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Automating parameter selection to avoid implausible
biological pathway models
Chris S. Magnano 1,2 and Anthony Gitter 1,2,3✉

A common way to integrate and analyze large amounts of biological “omic” data is through pathway reconstruction: using
condition-specific omic data to create a subnetwork of a generic background network that represents some process or cellular
state. A challenge in pathway reconstruction is that adjusting pathway reconstruction algorithms’ parameters produces pathways
with drastically different topological properties and biological interpretations. Due to the exploratory nature of pathway
reconstruction, there is no ground truth for direct evaluation, so parameter tuning methods typically used in statistics and machine
learning are inapplicable. We developed the pathway parameter advising algorithm to tune pathway reconstruction algorithms to
minimize biologically implausible predictions. We leverage background knowledge in pathway databases to select pathways whose
high-level structure resembles that of manually curated biological pathways. At the core of this method is a graphlet decomposition
metric, which measures topological similarity to curated biological pathways. In order to evaluate pathway parameter advising, we
compare its performance in avoiding implausible networks and reconstructing pathways from the NetPath database with other
parameter selection methods across four pathway reconstruction algorithms. We also demonstrate how pathway parameter
advising can guide reconstruction of an influenza host factor network. Pathway parameter advising is method agnostic; it is
applicable to any pathway reconstruction algorithm with tunable parameters.
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INTRODUCTION
Network analysis can integrate and analyze large amounts of
biological “omic” data from genomic, transcriptomic, proteomic,
or metabolomic assays1,2. Placing omic data in a network context
allows for the discovery of key members of a process that may be
missed from a single data source and functional summarization for
hypothesis generation and other downstream analyses.
Although biological pathway enrichment can be used to

interpret omic data, pathways in curated databases are incom-
plete and also contain proteins or genes that are not involved in a
particular biological context3. Thus, it is often preferable to infer a
customized subnetwork specific to an experimental data set
starting from all known protein interactions, referred to as the
interactome. We refer to this problem as pathway reconstruction:
using condition-specific input omic data to select nodes and
edges that represent some process or cellular state from a generic
background network. Pathway reconstruction differs from module
detection4, which divides a network into functional units or
clusters. It is also distinct from network propagation5, which
identifies relevant regions of a larger network but typically does
not select specific edges within that region.
Existing pathway reconstruction methods are based on diverse

strategies such as combinatorial optimization problems6–8, short-
est paths9, enrichment analysis10, network flow11–13, and other
graph theory algorithms. These methods also take in a variety of
inputs. Some, such as the Prize-Collecting Steiner Forest (PCSF)
algorithm6,14, accept scores for the biological entities of interest.
Other methods, such as PathLinker9, require the inputs to be split
into starting points (sources) and end points (targets) for the
pathway. Despite the different optimization strategies and inputs,
pathway reconstruction algorithms almost always require the user
to set parameters. Adjusting the parameters can produce

pathways with drastically different topological properties and
biological interpretations. For instance, both pathways in Fig. 1
were created with the same PCSF algorithm and the same
influenza host factor screen data (see “Data sets”); they only differ
in the PCSF parameters used. The pathway on the right is
reasonably sized and can be interpreted and summarized for
downstream analysis. The pathway on the left, however, includes
over 7000 nodes and would be impractical to interpret or analyze.
We refer to these types of pathways, pathways that are either
impractical to analyze or contain topological features that are
biologically unrealistic, as being “implausible”.
An open challenge is how to configure these critical pathway

reconstruction parameters in a manner that is objective and
applicable across diverse types of algorithms. Existing approaches
tend to be informal and ad hoc, and most best practices in
parameter tuning are not applicable to pathway reconstruction.
The simplest way to choose parameters would be to use default
values. However, a single parameter setting cannot work for all
data sets. The number of input proteins, genes, or metabolites
varies based on the experiment, and the effects of input size can
be unpredictable for different pathway reconstruction algorithms.
For instance, if PathLinker is run with fixed parameters, increasing
the number of source and target nodes can actually result in a
smaller reconstructed pathway, which is not necessarily what a
user would intend. In addition, some methods are commonly run
repeatedly and combined into an ensemble network15–17, which
requires multiple parameter settings.
Parameter tuning methods from supervised learning are also a

poor match. There is no ground truth for supervised parameter
tuning, and unsupervised cross-validation (CV) is ineffective (see
“Results”). In addition, the objective functions of pathway
reconstruction methods only approximate biologically meaningful
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graph topologies and typically have no probabilistic likelihood.
Thus, their values cannot be compared between different
parameter settings, and statistical model selection criteria such
as the Akaike information criterion18 and the Bayesian information
criterion19 are not applicable. For instance, the PCSF objective
function value can be arbitrarily increased by changing the
parameter values.
Given the lack of objective, quantitative methods for tuning,

parameter settings are often chosen by manual inspection or
informal heuristics. ResponseNet recommends choosing para-
meters that recover at least 30% of inputs while minimizing low
confidence edges20. PCSF recommends choosing pathways robust
to small random input variation or matching the average degree
of input nodes and non-input nodes14. We show that these
heuristics can perform poorly in practice.
Biologists often have intuition about which pathways are

unrealistic or impractical for downstream analysis, such as the
7000 node pathway in Fig. 1 or subnetworks with unusual
degree distributions. Pathway reconstruction is typically an
exploratory analysis used to summarize the input data and
generate hypotheses leading to further experiments. In this
context, it is important to avoid implausible and uninterpretable
pathway topologies. Therefore, parameter tuning should not focus
on traditional notions of accuracy but instead formalize how
“useful” reconstructed pathways are to biologists. Our major
contribution is providing a formal approach based on graph
topology that quantifies this biological intuition and can be used
to optimize pathway reconstruction in an objective manner.
One framework for finding optimal parameters in an uncertain

setting is parameter advising21–23, which was originally developed
for multiple sequence alignment. Parameter advising can be used
to adapt the parameter tuning framework in settings where no
ground truth tuning set exists. However, parameter advising
requires a means to estimate the accuracy of a model with a
given set of parameters. Because pathway reconstruction is an
exploratory analysis, there is no formal notion of accuracy. We
overcome this limitation by leveraging background knowledge to
create a score that prefers pathways in topological agreement
with reference pathways. Our parameter tuning method, pathway
parameter advising, uses the parameter advising framework in
combination with a distance metric based on graphlet decom-
position to measure similarity between reconstructed pathways

and pathways from curated databases. Pathway databases may be
imperfect and incomplete, but they reflect models that the expert
curators consider to be biologically plausible. Only measuring the
topology of a reconstructed pathway means that pathway
parameter advising is also method agnostic. It can tune the
parameters of any pathway reconstruction method.
Figure 2 gives an overview of the experiments performed to

evaluate pathway parameter advising. We explore the effective-
ness of pathway parameter advising in avoiding parameters that
lead to implausible networks by reconstructing 15 pathways from
the NetPath database. Pathway parameter advising outperforms
other parameter selection methods and default parameter values.
We also examine how well these reconstructed pathways overlap
with the original NetPath pathways. Finally, we show how
pathway parameter advising can guide pathway reconstruction
with an influenza host factor network.

RESULTS
Pathway parameter advising ranks parameter settings for pathway
reconstruction methods. Because pathway reconstruction is an
exploratory analysis and our goal is to maximize downstream
biological utility, which cannot be directly quantified, we resort to
multiple indirect approaches to evaluate pathway parameter
advising (Fig. 2). We first use the literature to define topological
graph properties that make a candidate pathway biologically
implausible. Pathway parameter advising can optimize pathway
reconstruction algorithms to avoid parameters that lead to
implausible pathways. Next, we demonstrate that we can improve
the reconstruction of NetPath pathways by comparing predicted
pathway edges with the NetPath ground truth. We then show how
pathway parameter advising can be applied in practice and
reconstruct an influenza host factor pathway from RNAi screens.
Finally, we ensure that the graphlet distance ranking metric at the
core of pathway parameter advising has desirable properties. It is
not overly sensitive to disconnected graphlets and shows that
reference pathways are similar to one another.

Pathway parameter advising overview
Pathway parameter advising is a framework to score the pathways
produced by a pathway reconstruction algorithm run with
multiple parameter settings. The scored pathways are ranked so

Fig. 1 Influenza host factor pathways created using PCSF from RNA interference (RNAi) screens (see “Influenza host factor pathway
reconstruction”), here showing the largest connected components from ensembling the bottom 100 ranked pathways (left) and the top
100 ranked pathways (right). The only difference in creating the networks was the range of PCSF parameter values.
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that the top-scoring pathway(s) can be used for downstream
analyses and poor-scoring pathways can be ignored. We define a
pathway quality score for the ranking that compares the graph
structure of a reconstructed pathway with the graph structures
found in reference pathways from a curated database. Specifically,
the score computes the topological distances between the
reconstructed pathway and reference pathways. Reconstructed
pathways with small distances are preferred.
To compute the pathway quality score, the reconstructed

pathway is first decomposed into small subgraphs called
graphlets24. We calculate the graphlet frequencies in the
reconstructed pathway and the reference pathways. This graphlet
frequency decomposition summarizes the topology of a pathway
in a vector of 17 values, one per graphlet type (Fig. 3). The
distances between the reconstructed pathway and the reference
pathways are calculated by computing the difference between
these graphlet decomposition vectors. The final metric used to
rank parameter settings is defined as the mean distance between
the reconstructed pathway and the 20% closest reference
pathways. More details on the pathway parameter advising
algorithm can be found in section “Pathway parameter advising.”

Implausible pathway detection
In order to evaluate pathway parameter advising, we considered
its ability to avoid implausible networks. While it is difficult to
define a single best pathway in the context of an exploratory
analysis, some pathways are clearly biologically unrealistic,
infeasible to analyze, or not useful for downstream analysis. Thus,
pathway parameter advising should consistently rank parameter

settings that lead to plausible networks above those that lead to
implausible networks.
We applied 4 pathway reconstruction methods to sampled

NetPath pathways (see “Data sets”) to reconstruct the 15 NetPath
pathways. We selected the NetPath pathways Wnt, TNF alpha, and
TGF beta as validation pathways to evaluate different graphlet
distances and develop pathway parameter advising. These three
validation pathways are excluded from all aggregate results. The
other 12 NetPath pathways were designated as test pathways.
More details on the four pathway reconstruction methods,
NetBox, PathLinker, PCSF, and min-cost flow, can be found in
section “Pathway reconstruction methods.” Overall, we considered
60 parameter tuning tasks across the 15 NetPath pathways and 4
pathway reconstruction methods.
In these experiments, we used the implausibility criteria defined

in section “Evaluating reconstructed pathway plausibility” to label
reconstructed pathways as plausible or implausible without
reference to Reactome or other reference pathways. Recon-
structed pathways that meet all of the plausibility criteria are
treated as the positive set, while reconstructed pathways defined
as implausible are the negative set. These reconstructed pathway
labels of plausible and implausible are considered alongside the
ranking produced by a parameter selection method. We then used
precision–recall (PR) curves (Supplementary Figs. 1–5) to evaluate
how well pathway parameter advising and alternative parameter
selection strategies distinguish plausible from implausible path-
ways. Parameter selection methods that rank plausible pathways
above implausible pathways will have a higher area under the PR
curve (AUPR).

Fig. 3 All graphlets of size 2, 3, and 4. Pathways are decomposed into these 17 graphlets for graphlet frequency distance calculations.

Fig. 2 Summary of experiments. An overview of the experiments performed to evaluate pathway parameter advising.
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We compared pathway parameter advising to three other
parameter selection methods: CV, ResponseNet ranking, and PCSF
robustness ranking (see “Alternate parameter selection methods”).
Figure 4 shows the distribution of AUPRs across the four pathway
reconstruction methods on the NetPath test pathways. Different
pathway reconstruction methods had varying proportions of
networks identified as plausible, with min-cost flow having the
lowest mean proportion at 11% and NetBox with the highest at
89%. Among the 12 test pathways, pathway parameter advising
had the highest median AUPR for each pathway reconstruction
method.
Of the 36 cases where AUPRs could be compared (both

plausible and implausible pathways were present), pathway
parameter advising had the highest AUPR in 30. CV had the
highest AUPR in the other six. The impact of the choice of
parameter ranking strategy is most stark for PCSF, where
pathway parameter advising has perfect AUPR in almost all
pathways and the other approaches struggle. Not only did
pathway parameter advising have the highest median AUPR
overall, but its performance was the most consistent; it had the
lowest variance in AUPR across all parameter tuning tasks.
In order to make sure that performance was not overly

influenced by our specific choice of criteria for plausible and
implausible pathways, we varied the threshold for each of the
four plausibility topological properties. We considered all
combinations of thresholds for all four proprieties in a grid
search, resulting in a total of 10,000 plausibility configurations.
Figure 5 shows the AUPR of each parameter ranking method as
the plausibility threshold for each topological feature is varied.
Supplementary Fig. 1 shows aggregate AUPR values. Pathway
parameter advising outperforms all other parameter ranking
methods at each threshold value.

Quality of NetPath pathway reconstruction
Having achieved our primarily goal of accurately prioritizing
parameters that generate plausible pathways, we also evaluated
the quality of the reconstructed pathways themselves. We
compared pathway parameter advising to the alternative ranking
methods and the default parameters. In these experiments, we
define all pathway edges in the NetPath pathway as a positive set
and all other edges as a negative set. We then compared the
ability of pathway parameter advising and other parameter

ranking methods to promote reconstructed pathways that closely
resemble their NetPath equivalent.
Figure 6 (left) shows the adjusted Matthew’s Correlation

Coefficients (MCCs) of the 48 parameter tuning tasks, excluding
the 12 parameter tuning tasks used for validation. MCC
quantifies the overlap between the reconstructed pathway
edges and NetPath pathway edges (see “Evaluating recon-
structed NetPath pathways”). While pathway parameter advising
has the highest median adjusted MCC, the parameter selection
method has less impact on MCC than it did on pathway
plausibility (Fig. 4). When stratified by pathway reconstruction
algorithm, pathway parameter advising has the highest median
adjusted MCC for PCSF and PathLinker. However, the default
parameters perform almost as well for PathLinker. CV has the
highest adjusted MCC in min-cost flow and NetBox. Of the 48
parameter tuning tasks, pathway parameter advising had the
highest median adjusted MCC 21 times, while CV had 13, default
parameters had 9, and the ResponseNet ranking had 8, including
3 cases where 2 methods tied.
Figure 6 (right) shows the distribution of best possible

unadjusted MCCs for all parameter tuning tasks, including the
three NetPath validation pathways. The best possible MCC was
>0.3 in only 4 of the 60 cases, and it was never >0.4. Given these
low unadjusted MCC values and the overall objective of our study,
the implausible pathway detection experiment is a better
indicator of parameter selection performance.

Influenza host factor pathway reconstruction
To illustrate how pathway parameter advising can guide the
biological interpretation of omic data, we reconstructed an
influenza host factor pathway. Our aim was to create a pathway
that represents aspects of influenza’s infectious activities and
could lead to the discovery of new host factors or host factor
regulators. We created an influenza host factor network using the
1257 host factors from a meta-analysis of eight RNAi screens25

(see “Data sets”). These host factors were given as input to PCSF
using the same range of parameter settings as in the other
experiments, creating a candidate host factor pathway for each
parameter setting.
After creating the candidate host factor pathways, we ranked

the 1000 parameter settings using pathway parameter advising.
Figure 7 (left) shows the PR curve of different parameter ranking
methods’ ability to avoid implausible networks. Pathway

Fig. 4 Performance of parameter selection methods on avoiding implausible networks. Boxplots represent the distributions of the AUPRs
aggregated for 4 pathway reconstruction methods and 12 NetPath test pathways. Boxplots are filled in from the first to third quartiles with a
line at the median and whiskers representing 1.5 times the interquartile range. Degenerate cases where all or no pathways met the plausibility
criteria are excluded. Full results, including the three validation pathways and degenerate cases, can be found in Supplementary Figs. 2–5.
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Fig. 5 Performance of parameter selection methods on avoiding implausible networks as the threshold for plausibility is varied across
different topological features—clustering coefficient, pathway size, hub node dependence, and assortativity—as described in section
“Evaluating reconstructed pathway plausibility”. Lines show median AUPR over the varied thresholds for the other three topological
features for all 12 NetPath test pathways and 4 pathway reconstruction methods. Error bars show the 95% confidence interval.

Fig. 6 Performance of parameter selection methods on pathway reconstruction tasks. Left: adjusted MCC of parameter selection methods
on reconstructing 12 NetPath test pathways across 4 pathway reconstruction methods. MCCs were adjusted by normalizing them to the
highest possible MCC within a given pathway reconstruction method and pathway. Boxplots are filled in from the first to third quartiles with a
line at the median and whiskers representing 1.5 times the interquartile range. Supplementary Fig. 6 shows MCC values by pathway. Right: the
highest possible MCC of pathway reconstruction in 60 parameter sweeps across 4 pathway reconstruction methods and 15 NetPath pathways
(validation and test). The MCC values are generally low, reflecting low overlap between the predicted and NetPath pathway edges.

Fig. 7 Ranking influenza host factor pathway reconstructions. Left: precision–recall curves for implausible networks in PCSF influenza host
factor network construction. Right: a component of the influenza host factor ensemble pathway created from the top 50 PCSF parameter
settings ranked by pathway parameter advising. This component represents 12 of the 86 total nodes in the pathway (Supplementary Fig. 7).
Host factor nodes provided as input are shown in blue, while green nodes are “Steiner” nodes that PCSF predicts to connect the host factors.
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parameter advising ranked the pathways almost perfectly, with an
AUPR of 0.96, while other parameter selection methods had more
difficulty separating implausible from plausible networks. CV and
the ReponseNet rankings performed worse than the random
baseline ranking. Pathway parameter advising performs well not
only on simulated data from NetPath but also on data aggregated
from real high-throughput experiments.
We also created three ensemble networks from the resultant

pathways from the top, middle, and bottom 50 parameter settings
ranked by pathway parameter advising. Ensembling the recon-
structed pathways is a common way to use PCSF. We expect the
top 50 ensemble pathway to be best for downstream analysis and
interpreting the input host factor data. Of the three ensemble
pathways, the ensemble made from the 50 highest ranked
parameters contains 86 nodes. The middle-ranked and low-
ranked ensemble pathways have 7337 and 15 nodes, respectively
(Supplementary Fig. 7). The middle-ranked pathway is too large to
interpret and does not provide meaningful new insights into the
relationships among host factors. The low-ranked pathway is too
small to illuminate new biological hypotheses. The top-ranked
pathway, however, is large enough for meaningful enrichment and
downstream analyses, while remaining small enough to be feasible.
We then performed a gene set enrichment analysis on the top

ensemble pathway using DAVID26 (see “Data sets”). We tested
both Gene Ontology (GO) biological process terms (Supplemen-
tary Table 1) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment (Supplementary Table 2). The top 2
KEGG pathways enriched were RNA transport and influenza A. The
influenza A pathway being enriched is a confirmation that our
ensemble pathway represents influenza processes well.
The RNA transport pathway enrichment captures one unique

aspect of influenza A. It replicates within the nucleus, so it has
complex processes for transporting viral RNA in and out of the
nucleus27. Similar concepts are observed in the top 2 enriched GO
terms, mRNA and tRNA export from nucleus (Supplementary Table
1). We also see other general viral GO terms, which confirm the
top-ranked pathway’s representation of influenza, such as viral
transcription and intracellular transport of virus. Viral transcription,
mRNA export from nucleus, and tRNA export from nucleus all
contain the same six ensemble pathway members, while mRNA
export contained an additional three unique pathway members
and viral transcription contained an additional two unique
pathway members.
Figure 7 (right) shows one connected component representing

12 of the 86 nodes from the top-ranked ensemble pathway. One
node in particular, NXT2, was not among the original host factors

but was identified as a possible host factor in a later genome-
wide CRISPR/Cas9 screen28. This demonstrates how pathways
chosen through pathway parameter advising could guide new
discoveries.
The influenza study also illustrates the danger of running

pathway reconstruction methods with default parameters alone.
The PCSF network constructed using default parameters had
6676 nodes, which is too large to interpret. We examined the
role of NXT2 in the pathway reconstructed using default
parameters. Figure 8 shows the subnetworks from this pathway
for all nodes reachable within three and two edges of NXT2. As
opposed to a functionally cohesive subnetwork, NXT2 only
connects to a high-degree node. This node then connects to
APP and SUMO2, which are the second highest degree nodes in
the interactome. As a result, 727 nodes are within three edges of
NXT2, which is more likely an artifact of the PCSF algorithm run
with improper parameters than a meaningful biological pathway
structure. This hub-based structure gives much less insight into
the role of NXT2.

Evaluating the ranking metric
To further assess the validity of our pathway ranking metric, we
explored several properties of the graphlet distance score. We first
examined the overall distribution of graphlet distances (E(G) in
“Pathway parameter advising”) across all pathway reconstruction
methods, Reactome pathways, and Reactome pathways with
added noise. E(G) is the score used by pathway parameter
advising to rank pathways. The E(G) distribution for each pathway
reconstruction algorithm summarizes reconstructed pathways
from every parameter setting applied to the sampled inputs from
all 15 NetPath pathways. We added noise to Reactome pathways
by randomly removing a percentage of all edges in the pathway
and adding back that number of edges that did not appear in the
original pathway. We also calculated the graphlet distances
between each Reactome pathway and all of the other Reactome
pathways. Figure 9 shows these distributions of graphlet
distances. Reactome pathways had a lower mean distance to
other Reactome pathways than any set of reconstructed path-
ways, confirming that our metric ranks reference pathways over
reconstructed pathways.
We also explored how adding noise to the reference pathways

affects the performance of pathway parameter advising. We
assessed implausible pathways using Reactome pathways with
increasing amounts of noise as the reference pathways. The
level of noise had almost no effect on pathway parameter

Fig. 8 All nodes within distance 3 (left) and distance 2 (right) of NXT2, which is highlighted in orange, in the PCSF influenza host factor
pathway reconstructed from default parameters. The default parameters resulted in a large hub node focused pathway with little useful
biological insight.
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advising’s ability to recognize and deprioritize implausible
pathways (Supplementary Fig. 8). This may be due to how the
noise randomly edited the Reactome pathways. If the random
changes to the Reactome pathways are unbiased, then the
changes in graphlet frequencies may cancel each other out in
aggregate.
In order to examine the possibility that unconnected graphlets

dominate the ranking metric, we first examined the breakdown of
total graphlet distance by each of the individual graphlets in Fig. 3.
Supplementary Fig. 9 shows the contribution of each graphlet to
the ranking metric. While a single graphlet, the four unconnected
nodes graphlet, does have the largest contribution to graphlet
distance, its median contribution to the ranking metric’s value is
only 30%. Because biological pathways tend to be sparse, this
graphlet count scales with pathway size. Thus, pathway size may
contribute to ~30% of the ranking metric.
To confirm that this unconnected graphlet was not negatively

impacting our ranking metric, we also examined its contribution
to implausible pathway detection performance. On the three
NetPath validation pathways, we found that using only the
graphlet with four disconnected nodes resulted in poor perfor-
mance (Supplementary Fig. 10) and that its inclusion moderately
boosted performance.
Finally, we compared the graphlet frequency distance (GFD)

we selected for pathway parameter advising with two
alternatives: normalized graphlet frequency distance (NGFD)
and graphlet correlation distance (GCD). The choice of distance
calculation affects how parameter settings are ranked. When we
run multiple pathway reconstruction algorithms to reconstruct
the three NetPath validation pathways, GFD outperforms NGFD
and GCD (Supplementary Fig. 11). One possible explanation is
that unlike GCD, GFD does not attempt to eliminate the signal
of global topological properties such as size. Some signal of
global topology likely helps identify which reconstructed
pathways are similar to reference pathways, improving the
NetPath reconstruction.

DISCUSSION
Pathway parameter advising selects parameters that lead to
useful, plausible pathways for a variety of pathway reconstruction
algorithms. This parameter tuning approach is algorithm agnostic
and uses background knowledge in the form of pathway
databases to succeed in selecting reasonable pathways during
pathway reconstruction.
Many of the networks down-ranked by pathway parameter

advising, such as pathways with many thousands of nodes or
pathways consisting only of a single node and its neighbors, seem
obvious to avoid. Typically, these types of reconstructed pathways
are ignored through a process of manual trial and error. Any
manual step in the pathway analysis could lead to human error,
may accidentally introduce bias into the final pathway model, and
limits the number of parameter combinations that can be
assessed. Therefore, automatically avoiding these poor pathways
is important. The specific choice of criteria for defining implausible
pathways was inconsequential. Pathway parameter advising
excelled at implausible pathway detection compared to other
parameter ranking methods for all definitions of implausibility.
Pathway parameter advising quantifies and deprioritizes implau-
sible topologies without any human intervention except for the
inclusion of background knowledge.
In addition to avoiding implausible pathways, pathway para-

meter advising narrowly performed best at reconstructing
NetPath pathways. Although it was less clearly dominant than in
the implausible pathway detection experiment, this further
highlights its effectiveness. Much of the total performance is
driven by how well pathway parameter advising performs in PCSF,
though it is also the only parameter selection strategy to be either
the first or second highest performing for all four pathway
reconstruction methods. However, the raw MCC values in many
parameter tuning tasks were so low that differences in MCC were
driven by only a few interactions, so this experiment alone does
not provide enough evidence to draw strong conclusions.
We also found that no single graphlet dominated our ranking

metric. There are likely two causes. In larger networks, such as
complete protein interaction networks, disconnected graphlet
counts can dominate other graphlets by orders of magnitude29. In
contrast, the networks in biological pathway reconstruction tend
to not be large enough for the portion of unconnected graphlets
in sparse graphs to completely dominate other graphlets. In
addition, our ranking metric only calculates distance from the
closest 20% of reference pathways. Thus, the signal of pathway
size from the four unconnected nodes graphlet guides the
selection of the closest reference pathways to pathways of similar
size. Within this 20%, other graphlets representing more local
topology have a larger contribution.
Although we used different pathway databases in our experi-

ments for reconstructing pathways from sampled nodes and the
set of reference pathways, it is possible that some pathways are
similar across the NetPath and Reactome databases. Cross-
database pathway similarity could cause a version of the
reconstructed pathway to be used as a reference pathway.
However, even if this is the case, the shared pathway would be 1
of the over 1000 Reactome pathways used as a reference. Thus, its
effect on the ranking metric would be negligible.
In all experiments, other parameter selection methods espe-

cially struggled choosing parameters for PCSF. Finding a good
parameter setting for a method with multiple, complex para-
meters like PCSF can be especially difficult and important and is
where pathway parameter advising is most useful. In contrast, a
method like PathLinker contains a single parameter, which
monotonically increases pathway size. Changing the parameter
value has a relatively predictable effect.
There are some drawbacks to pathway parameter advising. It

requires a parameter sweep as opposed to a single run with the

Fig. 9 Distribution of aggregated graphlet-based distances (E(G))
for reconstructed pathways, Reactome pathways, and Reactome
pathways with added noise. These aggregate distances were the
metric used by pathway parameter advising to rank pathways, with
lower distances being ranked higher. They were calculated by
comparing the candidate pathway (reconstructed pathway, Reac-
tome pathway, or noisy Reactome pathway) with all of the reference
Reactome pathways. Distributions for pathway reconstruction
methods are made up of all reconstructions performed across all
parameter settings tested on the 15 NetPath pathways. However,
Reactome pathways were excluded from their own distance
calculation. Vertical dashed lines show the mean graphlet distance.
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default parameter setting. This greatly increases overall runtime
for some pathway algorithms. Because pathway parameter
advising is algorithm agnostic, it makes no assumptions about
the parameter space it is optimizing. Thus, pathway parameter
advising has no way of knowing if the range of parameters
considered is broad enough to find the optimal pathway.
However, it is worth noting that all other parameter selection
methods tested except for the default parameters suffer from this
drawback as well.
Another potential limitation is that pathway parameter

advising is dependent on a database of reference pathways.
The popular pathway database Reactome works well in analyses
here. However, if the optimal predicted pathway is reasonable
but outside the range of topologies seen among the reference
pathways, it would be overlooked.
Our distance metric focuses only on topology and does not

include any information about the biological context. Response-
Net30 and PathLinker31 extensions consider tissue-specificity and
protein localization context, respectively. A possible extension of
pathway parameter advising would be to account for this
information, such as adding a penalty for interactions that occur
in different tissues or cellular compartments. Similarly, we used
the entire Reactome database as the reference pathways. Limiting
the reference pathways to a certain process or function, such as
signal transduction or disease, could allow pathway parameter
advising to select pathways more similar to a domain of interest.
In addition, instead of computing graphlet distance using 20% of
all reference pathways, we could first cluster the reference
pathways and consider the distances only to pathways in the
most topologically similar cluster.
Now that we have demonstrated the utility of pathway

parameter advising to evaluate predicted pathways, it could be
wrapped with hyperparameter optimization to fully automate the
process with a Bayesian optimization framework32–34. This would
allow for complete and standardized automation of the pathway
reconstruction process. It could reduce the overall time required
to select parameters as well because the parameter space can be
explored adaptively instead of through an exhaustive grid search.
Avoiding a parameter grid search is most valuable for pathway
reconstruction methods like PCSF and ANAT8 that have several
tunable parameters.

METHODS
Pathway parameter advising
Pathway parameter advising is based on the parameter advising frame-
work22. A parameter advisor consists of two parts: a set of candidate
parameter settings S and an accuracy estimator E. The parameter advisor
evaluates each candidate parameter setting in S using E to estimate the
optimal parameter set. In order to adapt parameter advising to the
pathway reconstruction domain, we must choose a function E that can
estimate the quality of a reconstructed pathway. While we do not have a
direct way to define what criteria an optimal solution satisfies, we do have
access to pathways that match biologist intuition of what a biological
pathway should look like. Curated pathway databases, such as the KEGG35,
Reactome36, and NetPath37, contain pathways that have been compiled by
biologists. Therefore, we can construct our estimator around these curated
pathways. This leads to the key assumption of pathway parameter
advising: reconstructed pathways more topologically similar to manually
curated pathways are more useful to biologists.
Our parameter tuning approach requires the inputs to the pathway

reconstruction algorithm, a set of candidate parameter settings, and a set
of pathways from a reference pathway database. Pathway reconstruction
algorithms’ input typically consists of an interactome, such as STRING38,
and a set of biological entities of interest, such as genes or proteins. We
refer to the pathways created by the algorithm as “reconstructed”
pathways and the curated database pathways as “reference” pathways.
Pathway parameter advising uses a graphlet distance-based estimator E to
score each reconstructed pathway’s similarity to the reference pathways.

It uses these scores to return a ranking of the reconstructed pathways (or
their respective parameter settings).
Pathway parameter advising is designed to be method agnostic. It can

be run with any pathway reconstruction algorithm that outputs pathways
and has user-specified parameters. Currently, pathway parameter advising
is designed to examine undirected graphs, and directed graphs are
converted to be undirected.
In order to topologically compare reconstructed and reference path-

ways, we first decompose all pathways into their graphlet distributions. A
graphlet is a subgraph of a particular size within a network. The concept of
graphlets is similar to that of network motifs39. However, network motifs
typically refer to graphlets that appear in a network significantly more
often than expected by chance.
Original work with graphlets only considered connected graphlets to

better capture local topology24. However, we use both connected and
disconnected subgraphs, thus allowing all possible combinations of nodes
in a pathway to be considered a graphlet. This allows our parameter
ranking to capture global topological properties such as pathway size in
addition to local topology. One disadvantage of disconnected graphlet
counts is that the counts of disconnected graphlets, such as the graphlet
containing four unconnected nodes, grow at a much faster rate than those
of connected graphlets in sparse networks. However, this does not
adversely affect our ranking metric (see “Evaluating the ranking metric”).
Pathway parameter advising uses the parallel graphlet decomposition

library40 to calculate counts of all graphlets up to size 4 in a pathway. This
constitutes 17 possible graphlets (Fig. 3). We convert these counts into
frequencies and represent each pathway by a vector of 17 values between
0 and 1. This vector, referred to as the graphlet frequency distribution,
summarizes the topological properties of a pathway, which allows us to
quantify topological similarity.
To calculate the topological distance between two pathways, we take

the pairwise distance of their graphlet frequency distributions. For
pathways G and H, we denote their frequencies of graphlet i as Fi(G) and
Fi(H), scalars between 0 and 1. We then define the GFD D(G, H) as follows:

DðG;HÞ ¼
X17

i¼1

jFiðGÞ � FiðHÞj (1)

This differs from relative GFD, which log transforms and scales the raw
graphlet counts24. We considered other graphlet-based metrics such as a
variation of relative GFD and GCD41 but found that they performed worse
in our preliminary analyses (Supplementary Fig. 11).
After calculating the graphlet frequency distribution for each recon-

structed and reference pathway, we can calculate their mean GFD to the
reference pathways to get E. When calculating this aggregate distance, we
only consider the 20% closest reference pathways to the reconstructed
pathway. The threshold choice has little impact on the parameter ranking
(Supplementary Fig. 12). It is motivated by not requiring a reconstructed
pathway to be similar to every reference pathway but instead similar to at
least some reference pathways. Thus, a pathway G’s score E(G) is calculated
as:

EðGÞ ¼
P

r2Rtop DðG; rÞ
Rtop
�� �� (2)

where Rtop is the set of the 20% closest reference pathways to G. The
pathways, or equivalently the parameters used to generate those
pathways, are sorted by E(G) in ascending order. Once the final ranking
is created, the top reconstructed pathway can be used for downstream
analysis. Alternatively, the top n pathways can be merged into an
ensemble pathway.

Pathway reconstruction methods
Pathway reconstruction algorithms were chosen to have a wide range of
methodologies, from NetBox’s statistical test to PathLinker’s weighted
shortest paths algorithm. We used the following four methods for our
implausible pathway detection and NetPath reconstruction experiments.
These methods and the parameters tested are summarized in Table 1.

PathLinker. PathLinker9 reconstructs pathways based on a weighted k-
shortest paths algorithm. It finds paths between sets of receptors and
transcriptional regulators, similar to the source and target nodes in
minimum-cost flow. It is controlled by the parameter k, which defines how
many paths to return in the final network. We varied k from 1 to 1000 in
increments of 1. We used PathLinker version 1.1 for all analyses.
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NetBox. NetBox10 hierarchically constructs networks from a set of input
nodes. At each iteration, it searches for linker nodes that connect two
nodes in the current network. It then chooses to add these linker nodes to
the network based on the results of a hypergeometric statistical test
comparing the degree of the linker node to how many nodes in the
pathway it connects. NetBox is controlled by the parameter p, a p value
threshold, which sets the threshold for whether or not linker nodes should
be included. We varied p from 0 to 1 on a log scale from 1 × 10−30 to 1 in
increments of half an order of magnitude, giving a total of 60 steps. We
used NetBox version 1.0 for all analyses.

Prize-Collecting Steiner Forest. In PCSF6,14,42, nodes are assigned prizes and
edges are given costs. The optimal subnetwork, which is found via a
message-passing algorithm43, is the pathway F consisting of nodes NF and
edges EF that best balances collected prizes versus cumulative edge costs
according to the following function:

argmin
F

X

n=2NF

ðβ ´ pðnÞ � μ ´ dðnÞÞ þ
X

e2EF
cðeÞ þ ω ´ κ (3)

where p() is the positive prize for each node, d() is a node’s degree, c() is
the cost of each edge, and κ is the number of connected components in
the pathway. The optimal subnetwork is always a tree- or forest-structured
graph. We varied three PCSF parameters: β, which controls the relative
weight of the node prizes versus edge costs, was varied from 0 to 5 in
increments of 0.5; μ, which affects the penalty for high-degree nodes, was
varied from 0 to 1 in increments of 0.1; and ω, which controls the cost of
adding an additional tree to the solution network, was varied from 0 to 10
in increments of 1. We used version 1.3 of the msgsteiner message-passing
algorithm and version 0.3.1 of OmicsIntegrator for all analyses.

Minimum-cost flow. The minimum-cost flow problem assigns certain
nodes in the network to be “sources” and others to be “targets.” Edges,
which transport the flow from node to node, have a cost associated with
using them and a capacity of how much flow they can hold. The solution
is the network that satisfies the flow requirements of the source and
target nodes while using the lowest cost in edges12. We implemented a
version of min-cost flow using the solver provided in Google’s OR-Tools
(https://developers.google.com/optimization/flow/mincostflow), which
solves the min-cost flow problem using the algorithm outlined in
(Bünnagel et al., 1998)44. This is a generic version of the algorithm used
in ResponseNet11. Two parameters control the min-cost flow solution:
the total flow through the network, which we vary from 1 to 50 in
increments of 1, and the edge flow capacity, which we vary from 1 to 25
in increments of 1. We used Google’s OR-Tools version 7.1.6720 for all
analyses.

Alternate parameter selection methods
We compare our pathway parameter advising approach to the following
parameter selection strategies from the literature.

Cross-validation. CV involves splitting the input data, the biological nodes
of interest provided to the pathway reconstruction algorithm, into training

and testing sets multiple times for each parameter setting. For example,
the input data could be sampled nodes from a NetPath pathway. A
pathway reconstruction method is then run on each training set and
evaluated on each respective testing set. In this problem setting, we do not
have external ground truth with which to evaluate the predictions on test
set data. Instead, we perform fivefold CV on subsets of the input data,
producing a pathway from the training set nodes. The parameter values
that produce pathways that recover the highest proportion of the test set
nodes are chosen.

ResponseNet ranking. We also tested a parameter selection heuristic used
by ResponseNet20. The criterion is to select parameters that result in a
pathway whose nodes include at least 30% of the input data, while having
the lowest proportion of low confidence edges. We extend this to rank the
pathways that do include 30% of the inputs by their proportion of low
confidence edges, followed by the pathways that include <30% of the
inputs to form a full ranking.

PCSF robustness ranking. As suggested by (Kedaigle & Fraenkel, 2018)14,
for PCSF we can also rank pathways by their robustness. Robustness is
measured by how often nodes appeared in multiple runs with small
random perturbations to the scores on the input nodes. We only applied
this strategy to reconstructed pathways from PCSF. Although it could be
adapted to other pathway reconstruction methods, we decided to use it
only in the method for which it was directly implemented.

Evaluating reconstructed pathway plausibility
In order to examine the ability of pathway parameter advising to avoid
parameter settings that lead to impractical pathways, we created
topological criteria that we use to define pathways as plausible or
implausible. These criteria are based on the literature where possible and
were created without considering the topology of pathways from pathway
databases. However, given that curated pathway databases are also based
on information from the literature, these plausibility criteria should not be
considered completely independent from the pathway databases. We use
these criteria as a heuristic to label pathways as positive (plausible) or
negative (implausible). The labels enable us to evaluate pathway rankings
as a classification problem, determining if a method can correctly rank
plausible reconstructed pathways before implausible pathways. These
criteria are based on previous analyses of biological networks and are
as follows.

Size. We allowed pathways that had between 10 and 1000 nodes.
Pathways whose size was outside this range are not practical for
hypothesis generation and downstream analysis.

Hub node dependence. A common issue with pathway reconstruction is
an over-reliance on high-degree or hub nodes. Dominant hub nodes can
create pathways consisting almost entirely of a single node and its
neighbors with few to no connections between those neighbors14. We
score hub node dependence using the ratio of the degree of the highest
degree node to the average node degree of the entire pathway. If the

Table 1. The four pathway reconstruction methods and the parameters (in bold) tuned for each.

Algorithm Description Parameters and default values Range tested

PathLinker9 Connects receptors to transcriptional regulators via weighted k-
shortest paths.

k (default= 100): number of shortest paths 1–1000

NetBox10 Hierarchically constructs network using hypergeometric test. p (default= 0.05): p value threshold for
adding an edge

0–1

Prize-Collecting
Steiner Forest6,42

Assigns prizes to nodes and costs to edges; solves for highest
scoring subnetwork with message-passing algorithm.

β (default= 1): relative weight of the node
prizes versus edge costs

0–5

ω (default= 6): cost of adding an
additional tree to the solution network

0–10

μ (default= 0): degree penalty 0–1

Minimum-cost flow12 Assigns edges costs and nodes as sources and targets of flow.
Finds the network that satisfies flow constraints for the
least cost.

f (default= 10): amount of flow pushed
through the network from sources to
targets

1–50

c (default= 1): edge flow capacity 1–25
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maximum degree is more than 20 times greater than the average degree,
we consider the pathway implausible.

Clustering coefficient. Biological networks have been found to have
clustering or community structure that is hierarchical45; communities
within the network exist at multiple scales and are often nested within
each other. Thus, it would be reasonable to expect a plausible biological
pathway to have at least a moderate level of community structure. We
calculate the average clustering coefficient of all nodes in the pathway, a
common metric for measuring community structure46. The clustering
coefficient of a node is the proportion of its neighbors that are also
neighbors of each other. This can be averaged over all nodes in the
pathway as a measure of the overall level of clustering. We require
pathways to have a mean clustering coefficient of at least 0.05, as we
expect at least some small level of clustering to exist. Because this
requirement eliminated all PCSF pathways in 25% of parameter tuning
tasks, when evaluating PCSF we excluded this metric in all cases.

Assortativity. A network’s level of assortative mixing is defined as the
tendency of high-degree nodes to be connected to other high-degree
nodes. Biological networks have been found to be generally disassortative,
meaning that high-degree nodes tend to be connected to low-degree
nodes47,48. Assortativity is measured between −1 and 1, where assortative
networks have positive values and disassortative networks have negative
values. This value can be viewed as the correlation between a node’s
degree and its neighbors’ degrees within the pathway. We consider
pathways with assortativity between −1 and 0.1 plausible to allow for
some leeway in pathways being slightly assortative.
We selected these criteria based on attributes it would be reasonable to

expect a biological pathway to have, with values supported by the
literature where possible. If any of these criteria are not met, we consider
the pathway to be implausible. These thresholds were not influenced by
the graph topologies in the reference pathway database in order to
minimize circularity between the reference pathway-based rankings and
the plausibility criteria used to evaluate those rankings. However, most of
the reference pathways we considered happen to be plausible. Seventy-
seven percent of the Reactome pathways we used as reference pathways
are plausible, though it should be noted that these Reactome pathways
have already been filtered by size (see “Data sets”).
While the criteria for defining a plausible network are useful for

comparing networks created by the same method with different
parameter settings, they should not be considered as a metric for
comparing pathways across pathway reconstruction methods. Different
pathway reconstruction methods are able to use different sources of
information and have complex strengths and weaknesses beyond the local
topologies they return. For instance, NetBox, which had the highest
proportion of plausible pathways, cannot take into account information
such as edge confidence or scores on proteins of interest that other
methods such as PCSF can. Furthermore, the four plausibility properties are
a binary way to determine if a pathway is reasonable or unreasonable.
They cannot be used to rank pathway reconstruction parameters.
In order to make sure that our experimental results are not overly

sensitive to the specific choice of thresholds for pathway plausibility, we
tested other thresholds in a grid search. We varied the maximum network
size threshold from 200 to 2000, the hub node dependence measure from
5 to 50, the clustering coefficient threshold from 0.0 to 0.1, and the
assortativity threshold from −0.5 to 0.5. Each range was divided into ten
intervals, for a total of 10,000 sets of plausibility thresholds. Figure 5 and
Supplementary Fig. 1 evaluate the pathway reconstruction methods across
these different thresholds.

Evaluating reconstructed NetPath pathways
When comparing reconstructed pathways to the original NetPath path-
ways in section “Quality of NetPath pathway reconstruction,” we used MCC
to quantify the reconstruction quality49. MCC is a metric used in binary
classification that ranges between −1 and 1, where 1 indicates a perfect
binary classification and −1 indicates a completely incorrect classification.
It can be viewed as the correlation between the predicted and true labels
in a classification task. MCC has been shown to be well suited to evaluate
classification in imbalanced settings50. In order to treat comparing a
reconstructed and a NetPath pathway as a classification task, we consider
all edges in a NetPath pathway as the positive set and all other edges as

the negative net. MCC is then defined as follows:

MCC ¼ TP´ TN� FP ´ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (4)

where TP is the number of true positives (edges that appear in both the
NetPath and reconstructed pathway), FP is the number of false positives
(edges that do not appear in the NetPath pathway but do in the
reconstructed pathway), TN is the number of true negatives (edges that do
not appear in either the NetPath pathway or the reconstructed pathway),
and FN is the number of false negatives (edges that appear in the NetPath
pathway but not in the reconstructed pathway). When comparing MCC
values of multiple pathways and reconstruction methods, we normalized
MCC values by the best possible MCC among all tested parameter values
for that pathway and method. We refer to this value as the adjusted MCC.

Data sets
For both PathLinker and NetBox, we used the interactome included as a
part of their software packages. For PCSF and min-cost flow, we used an
interactome from (Köksal et al., 2018)3 that merged protein interactions
from the iRefIndex database v1351 and kinase–substrate interactions from
PhosphoSitePlus52. The interactions from the iRefIndex database include
confidence scores, while confidence scores for kinase–substrate interac-
tions were inferred from the number of interactions for each
kinase–substrate pair and the type of experiment that detected the
interaction. If an interaction was included in both databases, the
PhosphoSitePlus interaction was used. This resulted in a network with
161,901 weighted edges.
All parameter tuning was performed with Reactome as the set of

reference pathways. Reactome36 is a database of manually curated
pathways, including 2287 human pathways. Reactome is open-source,
where all contributions must provide literature evidence and are reviewed
by an external domain expert before being added. Pathways smaller than
15 nodes were excluded, as they were too small for meaningful
interpretation. Reactome pathways were retrieved using Pathway Com-
mons53. Pathway Commons converted from the Reactome data model to a
binary interaction model using a set of rules for each interaction type
(https://www.pathwaycommons.org/pc/sif_interaction_rules.do).
The implausible pathway detection and NetPath reconstruction experi-

ments were performed on pathways from the NetPath database. NetPath
is a collection of 36 manually curated human signal transduction
pathways37. We used 15 NetPath pathways that contain at least 1 receptor
and transcriptional regulator and are sufficiently connected, as described
by (Ritz et al., 2016)9. We designated three of these NetPath pathways as
validation pathways: Wnt, TGF beta, and TNF alpha. Validation pathways
were used to guide the choice of distance measure. The remaining 12
pathways were reserved as test pathways for quantitative evaluations. We
sampled the NetPath pathways in different ways for each pathway
reconstruction algorithm to provide inputs in their expected formats,
generally following the node sampling protocol that PathLinker9 used to
reconstruct NetPath pathways. PCSF and NetBox do not require sources
and targets, so we randomly sampled 30% of the pathway nodes as input.
We also assigned each input a random prize sampled uniformly between 0
and 5 for PCSF. For PathLinker and min-cost flow, which require sources
and targets, we selected all transcription factors and receptors for each
pathway as outlined by (Ritz et al., 2016)9.
Influenza host factors were gathered from a meta-analysis of eight

genome-wide and targeted RNAi screens25. These screens used RNAi to
measure the effect of each screened gene’s knockdown on influenza
infection. For instance, (Watanabe et al., 2014).54 assessed influenza viral
replication 48 h after infection. They identified host genes whose knock-
down substantially impacted viral titers relative to a negative control
(Tripathi et al., 2015).25 merged the hits from the eight RNAi screens to
obtain 1257 pro-viral host genes and separately calculated a consolidated
Z-score from the normalized activities scores in the four genome-wide
screens. We selected these 1257 host factors as inputs for pathway
reconstruction and set the PCSF node prize to the absolute value of the
consolidated Z-score.
GO55 and KEGG pathway35 enrichment was carried out with DAVID

v6.726. Enrichment was performed using GO biological process terms and
all KEGG pathways. Thresholds for term inclusion were set to a count of 2
and an EASE score of 0.1.
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Pathway parameter advising implementation
A Python implementation of pathway parameter advising is available at
https://github.com/gitter-lab/pathway-parameter-advising under the MIT
license. While v0.1.0 and later versions of the pathway parameter advising
software support Python v3.6, the results here used Python v2.7.16 and
Anaconda v2019.03. The following package versions were used: pandas
v0.24.2, networkx v2.2, numpy v1.16.2, matplotlib v2.2.3, and seaborn
v0.9.0. The Parallel Graphlet Decomposition library was pulled from GitHub
on April 30, 2019.

Preprint
The article was previously published as a preprint56.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All pathway data are publicly available at http://netpath.org/browse and from https://
www.pathwaycommons.org/ using the query https://www.pathwaycommons.org/
pc2/search?q=*&type=pathway&datasource=reactome.

CODE AVAILABILITY
The pathway parameter advising software is available from GitHub at https://github.
com/gitter-lab/pathway-parameter-advising and PyPI at https://pypi.org/project/
pathwayParameterAdvising/. The software is archived on Zenodo at https://doi.org/
10.5281/zenodo.3985899.
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