants), as illustrated in Fig. 6b.
Moreover, quantification of the rewiring scores of H-, K-, and
NRAS for varying mutant levels has been assessed for their
isoform-specific sensitivity (Supplementary Data 5 and

Fig. 5 Binding affinity sensitivity analysis. Local (a) and global (b) one-at-a-time perturbation of the parameter Kd, dissociation constant of
the Ras-effector complexes, in 29 tissues. The heatmaps show the change in the output ΔC (%) to the change of the input ΔKd spanning (a) in
the interval [Kd −10%, Kd +10%] and (b) in the interval [0.04,0.527] µM.
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Supplementary Fig. 11a). As expected, the ratio RS150/RS50 is
highest for KRAS in all the tissues but pancreas (Supplementary
Fig. 11b). This is explained by the tissue-specific abundances
that identify KRAS as the prevalent Ras isoform in all tissues
except in pancreas, where each isoform is about one third of
the total.

Stimulus-induced rewiring of the Ras network
We finally aimed at analyzing how binding profiles rewire under
different physiological (stimulated) conditions. The stimuli we
focused on are EGF (Epidermal Growth Factor) and PVLR3 (also
known as Nectin3, Nectin Cell Adhesion Molecule 3), that have a

role in growth stimulation and cell-cell adhesion, respectively.
Both their individual and combined effect on the Ras network has
been explored and simulated in three epithelial tissues, i.e. colon,
liver, and placenta. Due to the high epithelial content of these
tissues, we considered the receptors for EGF (i.e. EGFR and ErbB2)
that can interact with selected Ras effectors through the SH2
domain (namely RIN1, RIN2, RIN3, GRB7, GRB10, and GRB14),
hence inducing a potential recruitment effect on Class 6 and 12.
The receptors for PVLR3, instead, can bind to the PDZ domain of
effectors belonging to Class 4, 6, 7, 9, and 11 (i.e. MLLT4, SNX27,
TIAM1, TIAM2, RAPGEF2, RAPGEF6, RADIL, and RGS12). Such a
recruitment occurs through the known ‘piggyback mechanism’13

Fig. 6 Analysis of the relation between isoform-specific network rewiring and mutation frequencies for different mutant levels. a Data
points and fits are calculated for Ras isoform mutants with a 100% GTP load. Gaussian interpolations on both Ras isoform-specific and PanRas-
general data are traced in solid lines (respectively, blue, orange, and green, for H-, K-, and NRAS; black for all the dataset). Each fit is performed
excluding the tissues which rarely are associated with cancer (see main text); the corresponding data points are indicated with cross markers.
The parameters for the Gaussian fits, for H-, K-, N-, and PanRAS are, respectively: mean of 1.72, 2.15, 1.76, and 2.18, and standard deviation of
0.36, 0.17, 0.32, and 0.19. b Mutation frequency vs. network rewiring score for varying level of Ras isoform mutants (from 50% to 150%).
Gaussian fits are performed on PanRas data points. Parameters for the fits (from left to right) are the following – means: 1.56, 1.89, 2.18, 2.4,
2.57; standard deviations: 0.18, 0.21, 0.19, 0.22, 0.2.
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that is, upon specific stimulation, certain Ras effectors get
recruited to the membrane-binding receptors, resulting in a
localized increase in concentration (i.e. close to the membrane)
where Ras proteins are located (Fig. 7a). Consequently, assembling
of Ras-effector complexes is enhanced by a binding affinity rise of
approximately a factor 10013. The integration of these reactions
requires a few additional modeling steps detailed in Methods
section. We then compared the change in the nanomolar complex
concentrations – with and without stimulus-induced recruitment
(Supplementary Data 6) – and we measured this change as the
ratio Cstim

Cunstim (complexes in the stimulated versus the unstimulated
system), named ‘fold factor’. Assuming a 90% GTP-loaded Ras
because of the stimulation (instead of a 20% load for the
unstimulated case), we do observe an overall increase in the
number of total complexes (i.e. the fold factor defined above is
always >1, for any effector class). The highest increase, however,
occurs for the effector classes that have been targeted by either or
both the stimulations (Supplementary Data 6 and Supplementary
Figs. 12–14). For instance, we observe a minimum of ~10-fold
increase induced by EGF (on Class 6 in colon) and a maximum of
~80 folds (on Class 12 in placenta). Such selective class-specific
increase and rewiring, however, is generally less important when
induced by PVRL3 stimulus. This is probably due to a combination
of factors including the generally low number of PVRL3 receptors
in comparison to the EGF receptors (in these three tissues), the
attributed Ras-effector binding affinities, the tissue-specific
effector abundances, and surely the effectors’ exclusive competi-
tion for Ras as well.
Figure 7b–d presents a graphical visualization of the changes in

the Ras-binding profile upon stimulation in colon tissue. The
bubbles downstream of Ras correspond to the effectors grouped
per class, their size indicates the amount of Ras complexes (%) and

their vertical positioning corresponds to the ranking based on
their ‘competitivity strength’, accordingly to the portions bound to
Ras. The simplicity of such a representation has the merit to supply
a visual idea of the network rewiring that can be induced by a
stimulus, by looking at the underlying Ras-effector complex
formations. In particular, here we convey the idea that e.g. the Ras-
mediated response of cell growth initiated by EGF, is the effect of
the underlying complex formations in that specific tissue (Fig. 7b),
whose change is quantified by their relative fold factors
(Supplementary Data 6). Based on Fig. 7b, we observe, on one
hand, a consistent predominance of complexes with RAF proteins
(Class 1), that are well known for stimulating proliferation through
the MAP kinase cascade15. On the other hand, the predicted
increase in complexes with RIN and GRB proteins (Class 6 and 12,
respectively) may account for a joined contribution towards cell
proliferation through two parallel pathways. The first one – related
to RIN (and ABL), – inhibits the degradation (via macro-
pinocytosis) of EGF receptors16. This process has especially been
documented in colon17; although RIN is also known to be involved
in migration and in (normal) epithelial morphogenesis18. The
second pathway – through GRB7, GRB10, and GRB14, – is
associated to the Eph/ephrin signaling pathway which, in the
context of colon tissue, plays a role in actin cytoskeleton
remodeling as well as migration10.
Following our methodology, one can conduct an analogous

investigation on other tissues and effectors of interest and,
considering relevant stimuli, examine the influence of a certain
stimulus on the Ras signaling profile in detail. Indeed, combining
the global sensitivity analysis with the information about additional
domains present in effectors and used to induce recruitment to the
PM (Supplementary Data 7), we obtained a set of 32 effectors
(group 2) with weak binding affinity towards Ras (by means of their

Fig. 7 Stimulus-dependent mechanism of network rewiring. a Graphical representation and reaction scheme of receptor-mediated Ras-
effector interactions. Such compounds can assemble via the Ras binding domain (RBD), either directly, or through the piggyback mechanism
(receptor-mediated). This latter is triggered by external stimulation (e.g. EGF) and induces the recruitment of an effector to bind a (active)
transmembrane receptor (via a specific domain, e.g. SH2 or PDZ). As a result, the concentration of effector proteins at the membrane, that can
then assemble into a complex with Ras, is enhanced. b–d “Octopus” plots visualizing the amount of Ras-effector complexes (%) associated to
12 downstream pathways. In orange, it is represented the reference (unstimulated) Ras-binding profile (20% active Ras was assumed), which is
overlapped to the profile, in purple, perturbed with b EGF, c PVRL3, or d the combination of the two stimuli (in those three cases, as a
consequence of stimulation, 90% active Ras was considered). Stimulus-induced rewiring is the result of a change in competitivity among the
effectors, and reflects the property, for the Ras network, to be able to adapt and respond to the specific cell needs.
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RBD), which are predicted to be sufficiently recruited to Ras only
when the overall binding affinity is increased through the
recruitment to the PM via additional interactions (Fig. 8).
Noteworthy, several PI3K family members belong to this group.
At the same time, we identified 9 effectors (ARAF, BRAF, RAF1,
PIK3C2B, RALGDS, RGL2, MLLT4, RIN1, SNX27, RASSF5, and RASSF7)
that efficiently bind to Ras (group 1) either in a tissue-general or
tissue-specific way, whereas the remaining 15 effectors (classified
as group 3) are likely not true Ras effectors.

DISCUSSION
To obtain an in-depth understanding of tissue-specific network
rewiring, we employed a mechanistic quantitative modeling
approach. We characterized the tissue-specific network around
Ras oncoproteins at the very first steps of the signaling events
triggered by the complexes Ras forms with its multiple effector
proteins. One of the most important factors impeding the
generation of quantitative models is the lack of quantitative
data19. Notably, our mechanistic model incorporated high-quality
and quantitative proteomics data12, as demonstrated by the
ability to estimate the expected tissue compositions (e.g.
epithelial, muscle, neuronal tissue) using marker proteins (Supple-
mentary Note 2). We showed how tissue-specific changes in
concentrations of effectors, which compete for binding to Ras,
affect the binding profile around Ras, and presumably further
downstream through the different signaling pathways. The
effector classes RAF, RALGDS, and RASSF appear to show a
preferential interaction with Ras in most tissues (Supplementary
Note 3). Even though the top two or three classes showing a
predominant engagement in Ras binding are the same ones
across all the 29 tissues we analyzed, the cellular outcome may still
be different or even opposite (e.g. pro- versus anti-apoptotic
responses), depending on the magnitude of activity of the specific
effector pathways involved11. This is an interesting question that
needs further experimental investigations.
Besides, inputs to our model – in addition to protein

abundances – are the pair-wise binding affinities between Ras
and its effectors, that were either obtained from previous
experimentally (in vitro) determined Kd values or were estimated
from 3D structure-energy predictions10. As the binding affinity
plays a major role in driving protein–protein interactions, as

expected, it is also a critical driver in establishing a hierarchy
among the effectors competing for the same Ras proteins. The
measurement of the binding affinity presents many practical
challenges, and errors accumulate from protein purification and
biophysical characterizations of Ras with the domains of effectors
that bind to Ras (e.g. RA or RBD domains). Likewise, in silico
predicted Kd values are error prone too. Therefore, evaluating the
system’s robustness to uncertainties in the binding affinities is
important to account for both smaller (local) and larger (global)
fluctuations20. In particular, we varied one parameter (i.e. one
binding affinity) at a time, while keeping the others unchanged,
and recalculated the complex concentrations. We found that local
affinity changes generally had a minor impact on the amount of
complex formations, suggesting that competition in a small
parameter range confers robustness to the system. The conclu-
sions for global perturbations are different, as are largely
dependent on the actual affinity range. We identified indeed a
threshold, approximately at Kd= 1 µM, that divides the high- from
the low-sensitivity region (cf. Fig. 4d), that is also confirmed by the
analysis of the effector-complex relations where, for Kd’s below
(above) that threshold, slopes are larger (smaller) and are
associated to higher (lower) amount of complexes. However, the
relative tissue-specific total abundances still have a role to play in
promoting complex formation by partially compensating the low
affinity with high abundance. In fact, a low affinity effector (with
Kd > 1 µM) can still be involved in up to ~15% of the total Ras-
effector complexes, depending on its abundance (Fig. 4d inset).
Hence, our approach proved useful to understand the contribu-
tion of binding affinities and effector abundances in determining
complex formations.
In regard to the sensitivity analysis of binding affinities, another

path that we could have attempted is the factorial sensitivity
analysis, i.e. where all parameters are varied simultaneously.
Nonetheless, considering the number of parameters (56 Kd values)
and all their combinations (over a parametric space based on the
discretized interval [0.04, 39] µM, for global perturbations), the
data would likely acquire a complexity such that their interpreta-
tion would rather confuse than explain. For such reasons, the one-
at-a-time parameter variation we performed seems to us the best
option, and yet it led to very interesting insights. Undoubtedly, if
there was a criterion to assign a degree of trustability (or
uncertainty) to the experimental measurements of binding

Fig. 8 Key effectors for Ras signaling. Contribution of each of the 56 effectors to Ras binding was analyzed according to a 5%-complex-
formation threshold, both for the unstimulated and the stimulated Ras network. Each effector forming a complex for at least 5%, in the
unstimulated case, was classified in Group 1; if this happened in the stimulated case (according to the results from global sensitivity), it
entered Group 2; otherwise it fed into the last group. – Group 1: efficient Ras-effector complex formation with RBD. Group 2: efficient Ras-
effector complex formation with RBD and additional domains recruited to the plasma membrane. Group 3: inefficient Ras-effector complex
formation.
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affinities, it would be convenient to reduce the region of variability
of at least some parameters.
We have previously described the extent of which additional

domains are present in effector proteins that can mediate
recruitment to the membrane – in addition to the RBD domains10.
Examples for such domains are classical membrane-binding
domains (e.g. PH, C1, or C2 domains), or domains that can bind
to membrane proteins (e.g. SH2 domains to a phosphorylated
tyrosine kinase receptor). Here, our global affinity perturbation
sensitivity analysis was performed having in mind that this would
correspond to mimicking the effect of additional domains in
effectors that can be used for membrane recruitment upon certain
stimuli and thus greatly increase the amount of effectors at the
plasma membrane – where Ras is located. Indeed, we propose
that 32 effectors with weak binding affinity (group 2, Fig. 8) can
still significantly form complexes with Ras if they are recruited to
the PM by other means.
The great impact of the global sensitivity analysis on Ras-

effector complex formations prompted us to model the impact on
Ras-effector complexes, where (some) effectors where recruited to
the membrane with more than one domain. This is a highly
(physiologically-) relevant scenario, as cells in their normal
microenvironment are constantly experiencing a variety of stimuli
that reach out to receptors situated on the plasma membranes. To
exemplify this, we used the ‘piggyback’ modeling framework13

and demonstrated the substantial impact on the rewiring of Ras-
effector network, induced by growth factor (EGF) and cell-cell
adhesion (Nectin3) stimuli. This analysis highlights, on one hand,
the essential need of considering the microenvironment when
conducting experiments that aim to characterize protein-protein
interaction (PPI) networks, as microenvironmental cues are
expected to greatly impact the formation of protein complexes.
On the other hand, with respect to computational modeling, it
highlights the need for taking spatial concentrations and multi-
domain interactions into consideration. However, the interpreta-
tion of receptor stimulation might not be straightforward
sometimes, as, for example, the stimulation of cells using different
growth factors might cause different activation profiles/kinetics.
While we believe that our work sheds new light on the systems

properties of a signaling hub such as Ras, by exploring variation in
affinities and protein abundances, having incorporated high-
quality proteomics data, we asked ourselves “how predictive is the
model”? In other words, does the model predict further biological
insights and associations that are potentially relevant for under-
standing the role of Ras-effector signaling in different tissues? We
did not find any apparent relation between specific Ras-effector
complexes and tissue turnover or association to cancer (Supple-
mentary Data 8). The tissue-specific Ras-effector complexes also
could not explain any patterns in tissue composition (e.g. fraction
of epithelial, adipose, neuronal tissue). However, the predicted
overall change in rewiring of Ras-effector complexes in cancer,
which we quantified by means of Ras isoform-specific network
rewiring scores, showed an interesting association to mutation
frequencies, which supports the so called ‘sweet spot’ hypothesis
of Ras-driven cancers14. This hypothesis suggests greater tumor
initiation properties for intermediate pathway rewiring as opposed
too low or too high pathway activation, which e.g. can induce
apoptosis21 or senescence22.
Network-centric approaches are then both critical and promis-

ing for understanding signaling properties and outcomes.
Computational modeling suggests a crucial role for the micro-
environment (conditions/stimuli/growth factors) in modulating
Ras-effector rewiring. An important step will be to validate this
with experimental approaches able to assay signaling complexes
as a result of different inputs/conditions; thus, establish and
analyze the robustness of such connections, and ultimately
observe, or predict, the cellular response and the physiological
(phenotypic) output.

METHODS
The mathematical model
The system of the (oncogenic) Ras proteins and their direct interactors is
modeled according to the classic ligand-receptor kinetics with the
assumption of conservation of mass, from which we derived a system of
ordinary differential equations and calculated the steady states, as
described previously in Ibáňez Gaspar et al.10. The set of reactions is
expressed as follows:

Rþ Ei $ðki ;k�iÞ
REi ; i ¼ 1; :::; 56 (2)

where R denotes Ras, Ei its ith effector, and REi the i th Ras-effector
complex, that assembles at a rate ki and disassembles at a rate k−i. The
affinity constant is then defined as the ratio of dissociation over association
rates, i.e.

Kdi ¼
k�i

ki
(3)

.
Moreover, we consider the case where the interaction with Ras is

mediated – and enhanced – by a piggyback recruitment to the plasma
membrane of some effectors (as described in Kholodenko et al.13). Say
effector Ej is recruited and binds to a receptor Y before forming a final
complex with Ras, RYEj (for some j ∈ {1,…, 56}). In this case, an additional
set of reactions has to be included in the model:

Y þ Ej $ðk0j ;k0�jÞ
YEj (4)

Y þ REj $ðhj ;h�jÞ
YEj (5)

Rþ YEj $lj ;l�jð Þ
RYEj (6)

where YEj and REj are the complexes receptor-effector and Ras-effector,
respectively. Finally, we include the equations for conservation of mass for
Ras R, receptor Y and effectors Ei:

RT ¼ Rþ
X

i
REi þ

X
j
RYEj (7)

YT ¼ Y þ
X

j
YEj þ

X
j
RYEj (8)

EiT ¼ Ei þ REi þ YEi þ RYEi ; i ¼ 1; :::; 56 (9)

with j ∈ {1,…, 56} and YEi= REi= 0 for all i ≠ j, i.e. the effectors that do not
respond to the recruitment induced by a given stimulus or condition. More
generally, if more receptors are stimulated at the same time, we simply
have to add the corresponding reactions and conservation equations,
hence derive the associated differential equations.

Model parameters
Inputs to the model are the (tissue-specific) protein abundances (data from
mass spectrometry12), and the binding affinities for Ras in complex with
each effector (similar as estimated in Ibáňez Gaspar et al.10). The outputs
are the Ras- effector complexes (whether a membrane receptor is involved
or not). Supplementary Data 1 contains those values used for simulation.
Quantification of binding affinities is done through measurement of the
dissociation constant Kd, though is practically a difficult task, prone to error
that can accumulate at different steps during the whole procedure.
Predictions from structural models have become more popular, as well as
came to complement former approaches based on experimental
techniques. Nonetheless, many limitations persist and the Kd values
retrieved cannot be considered precise23. Therefore, in the section of
binding affinity sensitivity analysis, we present the results on the effect of
perturbations of such affinities over the system’s robustness.

System’s variables and parameters
The list of the substrates considered in this study are the following. Ras
proteins: HRAS, KRAS, NRAS. Effectors (grouped into 12 pathway-related
classes): (1) ARAF, BRAF, RAF1; (2) PIK3CA, PIK3CB, PIK3CD, PIK3CG,
PIK3C2B, PIK3C2G, PIK3C2A; (3) RALGDS, RGL1, RGL2, RGL3, RGL4; (4)
MLLT4; (5) PLCE1; (6) RIN1, RIN2, RIN3, SNX27; (7) TIAM1, TIAM2,
ARHGAP20, ARAP1, ARAP2, ARAP3, DGKQ; (8) RASSF1, RASSF10, RASSF2,
RASSF3, RASSF4, RASSF5, RASSF6, RASSF7, RASSF8, RASSF9; (9) RAPGEF2,
RAPGEF3, RAPGEF4, RAPGEF5, RAPGEF6, KRIT1, RASIP1, RADIL, APBB1IP,
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RAPH1; (10) MYO9A, MYO9B, MYO10; (11) RGS12, RGS14; and (12) GRB7,
GRB10, GRB14. The (tissue-specific) concentrations of the proteins above
mentioned have been experimentally measured or estimated from (weak)
correlations between mRNA and protein (see Supplementary Data 1 and
Supplementary Note 1 for details).

Relation between binding affinities, effector abundances, and
complex formations
In our dataset, we have a total of 56 effectors with the corresponding
affinity for Ras, whose values (measured by the dissociation constant Kd)
are not necessarily unique. For instance, from our dataset, while ARAF is
the only effector with a Kd= 0.07 µM, there are multiple effectors with Kd
= 7.5 µM (i.e. PIK3CD, ARAP1, RADIL, and MYO9A); see Supplementary Data
1. Therefore, we first examined the Kd values that are associated with
multiple effectors and we observed that the relation between effector
abundances and complexes (in percentage) is linear, independently ofthe
tissue (Supplementary Notes 4 and 5). Hence, we assumed this should hold
true also for the excluded set of points, corresponding to single effectors,
i.e. with a unique Kd.
On one hand, we then computed the linear fits for the various effectors

with similar Kd values (e.g. within the interval [0.04,0.09] µM, or [0.21,1] µM,
etc.) and analyzed the slopes, in terms of indicators for system’s
robustness. On the other hand, for each of these same single data, we
added the point (0,0) and calculated the respective line passing through
the origin (unless the complex amount was too small, e.g. <0.001%) –
meaning that we reasonably assumed that a specific Ras-effector complex
cannot be formed if that same effector is absent. From the obtained linear
equations, on the one hand, we interpolated a surface on the 3D
coordinates represented by affinities, abundances and complexes (Sup-
plementary Note 5, the experimental points being in black and the linear
fits in light gray), thus we visualized the respective 2D projections, colored
in terms of the gradient of the excluded variable. In this way, we showed
that the optimal conditions for highest complex formation derive from a
combination of high protein abundance (>70 nM approximately) and –
even more importantly – of high affinity (e.g. Kd < 1 µM, cf. Fig. 4e).
Moreover, the complexes appear to increase linearly (then saturating) with
the effector abundance, while they decrease exponentially with the Kd
value (Fig. 4e). This suggests evidence toward the efficacy of those
biochemical mechanisms that act as enhancers of the binding interactions,
being particularly useful for inducing numerous cellular responses, e.g.
through a finely tuned recruitment of proteins that are gateway of the
signal transmission (see Stimulus-induced rewiring in Results).

Stimulus-induced rewiring
As per the receptors activated by EGF, we used the sum of the
concentrations of receptors EGFR and ErbB2 (in nM units, converted from
the tissue-specific values measured by mass spectrometry in Wang et al.12,
as explained in Ibáňez Gaspar et al.10); similarly for the abundance of
receptors PVLR3. We then set the receptor-effector binding affinity Kd to
1 µM and modeled the interaction with the SH2 or PDZ domain with the
additional reactions above-mentioned (see Mathematical model in
Methods section).
Hence, we calculated the steady states and obtained the amount of

complexes (in nM and percentage) for the stimulated system with either
or both EGF and PVRL3 recruitments considered. Moreover, we assumed
that, because of the stimulations, 90% of Ras will be in the GTP
bound state.

Quantitative analysis of tissue sub-types
For each basic tissue type (epithelial, muscle, adipose, neuronal,
connective, and lymphoid) a set of five to ten well-described marker
proteins were obtained from different sources:

● Epithelial: https://www.rndsystems.com/research-area/epithelial-cell-
markers-and-intracellular-molecules.

● Muscle: https://www.rndsystems.com/research-area/myogenesis-markers.
● Adipose: https://www.proteinatlas.org/humanproteome/tissue/adipose

+tissue.
● Neuronal: https://resources.rndsystems.com/images/site/rnd-systems-

neural-markers-br2.pdf.
● Connective: Collagens and https://www.novusbio.com/research-areas/

cellular-markers/fibroblast-cell-markers.html.
● Lymphoid: CD45 (PTPRC), CD68, and CD19.

For each of the marker protein, the expression levels were obtained for
all 29 tissues from Wang et al.12. The top three expressed proteins (across
29 tissues) were averaged for each cell type. Percentages of epithelial,
muscle, adipose, neuronal, connective, and lymphoid tissue content were
calculated based on the average top three expressed marker proteins
(Supplementary Note 2).

Analysis of RAS cancer mutation frequencies
HRAS, KRAS, and NRAS mutation frequencies in cancers of different
primary tissue sites were obtained from the cBioPortal database (https://
www.cbioportal.org/)24. For each primary site, the respective cancer studies
(either one or two datasets per tissue type) were selected and datasets
containing HRAS, KRAS, or NRAS mutations were queried24. The following
studies available on the cBioPortal database24 were used: studies “Adenoid
Cystic Carcinoma Project (J Clin Invest 2019)”25 and “Adrenocortical
Carcinoma (TCGA, PanCancer Atlas)”26 for “Adrenal gland”; studies “Merged
Cohort of LGG and GBM (TCGA, Cell 2016)”27 and “Glioblastoma (TCGA,
Nature 2008)”28 for “Brain”; studies “Metastatic Colorectal Cancer (MSKCC,
Cancer Cell 2018)”29 and “Colorectal Adenocarcinoma (TCGA, PanCancer
Atlas)”26 for “Colon”; study “Ampullary Carcinoma (Baylor College of
Medicine, Cell Reports 2016)”30 for “Duodenum”; studies “Uterine Corpus
Endometrial Carcinoma (TCGA, PanCancer Atlas)”26 and “Uterine Corpus
Endometrial Carcinoma (TCGA, Nature 2013)”31 for “Endometrium”; studies
“Esophageal Carcinoma (TCGA, Nature 2017)”32 and “Metastatic Esopha-
gogastric Cancer (MSKCC, Cancer Discovery 2017)”33 for “Esophagus”;
study “Gallbladder Cancer (MSK, Cancer 2018)”34 for “Gallbladder”; studies
“Kidney Renal Clear Cell Carcinoma (TCGA, Firehose Legacy)”26 and “Kidney
Renal Clear Cell Carcinoma (TCGA, PanCancer Atlas)”26 for “Kidney”; study
“Liver Hepatocellular Carcinoma (AMC, Hepatology 2014)”35 for “Liver”;
study “Non-Small Cell Lung Cancer (MSKCC, J Clin Oncol 2018)”36 for
“Lung”; study “Pediatric Acute Lymphoid Leukemia - Phase II (TARGET,
2018)”24 for “Lymph node”; study “Ovarian Serous Cystadenocarcinoma
(TCGA, PanCancer Atlas)”26 for “Ovary”; studies “Pancreatic Adenocarci-
noma (QCMG, Nature 2016)”37 and “Pancreatic Adenocarcinoma (TCGA,
PanCancer Atlas)”26 for “Pancreas”; study “Prostate Cancer (DKFZ, Cancer
Cell 2018)”38 for “Prostate”; study “Rectal Cancer (MSK,Nature Medicine
2019)”24 for “Rectum”; studies “Adenoid Cystic Carcinoma (MDA, Clin
Cancer Res 2015)”39 and “Adenoid Cystic Carcinoma (MSKCC, Nat Genet
2013)”40 for “Salivary gland”; study “Stomach Adenocarcinoma (TCGA,
Nature 2014)”41 for “Stomach”; study “Germ Cell Tumors (MSKCC, J Clin
Oncol 2016)”42 for “Testis”; study “Thyroid Carcinoma (TCGA, PanCancer
Atlas)”26 for “Thyroid”; and study “Bladder Cancer (TCGA, Cell 2017)”26 for
“Urinary bladder”.

General association of tissues to cancer
Cancer frequencies and incidences per tissue of origin were obtained from
the NIH “Cancer Stat Facts: Cancer of Any Site” database (https://seer.
cancer.gov/statfacts/html/all.html). Tissues considered to be rarely asso-
ciated with cancer were Appendix (carcinoid tumor), Fat (liposarcoma),
Heart (primary cardiac sarcomas), Placenta (choriocarcinoma), and Smooth
muscle (leiomyosarcoma).

Tissue turnover
Tissue turnover times were obtained from the Bionumbers database
(http://book.bionumbers.org/how-quickly-do-different-cells-in-the-body-
replace-themselves/) and42–52. Tissues were grouped into those that
turnover fast (days to less than a week; colon, duodenum, endometrium,
esophagus, rectum, small intestine, and stomach), slow (weeks to a year;
lung, ovary, prostate, salivary gland, testis, thyroid, and urinary bladder),
never (lifetime; brain, heart, and smooth muscle), and those that can turn
over if needed (adrenal gland, kidney, liver, pancreas, tonsil; and urinary
bladder – uroepithelium has high regenerative capacity in response to
damage53).
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