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Inference of phenotype-relevant transcriptional regulatory
networks elucidates cancer type-specific regulatory
mechanisms in a pan-cancer study
Amin Emad 1✉ and Saurabh Sinha2,3,4✉

Reconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs
involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic
(or clinical) properties of the samples. Therefore, they may confound regulatory mechanisms that are specifically related to a
phenotypic property with more general mechanisms underlying the full complement of the analyzed samples. In this study, we
develop a method called InPheRNo to identify “phenotype-relevant” TRNs. This method is based on a probabilistic graphical model
that models the simultaneous effects of multiple transcription factors (TFs) on their target genes and the statistical relationship
between the target genes’ expression and the phenotype. Extensive comparison of InPheRNo with related approaches using
primary tumor samples of 18 cancer types from The Cancer Genome Atlas reveals that InPheRNo can accurately reconstruct cancer
type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis reveals that the activity level of TFs with many target
genes could distinguish patients with poor prognosis from those with better prognosis.
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INTRODUCTION
Gene expression programs are responsible for many biological
processes in a cell and extensive efforts have been devoted to
elucidating these programs in healthy and disease states.
Transcriptional regulatory networks (TRNs) have proven to be a
useful framework for describing expression programs. A TRN is a
network with transcription factors (TFs) and genes as nodes where
a TF–gene edge represents a regulatory effect of the TF on the
gene. TRNs are usually constructed from transcriptomic data
across many conditions, alone or in combination with other data
types1,2. Here, we are especially interested in methods for TRN
reconstruction from expression data alone, owing to their broad
applicability. The majority of such methods are agnostic of any
phenotypic annotations of sampled conditions (e.g., case versus
control status in disease studies, or drug sensitivity of cell lines in
pharmacogenomics studies), looking only to capture correlations
between TF and gene expression values in those conditions3–7. As
a result, many edges in the reconstructed networks may not be
particularly relevant to the phenotype being investigated by
expression profiling. To take a simple example, consider the two
scenarios of gene expression relationship between TF and gene
shown in Fig. 1a and 1b. In both cases, a linear relationship is
evident and is often interpreted as evidence for a TF–gene edge in
the TRN. However, it is also apparent that the TF–gene relationship
is potentially more related to the phenotypic class in the example
of Fig. 1b than in the other example (Fig. 1a)—not only are the TF
and gene expression levels correlated, but also the gene’s
expression is clearly different between the classes in Fig. 1b,
suggesting that the TF’s regulatory influence may underlie the
expression variation between classes. A variant of the example of
Fig. 1b is shown in Fig. 1c, which also illustrates a TF–gene
relationship potentially related to the phenotypic distinction

among samples. In this example, the expression levels of TF and
gene are only weakly correlated in each phenotypic class (case or
control) separately, possibly owing to noisy data and small sample
sizes. Thus, methods that account for phenotypic class information
by separately examining samples of each class may not detect this
TF–gene relationship. However, when all the samples are
considered simultaneously, the TF–gene relationship as well as
its phenotype relevance becomes apparent. We believe there is a
clear need for methods of TRN reconstruction that are geared
towards detecting phenotype-relevant TF–gene relationships such
as those idealized in Fig. 1b and 1c. Such methods will draw our
attention to regulatory networks that control the variation of
phenotypic scores/labels among different samples (e.g., case vs.
control, subtypes of cancer, IC50 drug response values). In our
definition of “phenotype-relevant TRNs”, a (TF, gene) edge implies
evidence of regulation of the gene by the TF across all samples as
well as evidence of association between the expression of the
gene and the phenotypic label or score. We use the term
phenotypic label/score to mean a priori known label or score
assigned to each sample; for example, a phenotypic label could
indicate whether the sample corresponds to case or control
subject, and a phenotypic score could be the IC50 drug response
value of a cell line.
Previous methods for including phenotypic information in TRN

reconstruction fall under three major categories. The first
approach is to restrict the analysis to samples of the same
phenotypic label (e.g., a tissue type8,9 or a cancer type10,11).
Although this approach, henceforth called “context-restricted”
TRN reconstruction (Supplementary Fig. 1a in Supplementary
Information) may identify important regulatory mechanisms
relevant to a context, it does not solve the problem mentioned
above—to reconstruct TRNs that may be responsible for the
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variation of the phenotypic values (or labels) of different samples.
“Differential network analysis” or “DiNA” (Supplementary Fig. 1b in
Supplementary Information) is another approach to relate TRNs to
binary phenotypic labels. Here, two context-restricted networks
are reconstructed based on samples from each of two phenotypic
classes (e.g., case versus control), and a differential network is
formed by comparing these two networks12–16. In focusing on the
differential topology of regulatory networks, such methods may
fail to identify important phenotype-relevant regulatory edges. For
example, Fig. 1b and 1c illustrate TF–gene relationships that
qualify as being “phenotype-relevant” by our definition above and
perturbations that abolish them might affect the phenotype;
however, such pairs are discarded by DiNA. The reason is that
DiNA seeks TF–gene expression correlations that are present in
one class exclusively (Supplementary Fig. 1b), whereas in our
definition of phenotype-relevant relationships these correlations
span all samples and it is the gene’s expression that differs
between phenotypic classes. In addition, DiNA methods cannot be
used with continuous-valued phenotypes, and become cumber-
some even for categorical phenotypes with more than two
categories. A third class of methods is that of “context-specific”
network analysis (Supplementary Fig. 1c in Supplementary
Information), in which genes associated with phenotype variation
are identified, e.g., by differential expression analysis, and then a

network is constructed by relating the expression of these genes
to the expression of TFs17–19. In principle, such methods have the
ability to detect the phenotype-relevant TF–gene relationships of
Fig. 1b and 1c. However, one major disadvantage of this approach
is that the phenotype relevance of genes is simply used as a
filtering criterion based on arbitrary thresholds and its strength is
ignored in TRN reconstruction. Our approach, in contrast, seeks to
incorporate the extent of phenotype relevance of a gene, e.g., its
differential expression between samples of different classes or its
expression correlation with phenotypic scores, directly into the
strength of TF–gene edges in the TRN. Finally, we note that
methods that directly identify genes or TFs associated with a
phenotype (including “master regulator analysis” or “MRA”)20–23

serve a different purpose and are not the focus of this study as
they do not directly address the problem of reconstructing
phenotype-relevant TRNs. In summary, TRNs are a highly useful
and widely popular construct for characterizing gene expression
programs underlying phenotypes, yet there is an urgent need for
methods that incorporate phenotypic information directly into
TRN reconstruction.
We report here a new computational method called InPheRNo

(Inference of Phenotype-relevant Regulatory Networks) to recon-
struct TRNs that help explain the variation in the phenotypic
labels/scores of samples. It models the simultaneous effect of

Fig. 1 The phenotype-relevant TRN concept and an overview of the InPheRNo framework. a The scatter plot shows a scenario in which the
gene–TF expression correlation (across different samples) is independent of the phenotype variation. b, c The scatter plots show two scenarios
in which the gene–TF expression correlation is phenotype-relevant. d The inputs and outputs to InPheRNo are shown. The inputs include a
matrix of gene expression for all genes (including TF genes), a list of TFs and a vector containing p value of gene–phenotype associations,
denoted as p. The list of TFs is used to divide the expression matrix into a matrix X of TF expressions and a matrix Y of gene expressions. As the
output InPheRNo provides a phenotype-relevant TRN. e An overview of the InPheRNo pipeline is shown. First, the expression of genes and TFs
are used in an Elastic Net algorithm to reduce the number of candidate TFs for each gene. Then, the pseudo p value of association between TF
i and gene j (denoted by πi,j) is estimated using an OLS regression model that relates the expression of gene j to the expression ofmj candidate
TFs. In addition, the p values of gene–phenotype associations (denoted by Pj) are assumed to be estimated and provided through p for n
genes. These sets of p values are used as observed variables in a probabilistic graphical model to learn posterior probabilities for the (TF, gene,
phenotype) triplets that a TF regulates a gene to affect the phenotype. These posterior probabilities are used to form the phenotype-
relevant TRN.

A. Emad and S. Sinha

2

npj Systems Biology and Applications (2021)     9 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



multiple TFs on their targets, as well as the association of target
genes’ expression with samples’ phenotypic labels/scores. Its
rigorous PGM can be used with categorical labels or continuous-
valued phenotypic scores, and also provides a confidence score
for the identified TF–gene regulatory edges. We applied InPheRNo
to data from The Cancer Genome Atlas (TCGA)24 pertaining to 18
different cancer types, to reconstruct TRNs that differentiate one
cancer type from other types of cancer. We also compared these
TRNs to tissue-specific TRNs reconstructed by analysis of expres-
sion data from the Genotype-Tissue Expression Project (GTEx)
project25, in order to make the former more specific to the cancer
type. The resulting cancer type-relevant TRNs identified regulatory
mechanisms involved in the development and progress of each
cancer type and discerned previously known as well as novel
cancer driver TFs that could be used as potential drug targets. In
addition, survival analysis revealed that a gene expression
signature formed using these TFs and their target genes can
accurately distinguish between patients with poor prognosis and
those with good prognosis for the majority of the cancer types.
Finally, we applied InPheRNo to identify PAM5026 subtype-
relevant TRNs in breast cancer patients (data obtained from
TCGA) to show-case the application of this framework to non-
binary phenotypic labels. We demonstrated the improved
accuracy of InPheRNo-derived networks by comparing them to
several baseline methods with respect to driver TF discovery and
survival prediction. As transcriptomic profiling becomes a
standard tool in the study of phenotypic variation among
individuals27, the new tool presented here will help distill the
associated high-dimensional information into specific regulatory
mechanisms underlying that variation.

RESULTS
A new probabilistic method for phenotype-relevant TRN
reconstruction
We developed a computational method called InPheRNo to
reconstruct phenotype-relevant TRNs by analyzing gene expres-
sion profiles of a set of samples along with associated phenotypic
scores or labels of those samples. As noted in Introduction (also
Fig. 1a–c), the key idea is to combine the evidence of TF–gene co-
expression with evidence of the target gene’s association with
phenotypic information, thereby reporting TF–gene regulatory
relationships more relevant to the transcriptomic differences
among phenotypic classes. Motivated by recent studies that have
used summary statistics in place of original data to improve the
computational efficiency and generalizability of the model to a
wide range of data types23,28–32, InPheRNo also utilizes summary
statistics (p values) to model these evidence, discussed above. The
method is outlined in Fig. 1d and 1e and explained in Methods.
We outline its main steps here.
Given the expression of genes and TFs across all samples, first a

regression model is used to predict each gene’s expression as a
weighted sum of TF expression values. This step uses the Elastic
Net regression model33, which automatically selects a small
number of candidate TFs regulating each gene. Next, an ordinary
least squares (OLS) regression model is used to obtain a pseudo p
value, reflecting the statistical relationship between each TF and
that gene, in terms of their expression variation across all samples
(see Supplementary Methods for reasons behind this two-step
procedure to obtain pseudo p values). Note that both of the
previous steps use multivariable regression techniques to relate a
gene’s expression to the expression of a combination of TFs rather
than one TF at a time. Separately, a p value of association between
the gene’s expression and the phenotypic score is obtained using
a suitable statistical test (the choice of which depends on the
phenotypic variable, the data distribution, and potential con-
founders). This step allows for different types of phenotypic

scores, including categorical labels with two or more values as well
as numeric scores, to be incorporated into the method since the
gene–phenotype relationship only needs to be encapsulated in a
p value.
The two sets of p values from the above steps—one capturing

TF–gene regulatory relationships and the other gene–phenotype
associations—are then used as observed variables in a probabil-
istic graphical model (PGM) (and particularly a Bayesian Net-
work34). The PGM has a latent Boolean variable for each TF–gene
pair, indicating whether the TF regulates the gene so as to affect
the phenotype. If this variable is “true”, the model expects to see
evidence of the TF–gene pair being co-expressed and the gene’s
expression being statistically associated with the phenotypic
score. Posterior probabilities for these latent variables are then
used to predict the edges of a phenotype-relevant TRN, and are
estimated using Markov chain Monte Carlo (MCMC) algorithm (see
Methods for more details).
It is worth mentioning that InPheRNo considers the simulta-

neous effect of multiple TFs on each gene in multiple steps of its
pipeline. These include (1) utilization of a multivariable Elastic Net
model to relate the expression of multiple TFs to the expression of
the target gene in the TF selection step, (2) obtaining a pseudo
p value for each TF–gene pair using a multivariable OLS model,
which includes the expression of all selected TFs, and (3) the
design of the PGM such that for each gene it models the
relationship of observed data to the latent variables representing
all selected TFs simultaneously.

InPheRNo identifies cancer type-relevant TRNs in a pan-cancer
study
We applied InPheRNo to the gene expression profiles of 6357
primary tumor samples corresponding to 18 different cancer types
from TCGA, downloaded from the Genomic Data Commons35 (see
Table 1). For each cancer type, InPheRNo was used to reconstruct
TRNs relevant specifically to that cancer type (as compared with all
other types), setting the phenotypic label of each sample to be a
Boolean variable representing whether the sample is from that

Table 1. Name, abbreviation, and number of samples for each cancer
type used in this study.

Name of the cancer Abbreviation Number of
samples

Adrenocortical carcinoma ACC 79

Brain lower grade glioma LGG 511

Breast invasive carcinoma BRCA 1091

Colon adenocarcinoma COAD 456

Esophageal carcinoma ESCA 161

Glioblastoma multiforme GBM 154

Liver hepatocellular carcinoma LIHC 371

Lung adenocarcinoma LUAD 513

Lung squamous cell carcinoma LUSC 501

Ovarian serous cystadenocarcinoma OV 374

Pancreatic adenocarcinoma PAAD 177

Pheochromocytoma and
paraganglioma

PCPG 178

Prostate adenocarcinoma PRAD 495

Rectum adenocarcinoma READ 166

Skin cutaneous melanoma SKCM 103

Stomach adenocarcinoma STAD 375

Testicular germ cell tumors TGCT 150

Thyroid carcinoma THCA 502
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cancer type or not, and using a two-sided t test to obtain
gene–phenotype association p values. The cancer type-relevant
TRNs thus obtained are provided in Supplementary Data 1 and the
extent of shared regulatory edges between each pair of cancer
types is shown in Fig. 2a. By and large, the TRNs are noted as
being specific to each cancer type (average Jaccard coefficient of
shared edges is at a relatively low value of 0.12), though the pairs
(ACC, PCPG), (LGG, GBM), (LUAD, LUSC), and (COAD, READ) exhibit
relatively large sharing of edges (average ratio of shared edges=
0.54, 0.73, 0.50, 0.82, respectively), partly owing to their shared
tissues of origin. Also noticeable is the high degree of edge-
sharing among gastro-intestinal cancers: STAD, COAD, READ, and
ESCA (average ratio of shared edges= 0.36).
Owing to differences in tissues of origin of the studied cancer

types, some of the edges identified as relevant to one cancer
compared to others may reflect these tissue differences and not
the cancers themselves. To address this and to better characterize
cancer type-specific mechanisms, we additionally applied
InPheRNo to gene expression profiles of 4388 normal tissue
samples in the GTEx data portal25, corresponding to the 18 cancer
types above (Supplementary Table 1 in Supplementary Informa-
tion). The identified tissue-relevant TRNs (Supplementary Data 2)
should enable us to distinguish between regulatory mechanisms
in a normal tissue from regulatory mechanisms involved in a
cancer, originating from that tissue, a direction we pursue later.
As a preliminary assessment of their accuracy, we sought to

determine whether the identified cancer type-relevant TRN edges
are enriched in independently identified TF–gene relationships
using ChIP-seq data. Although the TRNs derived above are meant
to be phenotype-relevant, they reflect regulatory relationships and
are thus expected to be enriched in globally characterized
regulatory edges, albeit to different degrees depending on the
specific cancer type. We therefore used global TRNs (i.e., not
cancer type-specific) reconstructed from ChIP-seq profiles of 166
TFs in 43 different cell lines from the ENCODE project, using the
TREG method36 (see Methods for details). Figure 2b, Supplemen-
tary Fig. 2 (in Supplementary Information), and Supplementary
Data 3 show the extent to which the cancer type-relevant TRN
edges identified using InPheRNo are enriched for global TRN
edges. We observed significant enrichments for every cancer type
(using hypergeometric test, randomized degree-preserving test,
and randomized degree distribution-preserving test), but to

different degrees. Similarly, for all tissues except one, tissue-
relevant regulatory edges obtained by applying InPheRNo on
GTEx data are enriched in global regulatory edges (Supplementary
Fig. 2 in Supplementary Information and Supplementary Data 3).
We noted a significant correlation between different cancer

types and their corresponding normal tissues in terms of their
enrichment for global TRN edges (Spearman’s rank correlation=
0.63, p= 4.8E-3 for the results obtained using the hypergeometric
test). This suggests that some of the regulatory mechanisms
identified from the TCGA data reflect the differences in regulatory
mechanisms of the tissues of origin. To correct for this
confounding effect, for each cancer we removed all the edges
that were also present in the TRN identified for its corresponding
normal tissue. In doing so, we augmented our approach of
phenotype-relevant TRN reconstruction with the core idea of
“differential network analysis” mentioned above, in the hope of
achieving increased specificity to the cancer type. (Note that since
the majority of cancer types considered in this study correspond
to different tissue types, typical methods of removing confoun-
ders could not be used here). Depending on the cancer type, this
procedure removed 7.0% (for READ) to 10.3% (for LUSC) of the
identified edges (Supplementary Fig. 3 in Supplementary Informa-
tion). The number of shared edges among cancer type-relevant
TRNs of cancers originating from the same tissue (related to Fig.
2a) reduced upon correcting the confounding effect of the tissue
of origin. However, this reduction was relatively small: 12.8% for
LUSC and LUAD, 10.9% for GBM and LGG, 9.6% for ACC and PCPG,
and 8.5% for COAD and READ. This suggests that the relatively
high degree of edge-sharing among these pairs of cancers (Fig.
2b) cannot be simply explained by the regulatory mechanisms of
their normal tissue of origin. The analyses reported in the rest of
the manuscript correspond to these “tissue-corrected” cancer
type-relevant TRNs (available in Supplementary Data 4).

InPheRNo identifies breast cancer-relevant “driver” TFs,
improving upon related methods
It is challenging to assess the accuracy and cancer-relevance of
predicted TF–gene relationships on a global scale. However, TFs
with many target genes in our cancer type-relevant TRNs are
expected to play important roles in different traits of cancer, and
existing databases of cancer drivers may therefore help us

Fig. 2 Characteristics of the cancer-relevant regulatory edges identified using TCGA data on 18 cancer types. a The heatmap shows the
ratio of the shared regulatory edges between a pair of cancers to the total number of edges. More precisely, for any two cancers Ci and Cj, the
value in cell i, j shows the number of shared regulatory edges divided by the number of regulatory edges in Ci. b The overlap between
InPheRNo-identified TRNs for different cancers and global TRNs identified by TREG using ChIP-seq data. The bars represent −log10(p) of
enrichment (hypergeometric test), truncated at 1E-16. The green line shows the threshold alpha = 0.05 and the symbol * is used for cases in
which p < 1E-16. The combined p value is calculated using Fisher’s method. For the enrichment analysis using randomized degree-preserving
networks and randomized degree distribution-preserving networks see Supplementary Data 3.
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evaluate the TRNs. Accordingly, we examined the concordance
between key TFs identified in the cancer type-relevant TRNs above
and known driver TFs for that cancer as cataloged in the
DriverDBv237 and IntOGen38 databases. We focused on breast
cancer (BRCA) given the relatively extensive knowledge of driver
genes for it. We examined the BRCA-relevant TRN reconstructed
using InPheRNo (Fig. 3a) and identified 15 TFs with most targets
(Table 2) in this network. This set included six BRCA-driver TFs
(RUNX1, GATA3, MYB, FOXA1, ZBTB41, PRRX1) according to
DriverDBv237 (p= 1.2E-4, hypergeometric test) and four (RUNX1,
GATA3, MYB, FOXA1) according to IntOGen38 (p= 2.3E-4, hyper-
geometric test). To assess if the InPheRNo TRNs exhibit an
improved ability to reveal driver TFs, we repeated the above
evaluations with results from six related approaches (“baselines”,
see Methods and Supplementary Fig. 1 for details), as outlined
below.
In the first baseline, we constructed a “context-restricted” TRN

using only breast cancer samples, mimicking similar approaches in
the literature8–11. We modeled each gene’s expression in terms of
the expression values of all TFs, via multivariable regression. We
adopted the Elastic Net algorithm for this purpose, as in the first
step of InPheRNo, obtaining a small number of TFs regulating
each gene (see Methods), and ranked TFs by the number of target
genes. The top 15 TFs identified using this approach included no
BRCA-driver TF according to either of the two databases. In the
second baseline, we used DiNA12–16 to identify edges that are
present in the TRN reconstructed using BRCA samples and not
present in the TRN reconstructed using samples of other cancers
pooled together (see Methods). (TRN reconstruction relied on the

Elastic Net algorithm, exactly as in the first baseline.) The set of 15
TFs with the greatest number of target genes using this approach
contained only one known BRCA-driver TF according to
DriverDBv2 and none according to IntOGen. The third baseline
was a “context-specific” TRN17–19 reconstructed by relating the
expression of differentially expressed genes to the expression of
TFs (see Methods). The set of top 15 TFs identified using this
approach did not include any BRCA-driver TFs according to any of
the two databases. The fourth baseline involved identifying TFs
whose expression had the most significant difference between
samples of the breast cancer compared with samples of other
cancers (Welch’s t test). (That is, no TRN reconstruction was
performed.) The set of 15 TFs identified using this approach did
not contain any driver TFs according to IntOGen or DriverDBv2.
For the fifth baseline, we used the MRA tool20,39 to identify 15
master regulators of BRCA. This analysis identified only one driver
TF according to DriverDBv2 and none according to IntOGen. For
the sixth baseline, we used an approach based on Fisher’s method
to combine the p value of association between a gene’s
expression and the phenotype with the p value of Pearson’s
correlation between expression of that gene and the expression of
a TF (see Methods for details). This method, which can be
considered a simplified version of InPheRNo, has the benefit of
reconstructing phenotype-relevant co-expression networks effi-
ciently, but does not allow us to simultaneously model the effect
of multiple TFs on each gene. In spite of this shortcoming, this
method, henceforth called “simplified-InPheRNo”, outperformed
all other methods except for InPheRNo in identifying BRCA-driver
TFs: the list of 15 TFs with the greatest number of target genes

Fig. 3 Driver TFs in cancer type-relevant TRNs reconstructed by InPheRNo. a A subnetwork of the BRCA-relevant TRN. The depicted
subnetwork consists of the 15 TFs (red) with the most target genes, as well as genes (green) that are regulated by at least three of these TFs.
Genes or TFs with a blue border represent BRCA drivers according to IntOGen and DriverDBv2. b–c Cancer specificity of InPheRNo in
identifying driver TFs (using IntOGen) compared to the context-restricted network analysis (for results corresponding to other methods see
Supplementary Figs. 4–8). For each cancer type, 100 TFs with the most number of identified target genes are selected and are compared with
the set of driver TFs of that cancer that are drivers of at most ns other cancers. Color green shows the total number of cancer-specific driver TFs
in the IntOGen database, color blue corresponds to the number of cancer-specific driver TFs identified by InPheRNo and red represents driver
TFs identified using context-restricted network analysis. Only cancers that had more than one known cancer-specific driver TF are used for the
analysis. The p values are calculated using a hypergeometric test. b Results corresponding to ns= 2. c Results corresponding to ns= 3.
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included four driver genes according to either database. The top
TFs identified using these different methods are provided in
Supplementary Data 5.
We noted above that six of the 15 key TFs of the BRCA-specific

TRN determined by InPheRNo are known driver TFs. We mined the
literature and found strong evidence for the role of five additional
TFs (from the remaining nine) in BRCA; see Table 2. For instance,
ESR1 encodes estrogen receptor alpha and its role in the
development, progress, and drug resistance of breast cancer is
well documented40–42. CERS2 is a ceramide synthase and
suppresses breast tumor cell invasion and enhances chemosensi-
tivity of breast cancer cells43,44. In addition, the low expression of
this gene is associated with poor prognosis in breast cancer44.
SLUG is a TF involved in epithelial to mesenchymal transition
(EMT) and is known to promote breast cancer progression and
invasion45–47. We recently showed that this TF (along with FOXA1,
another TF identified by InPheRNo, Table 2) is a biomarker of
metastatic subtypes of breast cancer48. TRPS1 is a transcription
repressor of GATA-regulated genes, which promotes EMT in breast
cancer and its expression is associated with clinical outcome in
this cancer49,50. The activation of PPARA has been shown to
promote proliferation in human breast cancer and its genetic
polymorphism has been linked to an increase in the odds of
postmenopausal breast cancer51,52.
In addition to the above five, three other TFs among the top 15

identified by InPheRNo have modest literature support for a role in
BRCA development: AFF3 is a nuclear transcriptional activator,
which is abnormally expressed in some cases of breast cancer
and has been suggested as a proto-oncogene53,54. ZNF281 is a
transcriptional repressor involved in EMT that is upregulated in

colon and breast cancer and has been suggested to promote
these cancers55,56. In addition, ZNF552 has been suggested as a
regulator of genetic risk of breast cancer and its regulons have
shown to be enriched in genes associated with risk loci identified
using a combination of GWAS and eQTL analysis57. Taken
together, these results suggest that InPheRNo can accurately
identify regulatory mechanisms (in this case, major TFs) involved
in breast cancer.
In addition to the breast cancer-relevant TRN above, we used

InPheRNo to reconstruct PAM50 subtype-relevant TRNs in breast
cancer (see Supplementary Methods for details). In this applica-
tion, the phenotypic label of each sample reflects its PAM5026

subtype (a categorical variable with five categories), illustrating
the applicability of InPheRNo to different types of phenotypic
labels/scores. The reconstructed TRN (Supplementary Data 6)
implicated several key TFs well documented to be involved in
different subtypes of BRCA (see Supplementary Methods and
Supplementary Data 7). Particularly, among the top 14 TFs, four
(SR1, FOXA1, FOXC1, MYBL2) were among the TFs of the PAM50
gene signature (p= 1.46E-7, hypergeometric test), further indicat-
ing their role in regulatory mechanisms of breast cancer subtypes.

Driver TFs identified by InPheRNo are specific to respective
cancer types
We next asked if the key TFs (those with most target genes) in
InPheRNo-derived TRNs are specific to their respective cancer
types, as this is an important criterion for phenotype-relevant TRN
reconstruction. We obtained a list of driver TFs for each cancer
from IntOGen, and retained only those known drivers that were
not annotated as drivers for more than ns= 2 other cancer types
(to ensure cancer specificity). We then compared these cancer
type-specific drivers, whose counts ranged from 0 to 15,
depending on the cancer, to the top 100 TFs identified for that
cancer using InPheRNo (Supplementary Data 5). Of the seven
cancer types that had more than one known driver TF specific to
them, three cancers (BRCA, OV, and SKCM) showed a significant
(alpha= 0.05) enrichment between InPheRNo-identified TFs and
known cancer type-specific drivers, with an overall combined
p value (Fisher’s method) of p= 2.5E-4 (Fig. 3b). However,
repeating the above procedure with key TFs identified by
context-restricted network analysis, DiNA, MRA, context-specific
network analysis, or based on differential expression did not yield
significant enrichment for cancer type-specific drivers in any of
these seven cases (Fig. 3b and Supplementary Fig. 4 in
Supplementary Information). Key TFs of TRNs determined by
simplified-InPheRNo were significantly enriched for known drivers
in two cases (Supplementary Fig. 4 in Supplementary Information).
Similar observations were made when using a slightly relaxed

definition of a cancer type-specific driver TF: as a known driver of
one cancer type that is not a known driver for more than ns= 3
other cancer types (Fig. 3c, Supplementary Fig. 5 in Supplemen-
tary Information). For the 12 cancer types where two or more such
cancer type-specific drivers are known, InPheRNo-identified key
TFs showed the highest enrichment for those drivers (combined
p= 6.2E-5) compared with simplified-InPheRNo (combined p=
6.6E-4), top differentially expressed TFs (combined p= 0.62),
differential network analysis (combined p= 0.64), context-
restricted analysis (combined p= 0.92), MRA (combined p=
0.99), and context-specific analysis (combined p= 0.99). Although
the above analyses were performed using driver TF annotations
from IntOGen, similar analysis using driver genes in DriverDBv2
also confirmed the conclusion that InPheRNo has a high specificity
in identifying regulatory mechanisms involved in each cancer,
especially when compared with related approaches (Supplemen-
tary Figs. 6–8 in Supplementary Information). We believe this
relatively high specificity of InPheRNo arises from the explicit

Table 2. Top 15 TFs identified using InPheRNo and the evidence for
their role in breast cancer.

Transcription factors Percent of
target genes

Evidence

RUNX1 6.7% Driver (IntOGen,
DriverDBv2)

ZNF552 4.9% Modest Literature
Support

GATA3 4.6% Driver (IntOGen,
DriverDBv2)

MYB 4.4% Driver (IntOGen,
DriverDBv2)

CERS2 4.3% Strong Literature Support

FOXA1 4.3% Driver (IntOGen,
DriverDBv2)

SLUG 4.2% Strong Literature Support

AFF3 3.8% Modest Literature
Support

ZNF281 3.7% Modest Literature
Support

ZBED2 3.7% No evidence found

ZBTB41 3.7% Driver (DriverDBv2)

PRRX1 3.7% Driver (DriverDBv2)

TRPS1 3.6% Strong Literature Support

ESR1 3.5% Strong Literature Support

PPARA 3.4% Strong Literature Support

The TFs are ranked based on the number of their cancer-relevant target
genes. The second column shows the percent of the considered genes that
each TF regulates, and the third column shows the type of evidence
supporting each TF. Although we labeled the literature support for each TF
as “modest” or “strong” based on our judgment, the evidence and its
reference are provided in the main text for clarification and completion.
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and quantitative incorporation of phenotypic labels into its
statistical model.

Gene expression signatures based on InPheRNo TRNs are
predictive of patient survival
Gene expression signature analysis is a widely used approach in
analyzing and subtyping cancer samples, with great potential for
improving prognosis and treatment58,59. We hypothesized that
since InPheRNo identifies cancer type-relevant regulatory mechan-
isms, the resulting TRNs can be used to form gene expression
signatures that are more predictive of patient survival than
signatures formed using differential expression analysis, one of
the most widely used approaches for forming gene expression
signatures59. It has been previously suggested that the activity of a
TF is better reflected in the activities of its targets taken together
than its own expression20. Therefore, we formed a gene
expression signature for each TF, reflecting the expression of the
TF as well as the activity levels of its targets in the InPherRNo-
derived TRN, while considering the predicted strength and
direction of regulation for each gene (see Methods for details).
For each cancer type, we formed a sample by signature matrix
(five columns corresponding to the five signatures of the key TFs
with the greatest number of target genes in the corresponding
TRN) and clustered patient tumor samples (the rows) into two
groups (hierarchical clustering). (See Supplementary Methods and
Supplementary Table 2 for how the number of TFs influences
results). We used Kaplan–Meier survival analysis to determine

whether these two clusters show distinct survival behavior,
limiting our analysis to cancers with >150 samples and more
than ten incidents of death. Out of the 13 cancers satisfying these
conditions, the expression signatures classified samples into
clusters of distinct survival (log-rank test, alpha= 0.05) for
seven cancers (Fig. 4), with LGG having the smallest p value
(p= 3.1 E-09).
We repeated the above survival analysis using gene expression

signatures created from TRNs reconstructed by context-restricted
analysis, DiNA, MRA, context-specific analysis, and simplified-
InPheRNo, which resulted in one to four significant cases (Fig. 4a,
Supplementary Table 3 in Supplementary Information), in contrast
to the seven noted above for InPheRNo. Similarly, clustering based
on top five most significantly differentially expressed genes or TFs
resulted in four and two significant cases, respectively. The results
did not improve when we used the same number of differentially
expressed genes as was used in forming InPheRNo’s gene
signature, yielding only four significant cases. These results show
that taking into account the phenotype-relevant regulatory
mechanisms identified by InPheRNo in developing gene expres-
sion signatures may improve the performance of gene signature
analysis and prediction of survival.
Given the observation that the gene expression signature

formed using the InPheRNo-identified TRN for Lower Grade
Glioma (LGG) can accurately predict patients’ prognosis (Fig. 4b),
we sought to determine the functional characteristics of these
genes. To this end, we performed gene ontology (GO) enrichment

Fig. 4 Survival analysis for samples of different cancers clustered using different approaches. a The heatmap shows the performance of
different approaches used for clustering of samples. Samples of each cancer are clustered into two groups and each cell in the heatmap
represents −log10(p) (obtained using a log-rank test) of the significance of the difference between survival probabilities of the two clusters. for
clarity, cases in which the p value was larger than 0.05 are shown as white. b–c Kaplan–Meier analysis for two clusters obtained by the gene
expression signature formed by the top five TFs and their target genes, as identified by InPheRNo for LGG b and PAAD c cancer types.
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analysis using KnowEnG analytical platform60,61 for each of the
five TFs (identified using InPheRNo and used earlier for survival
analysis) and their targets, one TF at a time. Overall, 49 GO terms
with size larger or equal to ten were enriched (Fisher’s exact test,
Benjamini–Hochberg corrected false discovery rate p* < 0.05) for
these gene sets (Fig. 5 and Supplementary Data 8). Out of these
GO terms, 21 were related to the nervous system, neurotransmis-
sion, and neurogenesis. On the other hand, 12 other terms were
related to cell junction, which plays an important role in the
invasion-metastasis cascade in various cancers including glio-
mas62,63. These results support our expectation that both
regulatory mechanisms specific to nervous system as well as
more general cancer-related mechanisms are involved in the
development and progress of LGG.
We repeated the GO enrichment analysis above for top five TFs

and their targets implicated by InPheRNo in PAAD, for which
InPheRNo gene expression signature outperformed all other
approaches in the survival analysis (Fig. 4a). We observed the
enrichment of several key GO terms (Supplementary Data 9). For
example, desmosomes (FDR= 0.034), which are intercellular
adhesion complexes, have been shown to play important roles
in tumor invasion in mouse models of pancreatic neuroendocrine
cancer64. Moreover, their role in various traits of cancers such as
tumor suppression has been documented in various cancers65–67.
Several GO terms were related to collagen, which have been
shown to promote metastasis68, cell growth and proliferation69,

and cell survival70 in pancreatic cancer. Many GO terms were
related to extracellular matrix, which has been shown to promote
cell survival, cell proliferation, and metastasis of pancreatic cancer
cells in various studies71,72. Taken together, these results show the
ability of InPheRNo to identify key biological processes involved in
different cancer types such as LGG and PAAD.

DISCUSSION
TRNs provide an important and popular framework for better
understanding a cell’s regulatory mechanisms, leading to pheno-
typic conditions. However, to the best of our knowledge TRN
reconstruction methods today do not incorporate phenotypic
information adequately or at all. As such, the reconstructed
networks may be limited in pinpointing regulatory mechanisms
most related to a phenotype under investigation, and often
necessitate a follow-up step that filters for phenotype relevance.
For example, a recent study of gene expression changes under-
lying Huntington’s disease (HD)73 reconstructed a TRN specific to
the mouse striatum and then short-listed TFs whose predicted
targets were enriched in genes differentially expressed in HD
mouse models. In another study, gene expression profiles of TFs
and putative target genes were used to reconstruct a context-
restricted TRN for breast cancer (using only breast cancer
samples), and then a list of breast cancer-relevant TFs (called
“risk-TFs”) whose regulons were enriched in risk loci were

Fig. 5 Functional annotation of top five TFs and their targets identified using InPheRNo for LGG. The heatmap shows the
Benjamini–Hochberg corrected GO enrichment false discovery rates (FDR). For clarity, cases in which the FDR was larger than 0.05 are shown
as white. The GO terms are sorted based on the smallest FDR in any of the five gene sets.
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short-listed57. In the aforementioned study57, GWAS and eQTL
analyses were used to define risk loci and relate them to the
regulon of each TF. Such previous attempts to augment TRN
reconstruction with phenotypic data motivated us to develop a
systematic approach to incorporate information about the
phenotype directly into TRN reconstruction.
In this study, we developed InPheRNo to reconstruct

phenotype-relevant TRNs and utilized it to identify regulatory
interactions that differentiate one cancer type from others while
correcting for the confounding effect of tissues of origin.
InPheRNo is based on a carefully designed PGM, which is key to
combining TF–gene expression correlations with gene–phenotype
associations. The conditional distributions of the PGM model the
summary statistics of gene–phenotype and TF–gene associations,
providing a succinct and efficient approach for data integration to
identify phenotype-relevant regulatory relationships. The method
is broadly applicable since it learns regulatory relationships from
expression data alone and does not impose any restriction on the
type of phenotype under investigation—the phenotype may be
binary, categorical or even continuous-valued, and any appro-
priate statistical method for testing its association with a gene’s
expression may be used in InPheRNo. Unlike several other
methods that rely on the regulatory relationship of one TF–gene
pair at a time, InPheRNo considers the effect of multiple TFs on
each gene in the reconstruction procedure, at the time of
selecting candidate TFs as well as in training the PGM. Finally,
using posterior probabilities obtained from the PGM, InPheRNo
provides a score representing the confidence for the identified
phenotype-relevant regulatory edges.
In designing InPheRNo’s pipeline, we made the choice to first

perform a feature selection step (using Elastic Net) and only use
the selected TFs in the PGM. First and foremost, this was done to
reduce the computational complexity, both by reducing the
number of candidate TFs and also by summarizing the expression
profiles of genes and TFs using summary statistics. Several
previous studies have successfully used summary statistics (and
particularly p values) for similar reasons23,28–32. Second, modeling
summary statistics instead of the full gene expression data
enables integration of other regulatory evidence (captured
through data types other than transcriptomic, if available) in the
PGM with a relative ease.
One important consideration when using InPheRNo, is the

number of samples. As InPheRNo is based on modeling of
summary statistics obtained from gene–phenotype and gene–TF
associations, similar requirements on the minimum number of
samples for those analyses should be also considered here74–76.
However, two features of InPheRNo enable it to handle a small
number of samples better than traditional co-expression analysis.
First, it utilizes Elastic Net (as part of the pipeline), whose
regularization terms can overcome some limitations of the small
sample size by imposing sparsity criterion. Second, as its PGM
models the distribution of the p values instead of relying on
whether such p value are significant or not (i.e., instead of
thresholding them) it is more robust towards small samples sizes.
As there are no rigorously validated metazoan TRNs to

benchmark against, we evaluated the predicted TRNs indirectly
through key TFs and gene expression signatures derived from
them, and showed clear improvement over several related
strategies. Our results showed that the TFs with many cancer
type-relevant targets are potential cancer driver TFs and may
suggest novel drug targets or provide new insights, regarding
the development and progress of cancer. Our results also
suggest a powerful approach for subtyping of cancer patients
using gene expression signatures: while most approaches
developed for this task do not take into account the regulatory
interactions among genes, our survival analysis suggests that
cancer type-relevant TRNs can improve the predicting power of
gene expression signatures.

In spite of the success of the InPheRNo-based gene signatures
in differentiating between patients with poor and good prognosis
for the majority of cancer types, in some cases, e.g., BRCA, this
method did not result in groups with significantly different
survival probability, despite the existence of BRCA-driver TFs in the
signature. This lack of success may partially be owing to the fact
that we clustered samples of each cancer type into two clusters,
whereas these cancer types may include more than two subtypes,
as is the case in BRCA26. However, since in most cancer types a
definite number for the cancer subtypes is not yet established, we
preferred to keep the number of clusters equal to two. A more in-
depth analysis of subtype discovery and survival analysis using
InPheRNo-derived TRNs is left for future work.
We would like to emphasize that in this study, we focused only

on transcriptomic data, owing to the availability of this data type
in many domains, including domains outside of cancer research,
and lack of other important data types such as ChIP-seq data in
these domains. Even in the area of cancer research, in which large
databases of ChIP-seq tracks (such as ENCODE) corresponding to
various cancer cell lines are available, the datasets are extremely
biased toward a small fraction of well-studied TFs (for example
only ~10% of all TFs are studied in ENCODE). As a result, including
these data sets may significantly bias the analysis towards this
small fraction of TFs. In addition, matched gene expression and
ChIP-seq data for tumor samples are rarely available and
combining these data types from different sources and different
samples, in itself a significant challenge, will require substantial
effort in the future.
We believe that including additional types of regulatory

evidence (especially those representing “cis” mechanisms such
as TF motifs and chromatin state changes) in the phenotype-
relevant TRN reconstruction procedure is an important and
essential future direction for improving InPheRNo. This is
especially true considering that many efforts are under way to
generate large datasets containing matching transcriptomic,
genomic, epigenomic and phenotypic profiles of patients77–79.
One way to achieve this goal might be to include different
regulatory evidence as new observed variables in the PGM used in
InPheRNo. Another alternative is to use cis-regulatory evidences to
construct an initial network that is used as a “prior” for Bayesian
analysis of expression data, as has been demonstrated before80.
Future investigations should focus on these avenues of integrating
multi-omics data into the InPheRNo model.

METHODS
Inference of Phenotype-relevant Regulatory Networks
(InPheRNo)
InPheRNo (Figs. 1d, e) is a new computational method for reconstructing
phenotype-relevant TRNs. At its core, InPheRNo utilizes a carefully
designed PGM (and more specifically a Bayesian Network34) (Supplemen-
tary Fig. 9 in Supplementary Information) to systematically combine the
information on the significance of gene–phenotype associations with the
information on the significance of gene–TF associations to obtain a
phenotype-relevant TRN. In addition, InPheRNo takes into account the
simultaneous effect of multiple TFs on each gene.
As input, InPheRNo accepts a matrix of gene and TF expression data

(gene and TFs x samples), a list of TFs and a vector p that records the p
value of association between the expression of each gene and the
variation in the phenotypic scores/labels of samples (obtained using a
suitable statistical test depending on the type of phenotype), as depicted
in Fig. 1d. We assume that the expression matrix is properly normalized in
advance, such that the distribution of each gene and TF across all samples
approximately follows a standard Normal distribution (see Supplementary
Methods). Using the list of TFs, the gene expression matrix is divided into a
matrix X of TF expression data (TFs x samples) and a matrix Y of gene
expression data (genes x samples).
In order to obtain a measure of significance for the association between

each gene–TF pair, while considering the influence of other TFs on the
gene of interest, we used a two-step procedure. First, we used Elastic Net, a
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linear multivariable regression algorithm that imposes sparsity using
regularization, to identify a set of mj candidate TFs for each gene
j j ¼ 1; 2; � � � ; nð Þ. The Elastic Net step of InPheRNo was implemented using
the function ElasticNetCV in the scikit-learn library (version 0.18.1) for
python81. This library implements Elastic Net by minimizing the objective
function,

1
2n

y � Xwk k22 þ μρ wk k1 þ
1
2
μ 1� ρð Þ wk k22; (1)

where n is the number of samples, y is the response vector, X is the feature
matrix, w is the unknown vector of coefficients, and μ and ρ are
hyperparameters. In this model, we used the TF expression matrix X as
the feature matrix and the expression profile yj of each gene as the
response vector. The hyperparameter μ was chosen using cross-validation
by iteratively fitting the model along a regularization path. We used the
default value of the library for ρ (ρ= 0.5). In addition, we imposed the
constraint that the maximum number of nonzero coefficients in the learnt
model should be at most equal to mmax= 15, to reduce the computational
complexity of the following steps and impose the prior knowledge that
only a few TFs regulate each gene. Note that imposing an upper limit on
the number of regulators of a gene has been previously used for various
reasons including the reasons above82–84. It is important to note that mmax

is only an upper limit, and the best number of TFs for each gene is
obtained by Elastic Net and the following PGM.
Next, for each gene j we formed a matrix Xj representing the expression

of the mj selected TFs across different samples. Then, we used Xj as the
feature matrix in a multivariable OLS regression model to relate the
expression of the identified TFs to the expression of the gene yj (the
response vector) and calculated a pseudo -value πi,j (using the OLS model),
reflecting the conditional effect of the TF i i ¼ 1; 2; � � � ;mj

� �
on gene j.

Using the OLS regression model is a necessary step, since current
approaches for calculating the p value of feature-response associations in
regularized regression models require assumptions that are not satisfied in
this application85 or require resampling or data splitting that reduces the
statistical power86,87 (see Supplementary Methods for a discussion on
these alternative methods and their assumptions). It is important to note
that πi,j is only a “true” p value for the second step of this procedure, but
does not satisfy all the characteristics of a p value for the two-step
procedure (see Supplementary Information for simulation results). More
precisely, under the Null hypothesis that TF i is not associated with gene j,
the distribution of πi,j is not uniform (a characteristic of a true p value), but
instead is biased towards small values (see Supplementary Figs. 10–12 in
Supplementary Information). The reason for this bias is that in the first step,
Elastic Net selects TFs whose expression are associated with the expression
of gene j and the second step is thus likely to assign a small p value to
them. This is an important consideration, since it affects how we model the
conditional distributions of πi,js in the PGM described below.
The two sets of p values—one capturing TF–gene regulatory relation-

ships (denoted as πi,j) and the other gene–phenotype associations
(denoted as Pj and provided in vector p)—are used as observed variables
in a PGM (Supplementary Fig. 8) that has binary latent variables Ti,j
reflecting the role that each putative TF–gene interaction plays in
phenotype variation. More precisely, Ti,j= 1 implies that TF i regulates
gene j so as to affect the phenotype, and Ti,j= 0 indicates its logical
complement. We modeled the prior distribution of this random variable as
Ti,j ∼ Bernoulli(γ). The posterior probabilities of Ti,js obtained from this PGM
can be used to form the phenotype-relevant TRN (as described below).
As depicted in Fig. 1e and Supplementary Fig. 9 (in Supplementary

Information), InPheRNo uses a directed acyclic graph (DAG) to model the
relationship between the latent variables and the observed variables. The
topology of this DAG represents the idea that the value of Ti,j has a causal
effect on the distributions of observed variables Pjs and πi,j. Since each
Pj represents a “true” p value, it follows a uniform distribution under the
Null hypothesis that “expression of gene j is not associated with the
phenotypic variation”, which is the scenario where gene j does not
mediate the influence of any of its putative regulators on the phenotype.
In other words, if T1;j ¼ T2;j ¼ � � � ¼ Tmj ;j ¼ 0, then Pj∼ Unif (0,1). On the
other hand, if any of the Ti,js is equal to 1, the definition of Ti,j implies that
gene j is associated with the phenotype (the alternative hypothesis).
Following the approach in Hanson et al.23 who successfully used a Beta
distribution to model the distribution of p values when they are biased
towards small values, we used a Beta (α, β) distribution to model the
distribution of these variables under the alternative hypothesis. By fixing
β= 1 and limiting the value of α in the range 0 < α ≤ 1, we can obtain a
wide range of distributions with different degrees of bias towards small

values with the smallest bias when α= 1 (equivalent to a uniform
distribution) and an increasing degree of bias as α approaches 0 (see
Supplementary Fig. 13 in Supplementary Information). Thus, the condi-
tional distribution of Pj given the value of its parent nodes in the DAG can
be modeled as

Pj �
Unif 0; 1ð Þ if T1;j ¼ T2;j ¼ � � � ¼ Tmj ;j ¼ 0

Beta α ¼ α0; β ¼ 1ð Þ otherwise

�
(2)

where α0; 0< α0 � 1; is a parameter controlling the degree of bias of the
Beta distribution towards small values. In our analyses, we estimated α’ by
fitting a mixture of a uniform and a Beta distribution to the histogram of Pjs
for all genes, prior to training the PGM. Note that modeling the conditional
distribution of each Pj based on the values of Ti,js (for all values of i) allows
us to capture the influence of multiple TFs on the value of observed
variables, and hence on the phenotype-relevant regulation of the genes.
As mentioned earlier, the pseudo p values πi,js obtained using the two-

step procedure are biased towards small values even when TF i is not a
regulator of gene j. As a result, similar to the case with Pjs, we can use two
distributions Beta α ¼ α1j ; β ¼ 1

� �
and Beta α ¼ α0j ; β ¼ 1

� �
to model the

distribution of πi,js when TF i regulates gene j and when it does not,
respectively. However, in order to differentiate between the aforemen-
tioned scenarios, we need to impose a restriction on the parameters of
these two distributions relative to each other. We hypothesized that the
bias towards small values is larger when TF i is a regulator of gene j
compared with when it is not. Intuitively, this can be justified as follows:
assuming a linear relationship between the expression of a gene and its
regulators, the main reasons for existence of false-positive candidate TFs
identified using Elastic Net are the high dimensionality of the data (more
features compared with samples), existence of noise in the data and a lack
of prior knowledge on the number of regulators of each gene. As a result,
even when some false positives are identified using Elastic Net, most of the
variance of the gene’s expression is expected to be explained using the
expression of the true positive TFs. As a result, the expression of the true
positive TFs will have a more significant association with the gene’s
expression in an OLS model. We used extensive simulation analysis under
different setups and confirmed the intuition above (Supplementary Table 4
and Supplementary Figs. 10–12 in Supplementary Information). As a result,
we modeled the prior distribution of these unknown parameters according
to α0j � Unif 0:5; 1ð Þ and α1j � Unif 0; 0:5ð Þ, to ensure that α0j > α1j and a
more significant bias towards small values exists when TF i is a regulator of
gene j (see Supplementary Fig. 13). To model the conditional distribution
of πi,j given its parents, we note that one implication of Ti,j= 1 is that TF i
regulates gene j. On the other hand, if Ti,j= 0, either TF i does not regulate
gene j or TF i regulates gene j but gene j is not associated with the
phenotype. Consequently, we used the following model

πi;j �
Beta α ¼ α1j ; β ¼ 1

� �
if Ti;j ¼ 1

rjBeta α ¼ α1j ; β ¼ 1
� �þ 1� rj

� �
Beta α ¼ α0j ; β ¼ 1

� �
if Ti;j ¼ 0;

(

(3)

where rj is an unknown mixing parameter representing the probability that
TF i regulates gene j but gene j is not associated with the phenotype. We
assigned a prior distribution of rj � Unif 0; 1ð Þ to this parameter (reflecting
lack of prior knowledge).
We used a Markov chain Monte Carlo (MCMC) method using the PyMC

python module88 to infer the unknown parameters and learn empirical
posterior probabilities for Ti,js. As some of the solutions of the MCMC may
converge to local optima, to alleviate their effect we ran the MCMC
procedure 100 times with different random initializations and obtained an
average posterior probability for each Ti,j. These average values were then
minmax normalized and an appropriate threshold was used to identify
phenotype-relevant regulatory edges (we used a threshold of 0.5). Since
several parameters can be configured by the user, for the default values,
which were used in the pan-cancer analysis as well as the method used for
hyperparameter selection see Supplementary Methods (in Supplementary
Information).
Supplementary Methods and Supplementary Table 5 provide details on

robustness analysis and false-positive analysis of InPheRNo, demonstrating
different properties of this approach.

Data collection and normalization
We downloaded a list of 1544 human TFs from AnimalTFDB89. Gene
(including TF) expression profiles of 6357 cancer patients corresponding to
18 different cancer types in TCGA were downloaded from the Genomic Data
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Commons35. Similarly, the gene expression profiles of 4388 normal tissue
samples corresponding to these 18 cancer types (version V6p) were
downloaded from the GTEx data portal (www.gtexportal.org). To normalize
the FPKM (TCGA) and RPKM (GTEx) values we used an approach similar to
the guideline described in the GTEx data portal for analyzing gene
expression corresponding to version V6p (https://gtexportal.org/home/
documentationPage). The expression profile of each sample was normalized
in two ways: for the analyses that involved expression of all samples (across
different cancer or tissue types), a pan-cancer (pan-tissue) normalization was
performed, whereas for the analyses that required samples of one cancer
(tissue) type, a cancer (tissue)-specific normalization was performed (see
Supplementary Methods in Supplementary Information).
For the comparison of the reconstructed networks using InPheRNo with

a global (cancer-agnostic) TRN, we downloaded “ENCODE TREG binding
profiles” from http://eh3.uc.edu/treg, which include the binding probabil-
ities assigned to each (TF, gene) by TREG for 43 different cell lines, using
only ChIP-seq profiles of the cell lines for these TFs. We then selected
edges with “probability” larger than 0.5 and formed their union over all cell
lines to obtain a global TRN.
We obtained from IntOGen38 (www.intogen.org) a list of driver TFs that

are identified based on mutations, gene fusions, and copy number
alterations. We then combined the driver lists for each of these three data
types into one list for each cancer. We also obtained a list of cancer driver
genes from DriverDBv237 http://driverdb.tms.cmu.edu.tw/driverdbv2, select-
ing driver genes that were identified by at least two different methods.

Related baseline approaches for network reconstruction
We used several related approaches as comparators for InPheRNo. The first
four are methods for including information on phenotypic labels of
samples in the TRN reconstruction procedure. However, the last one
(master regulator analysis20) does not construct a TRN, but identifies key
TFs related to the phenotype. Although the ultimate goal of this method is
different from InPheRNo, including it in our analysis provides further
insight regarding the performance of InPheRNo.

1. Simiplified-InPheRNo: to obtain cancer type-relevant networks using
simplified-InPheRNo, we used the Pearson’s correlation to obtain the
p values of TF–gene associations and a two-sided t test to obtain the
p values of gene–phenotype associations differentiating one cancer
type from other types of cancer. Next, for each (gene, TF,
phenotype) triplet, we used Fisher’s method to combine the two
p values. Then for each cancer type, edges with smallest p values
were selected such that the number of edges in the reconstructed
network would be equal to the number of edges identified by
InPheRNo (for a fair comparison). We performed this analysis for
each cancer type using TCGA data and each tissue type using GTEx
data and used the same approach in InPheRNo to remove the
confounding effect of tissues of origin.

2. Context-restricted TRN reconstruction: this approach (Supplementary
Fig. 1a in Supplementary Information) refers to the family of
methods that restrict the analysis to samples representing a
particular biological context (e.g., a tissue type8,9 or a cancer
type10,11) and exclude the samples corresponding to other contexts.
Since any TRN reconstruction algorithm based on gene expression
data can be used in this framework we used Elastic Net90–92, which
we have also used as the first step of InPheRNo, to ensure a fair
comparison between InPheRNo and context-restricted network
analysis. Details of choosing the hyperparameters of the Elastic
Net using cross-validation are provided in the Supplementary
Methods (in Supplementary Information). To obtain a context-
restricted network for each cancer type, we used the expression
profile of a gene across samples of that cancer type as the response
vector and the expression of the TFs as the feature vectors in the
Elastic Net model to identify TFs with nonzero coefficients for each
gene. To ensure the fairness of comparisons, we focused on the
same subset of genes that were utilized by InPheRNo.

3. Differential network analysis (DiNA): DiNA (Supplementary Fig. 1b in
Supplementary Information) is another approach to relate TRNs to
the phenotypic binary labels (e.g., case vs. control). In this approach,
two context-restricted networks are reconstructed based on
samples from each of two phenotypic classes, and a differential
network is formed by comparing these two networks12–16. To
perform DiNA, we used the context-restricted analysis described
above to reconstruct two networks for each cancer type: one using

samples of that cancer and another using samples of all other 17
cancers. Then, we constructed a differential network by identifying
edges that are present in the former network but not in the latter. To
ensure the fairness of comparisons, we focused on the same subset
of genes that were utilized by InPheRNo.
We would like to note that DiNA is indeed a useful method in

removing unwanted edges (e.g., those corresponding to a
confounding effect), and we used it in this study to correct for the
confounding effect of tissues of origin of each cancer type. However,
when DiNA is used for the different problem of identifying
phenotype-relevant TRNs, it misses on important edges such as
those shown in Fig. 1b and 1c.

4. Context-specific TRN reconstruction: this is another class of methods
in which genes associated with phenotype variation are identified,
e.g., by differential expression analysis, and then a network is
constructed by relating the expression of these genes to the
expression of TFs17–19 (Supplementary Fig. 1c in Supplementary
Information). As one of our baseline methods, we implemented this
approach by first identifying top 1500 genes that were differentially
expressed between one cancer type compared with other types of
cancer (Bonferroni-corrected p < 1E-20). Then, we used Elastic Net to
relate the expression of these genes to the expression of TFs and
construct a TRN using the TFs with nonzero coefficients.

5. Master regulator analysis (MRA): MRA20 is a method for identification
of key TFs whose targets are enriched for a set of phenotype-
associated genes (e.g., differentially expressed genes). MRA does not
construct a TRN, but rather accepts a TRN as input (along with a set
of TFs and a set of phenotype-associated genes) and utilizes this
network to rank TFs that may influence the phenotype. Although
this method solves a problem different than the one addressed by
InPheRNo, for completeness we included it in our analyses as a
benchmark. We used the MRA-FET implementation of this approach
in geWorkbench39 for the analysis. Similar to the context-specific
approach above, we used top 1500 genes that were differentially
expressed between one cancer type compared with other types of
cancer (Bonferroni-corrected p < 1E-20) as the phenotype-associated
genes, and used the TRN constructed using Elastic Net as the input
network.

Randomized degree-preserving network and degree
distribution-preserving networks tests
To calculate the empirical p values for a randomized degree-preserving
networks test, to evaluate the enrichment of InPheRNo networks in global
networks identified using TREG and ChIP-seq data, we generated 5000
random networks using the code available in (http://maslov.
bioengineering.illinois.edu/matlab.htm)93. To calculate the empirical p
values based on a randomized degree distribution-preserving networks
test, we generated 5000 random networks by randomly permuting the TF
and gene labels.

Survival analysis using gene expression profiles and gene
signatures
The results reported in Fig. 4a correspond to nine different approaches in
clustering of the samples of each cancer type into two groups: five
correspond to clustering based on gene expression signatures, where the
remaining four utilize the gene expression data itself. For the methods that
utilize a gene expression signature, we defined the signature of a TF in
each cancer type as a weighted linear combination (x þP

i wiyi) of the
expression profile of the TF (denoted by x) and its targets (denoted by yi)
across different samples of that cancer type. Note that using a weighted
average of gene expression profiles is a commonly used approach for
forming polygenic gene expression signatures (e.g., see ref. 94). Consistent
with previous analysis above, we used the Pearson’s correlation coefficient
between the expression profile of the TF and each target gene as the
weights (wis) in this linear combination, to reflect the strength and mode
of regulation of each gene. This signature represents the expression of the
TF as well as the activity level of its targets, whereas considering the mode
and strength of regulation. For each TRN reconstruction method, we used
the signatures of ns= 5 expressed TFs with the most identified targets, to
cluster samples into two distinct groups for survival analysis (see
Supplementary Methods and Supplementary Table 2 for more information
on sensitivity of the results to the chosen value for ns).
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We used the gene expression itself in four different ways. First, for each
cancer type, we identified top ns= 5 differentially expressed genes (DEGs)
and used those as features to cluster samples into two groups (denoted as
“Expression (Top DE genes)” in Fig. 4a). We selected the ns= 5 to match
the analysis done using gene signatures. As the signatures formed by
InPheRNo combines both top five TFs and their target genes, we argued
that its good performance may be due to using a large number of genes
for clustering. To address this concern, we selected k DEGs, were k was
equal to the number of genes we used to form the corresponding
InPheRNo signature, and clustered the samples based on the expression of
these genes (denoted as “Expression (Matched DE genes)” in Fig. 4a). Third,
we used top ns= 5 differentially expressed TFs for clustering (denoted as
“Expression (To DE TFs)” in Fig. 4a). Finally, we used top ns= 5 master
regulators (based on MRA analysis) and used their expression for clustering
(denoted as “Expression (Master regulators)” in Fig. 4a).
In all cases, we used agglomerative clustering with average linkage and

cosine similarity, since it has been shown to be one of the best options for
clustering of cancer samples using gene expression data95. Note that we
chose the number of clusters a priori as two, to avoid the difficulties
associated with identifying the “best” number of clusters (e.g., contra-
dictions based on different metrics), while providing a (coarse) grouping of
the samples based on their expression profiles.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The adjacency matrices corresponding to cancer type-relevant TRNs (not tissue
corrected) generated from TCGA are provided in Supplementary Data 1. The
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are provided in Supplementary Data 2. The adjacency matrices corresponding to
tissue-corrected cancer type-relevant TRNs are provided in Supplementary Data 4.
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