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Multi-omic regulatory networks capture downstream effects of
kinase inhibition in Mycobacterium tuberculosis
Albert T. Young 1, Xavier Carette2,3, Michaela Helmel3,4, Hanno Steen 2,3,4, Robert N. Husson 2,3, John Quackenbush 5,6 and
John Platig 3,6✉

The ability of Mycobacterium tuberculosis (Mtb) to adapt to diverse stresses in its host environment is crucial for pathogenesis. Two
essential Mtb serine/threonine protein kinases, PknA and PknB, regulate cell growth in response to environmental stimuli, but little
is known about their downstream effects. By combining RNA-Seq data, following treatment with either an inhibitor of both PknA
and PknB or an inactive control, with publicly available ChIP-Seq and protein–protein interaction data for transcription factors, we
show that the Mtb transcription factor (TF) regulatory network propagates the effects of kinase inhibition and leads to widespread
changes in regulatory programs involved in cell wall integrity, stress response, and energy production, among others. We also
observe that changes in TF regulatory activity correlate with kinase-specific phosphorylation of those TFs. In addition to
characterizing the downstream regulatory effects of PknA/PknB inhibition, this demonstrates the need for regulatory network
approaches that can incorporate signal-driven transcription factor modifications.
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INTRODUCTION
Mycobacterium tuberculosis (Mtb) remains one of the world’s
deadliest pathogens, with 10 million people falling ill with
tuberculosis (TB) and 1.5 million people dying from TB in 20181.
The emergence of multidrug-resistant and extensively drug-
resistant Mtb strains threatens to undermine global TB control
efforts.
Much of Mtb’s success as a pathogen can be attributed to its

ability to adapt to diverse environmental stresses encountered
during the course of chronic infection2. Protein kinases anchored
on the mycobacterial cytoplasmic membrane are critical for
responding to environmental stimuli and transducing signals to
various cellular processes3. The essential Mtb serine/threonine
protein kinases (STPKs) PknA and PknB are excellent targets to
characterize in the context of future drug development, as they
regulate several processes required for cell growth and division,
including the biosynthesis of essential components of the cell
envelope (peptidoglycan, mycolic acids, and other cell wall lipids
and carbohydrates)4. For example, cells in which PknA or PknB
gene expression was inhibited displayed an abnormal shape,
indicating the two kinases are key regulators of cell division and
cell shape in Mtb5. However, our understanding of the down-
stream transcriptional pathways by which PknA and PknB regulate
these and other cellular processes is limited, and the basis of their
essentiality is unknown.
To measure the downstream effects of PknA/PknB signaling, we

used a potent small molecule inhibitor of both PknA and PknB
along with an inactive negative control, then collected multiple
omics data types as detailed in ref. 6. To follow the propagation of
this signaling perturbation, we sought to identify differences in
transcription factor (TF) regulation in the inhibitor- and control-
treated gene expression programs by reconstructing TF regulatory
networks in the active (inhibitor) and control conditions. While
condition-specific binding information for all TFs was not

available, we combined recently generated ChIP-seq data for
143 TFs (as defined in ref. 7) in Mtb and protein–protein interaction
data8 with RNA-Seq data from inhibitor- or control-treated
samples using the TF regulatory network reconstruction algorithm
PANDA9 (Fig. 1).
By comparing network topologies of these inhibitor and

control networks, we first identify TFs that change their
regulation in response to PknA/PknB inhibition as measured
by change in TF node strength (sum of outbound edge
weights). We also show that change in TF node strength is
correlated with change in phosphorylation status of the TF after
PknA/PknB inhibition, suggesting that our network approach is
modeling the downstream effects of the kinase inhibition.
Second, we show that genes that are differentially regulated as
measured by their change in gene node strength (sum of
inbound edge weights) are enriched for multiple functions,
including mycobactin synthesis, with additional validation that
mycobactin levels are indeed changed upon PknA/PknB
inhibition6. Third, we demonstrate that network “communities”
(modules) in the inhibitor-treated network show condition-
specific functional enrichment, which are validated by follow-
up experiments.

RESULTS
We created separate inhibitor- and control-specific TF regulatory
networks by combining inhibitor- and control-treated gene
expression data, respectively, with publicly available TF binding
and protein–protein interaction data using PANDA9 (see “Meth-
ods” for details). For each network PANDA outputs a fully
connected bipartite graph with 568,282 weighted edges between
143 TFs and 3974 genes. The weight of each edge between a TF
and gene can be interpreted as a z-score representing the
confidence of a regulatory relationship. While we found that many
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edge weights were highly similar in both conditions (Supplemen-
tary Fig. 1), our top 100 edges with the greatest change in edge
weight connected 10 TFs and 67 genes, suggesting that multiple
TFs and genes were responding to the kinase perturbation. To
investigate this more systematically, we focused first on the
network changes around each TF.

Comparing networks uncovers PknA/PknB-specific targeting
patterns of TFs
To identify TFs that appear to change their regulation in response
to the kinase inhibitor, we used the sum of all outbound edge
weights for a TF (“TF node strength”). We define the difference in
TF node strength between kinase inhibitor- and control-treated
networks as “differential targeting.” We consider “PknA/PknB-
specific TFs” to be TFs with statistically significant differential
targeting (see “Methods” for details).
These PknA/PknB-specific TFs (Table 1 and Supplementary Data

1) are involved in processes we expect to be differentially
regulated in the context of PknA/PknB inhibition. Rv0081, the
most differentially targeting TF, is a regulatory hub in the context
of hypoxia, a condition that induces a stress response with

similarities to PknA/PknB inhibition10. Other top differentially
targeting TFs include the response regulator TrcR, which activates
its own coding gene expression and represses Rv1057, a β-
propeller protein gene whose expression is also mediated by
SigE11. Lsr2 is a global transcriptional regulator that may be
responsible for many cell wall functions and is required for
adaptation to changing oxygen levels12,13. CsoR, the TF with the
greatest increase in targeting in kinase inhibitor-treated cells, is a
copper sensing transcriptional regulator that may promote Mtb
survival by mediating a response to copper toxicity14. The
transcriptional response of the CsoR regulon to PknA/PknB
inhibition mirrors that of copper exposure15 (Fig. 2). KstR, a
transcriptional repressor, controls a number of genes involved in
cholesterol and fatty acid catabolism16. Thus, each of the top 10
PknA/PknB-specific TFs with known function is involved in either
signal transduction, cell wall function, or lipid metabolism-
processes, which PknA and PknB regulate. Given this, we propose
Rv0678, Rv0324, Rv0465c, Rv1985c, and Rv0023, which have
unknown functions, to be candidate downstream regulators most
affected by PknA/PknB inhibition as determined by change in TF
node strength.

Compare
node strength

Compare
communities

Fig. 1 Summary of the experimental design and network comparisons. Using a message passing framework9 (see “Methods”) we integrated
ChIP-seq and transcription factor protein–protein interaction (PPI) data with condition-specific gene expression data to build kinase inhibitor
and control gene regulatory networks. Network edges connect TFs to genes and are weighted to reflect the confidence (in z-score units) of a
regulatory relationship based on the concordance between omics data types. The TF node strength is defined as the sum of all weights for
edges emanating from the TF, and gene node strength is the sum of all weights for edges terminating at the gene. The inhibitor and control
networks were clustered into groups containing both TFs and genes using bipartite community detection25,29 as detailed in the “Methods”.

Table 1. Top ten transcription factors ranked by absolute change in node strength between inhibitor and control networks. P-values are calculated
from permutations (see “Methods”).

RV Node strength diff. P-value Genes Product

Rv0081 −160.8 0.001 transcriptional regulator, ArsR family

Rv1033c −123.6 0.001 TrcR DNA-binding response regulator TrcR

Rv0678 −118.1 0.001 Conserved protein

Rv0324 −108.2 0.001 Transcriptional regulator, ArsR family

Rv3597c −106.9 0.001 Lsr2 Histone protein Lsr2

Rv0967 97.2 0.021 CsoR Copper-sensitive operon repressor CsoR

Rv0465c −89.0 0.005 Transcriptional regulator, XRE family

Rv1985c −84.2 0.001 HTH-type transcriptional regulator

Rv3574 −82.4 0.005 KstR Transcriptional regulator kstR (Rv3574), TetR family

Rv0023 −77.5 0.002 Transcriptional regulatory protein
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Change in TF node strength is associated with change in TF
phosphorylation
To test whether the signaling perturbation of PknA/PknB
inhibition was detected in our networks, we used phosphopro-
teomic data collected from samples treated with the PknA/PknB
inhibitor or control and calculated log2 fold change values to
determine the phosphorylation status of the TFs in our networks.
Peptides for 14 TFs were detected, 11 of which were differentially
phosphorylated at an adjusted P-value < 0.05. We then compared
the change in node strength between the inhibitor and control
networks for each TF to the change in phosphorylation (Fig. 3) and
find that these are significantly correlated (Spearman’s rho of
0.618, P= 0.0213). MtrA is one such TF. It has the 13th (out of 143)
largest change in node strength between the inhibitor and control
networks. MtrA is also ranked third in differential phosphorylation
among the 14 TFs measured (Fig. 3). We also recently demon-
strated that phosphorylation of MtrA inhibits DNA binding to the
FbpB promoter6.
This discovery suggests that changes in transcriptional regula-

tion in response to PknA/PknB inhibition can be partly attributed
to differential phosphorylation of TFs. In particular, CsoR, the most

positively differentially targeting TF, is significantly differentially
phosphorylated with a log2 fold change of −1.90. That the
majority (8/11) of differentially phosphorylated TFs in the network
have decreased node strength in the inhibitor versus control
network likely reflects the disruption of gene regulatory programs
in response to PknA/PknB inhibition (that is, expression of genes
in TF regulons are less well correlated).

Change in gene node strength reveals differentially regulated
functional categories
Among the genes that are “differentially targeted,” which we
define as the difference in gene node strength (sum of all inbound
edge weights) between control and inhibitor networks (Table 2
and Supplementary Data 2), we discovered many genes with
interesting functions that may play important roles in responding
to PknA/PknB inhibition. VapB30 and VapB40 are antitoxins in the
VapBC (Virulence-associated protein) family of toxin-antitoxin
systems that regulate translation in response to diverse environ-
mental stresses17, and both VapB30 and VapB40 have increased
gene expression and increased node strength in kinase inhibitor-
treated cells. CysD is involved in sulfur metabolism, which may be
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Fig. 2 The transcriptional response of the CsoR regulon to PknA/PknB inhibition mirrors that of copper exposure. Log2 fold changes in
RNA for genes in the CsoR regulon after treatment with the PknA/PknB inhibitor are shown in blue, changes in RNA after treatment with
copper are shown in red (copper data from15). The copper-sensitive operon repressor (CsoR) showed the greatest change in phosphorylation
and increase in TF node strength upon PknA/PknB inhibition (Fig. 3).

Fig. 3 Change in transcription factor phosphorylation is correlated with change in node strength. a The difference in node strength (y-
axis) and rank of difference in node strength (x-axis) are shown for the 143 transcription factors included in the regulatory network model. Of
those, 14 TFs had detected phosphopeptides and 11 were differentially phosphorylated (adj. P < 0.05, shown in red). b The magnitude of
change in TF node strength between active and control kinase inhibitor networks correlates with change in phosphorylation (Spearman
correlation, ρs= 0.618 and P= 0.0213). The median log2 fold change was used when multiple phosphopeptides were detected for the same
protein.
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important in the virulence, antibiotic resistance, and antioxidant
defense mechanisms of Mtb18. ArgC, N-acetyl-gamma-glutamyl-
phosphate reductase, is involved in arginine biosynthesis, an
essential metabolic function for cellular growth and a pathway
that is required for virulence19,20. Overall, we find a positive
relationship between how differentially targeted a gene is and its
differential expression (Supplementary Fig. 2).
Using gene set enrichment analysis (GSEA) for difference in

gene node strength, we identified PknA/PknB-specific functional
categories (Supplementary Data 3). “Mycobactin biosynthesis,”
“phosphopantetheine binding,” and “ESX-1 LOCUS” show
increased targeting in the inhibitor condition, and “Oxidative
phosphorylation,” “quinone binding,” and “NADH dehydrogenase”
show decreased targeting. Mycobactins are essential for iron
acquisition within the host environment21, and in related work
(Figure 4 of ref. 6), we found that mycobactin levels were increased
48 hours after inhibition of PknA/PknB. “Phosphopantetheine
binding” consists of 15 genes, including polyketide synthases
crucial for fatty acid synthesis22 and enzymes involved in
mycobactin synthesis23. The ESX-1 system is a specialized
secretion system required for virulence24. Oxidative phosphoryla-
tion, quinone binding, and NADH dehydrogenase genes are less
targeted after PknA/PknB inhibition, supporting their role in
mediating a compensatory biological response in the form of
lowered energy expenditure and growth arrest.

Network clustering reveals condition-specific communities
with different biological functions
While differential targeting analysis gives insight at the whole-
network level, we aimed to understand biological organization at
a more modular level. As PANDA models groups of TFs regulating
groups of genes, we naturally partitioned the nodes from each
network into communities. To facilitate comparison of the
network clusters, we considered only the set of edges with
positive edge weights (z-score > 0) in both conditions. This
resulted in a Giant Connected Component (GCC) containing
67,740 edges between 143 TFs and 3971 genes. Genes that are
also TFs were included as separate nodes in the network. As a
network diagnostic, we plotted the distributions of TF node
strength and gene node strength for the thresholded PANDA
networks (Supplementary Fig. 3).
Next, we used CONDOR (COmplex Network Description Of

Regulators), an R package for bipartite network analysis25, to
detect communities independently in each PANDA network.
CONDOR maximizes the modularity, a score that can be
interpreted as an enrichment for links within communities minus
an expected enrichment given the network degree distribution.

This analysis identified 21 communities in the inhibitor network
and 24 communities in the control network, with similar
modularities of 0.495 and 0.504, respectively, and similar member-
ship (Supplementary Fig. 4 and Supplementary Fig. 5). By testing
each community as a whole for functional enrichment (see
“Methods”), we found 4 of the 21 communities in the inhibitor
network and 3 of the 24 communities in the control network to be
functionally enriched (FDR < 0.05; overlap > 4) in one or more
functional categories (Supplementary Data 4 and Supplementary
Data 5). This functional enrichment is robust to the choice of edge
weight threshold (Supplementary Fig. 6). The differences in the
enrichment identified between conditions are relevant in the
context of PknA/PknB inhibition. For example, response to stress is
enriched in a community in the inhibitor but not the control
network; 11 of 26 genes in the functional category are assigned to
community 2 in the inhibitor network, suggesting that these
genes are cooperatively regulated in response to PknA/PknB
inhibition. In addition to the activation of stress response, the
results suggest that energy metabolism and ATP production
regulation change in response to PknA/PknB inhibition.
To validate the network finding that ATP metabolism is

disrupted by inhibition of PknA/PknB, we quantified the level of
ATP in both the control and inhibitor-treated cells at 12, 24, and
48 hours. After normalizing based on residual protein quantity
(see “Methods”), we observed higher levels of ATP at all time
points in the inhibitor-treated samples compared to the control-
treated samples (Fig. 4).

DISCUSSION
As multi-omic data acquisition becomes increasingly common-
place, researchers interested in the drivers of complex phenotypes
will face a new intellectual challenge: given a wealth of omics
data, how can one identify relevant regulatory relationships
amidst an abundance of correlations and partial correlations
within and across data types? One solution to this challenge is to
build regulatory networks that move beyond simple correlations
by creating models that are consistent with known mechanisms of
gene regulation. Here, we applied one such algorithm, PANDA, to
estimate the TF regulatory network response to an antimicrobial
compound that inhibits two key signaling molecules important for
cell wall function and stress response in Mycobacterium tubercu-
losis, PknA and PknB.
By comparing the regulatory networks from samples treated

with either the PknA/PknB inhibitor or an inactive control
compound, we identified treatment-specific network changes
and provide validation for multiple network-generated hypoth-
eses. This includes the observation that changes in TF node
strength correlate with changes in TF phosphorylation, suggesting

Table 2. Top ten genes ranked by absolute change in node strength between inhibitor and control networks. P-values are calculated from
permutations (see “Methods”).

RV Node strength diff. P-value Genes Product

Rv2913c 64.6 0.001 N-acyl-D-glutamate amidohydrolase

Rv0623 63.2 0.001 VapB30 Possible antitoxin VapB30

Rv3182 47.5 0.001 Conserved hypothetical protein

Rv1285 46.8 0.001 CysD Sulfate adenylyltransferase subunit 2 (EC 2.7.7.4)

Rv1652 41.2 0.001 ArgC N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38)

Rv2282c −37.9 0.001 CysB Cys regulon transcriptional activator CysB

Rv3453 37.4 0.001 Probable conserved transmembrane protein

Rv1219c 37.3 0.001 Transcriptional regulator, TetR family

Rv2595 36.2 0.001 VapB40 Possible antitoxin VapB40

Rv1693 −35.1 0.001 Conserved hypothetical protein
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that the PANDA regulatory networks successfully capture the
relevant downstream effects of the perturbation. We identified
“differentially targeting” PknA/PknB-specific TFs (based on change
in TF node strength) that affect diverse biological functions
associated with signal transduction, cell wall function, and lipid
metabolism. Additionally, we identified “differentially targeted”
PknA/PknB-specific genes (based on change in gene node
strength) that our models predict have a condition-specific
pattern of regulation. In the case of mycobactin synthesis, these
network changes are corroborated by changes in mycobactin lipid
levels.
Networks are known to exhibit complex substructure, and we

found the inferred regulatory networks are organized into
“communities” of TFs and genes collectively associated with
regulation of distinct biological processes. We used a bipartite
community detection method to explore the structure of the Mtb
regulatory network and found communities of genes and TFs that
display condition-specific pathway enrichment. These include an
inhibitor-specific community over-represented for genes involved
in ATP production; this result was validated experimentally.
Taken together, these results demonstrate gene regulatory

network inference using PANDA can effectively integrate multi-
omic data and infer regulatory networks that capture downstream
signaling effects. This, combined with advances in high-
throughput methods for measuring phosphorylation-dependent
protein–protein interactions26, creates new opportunities for the
functional characterization of drug candidates in Mtb. Approaches
such as those described here will be essential for finding
interventions in a disease that is already a substantial threat to
human health and is becoming increasingly difficult to treat.

METHODS
RNA-seq and phosphoproteomics data
RNA-Seq and phosphoproteomics data collection, processing and results
are available in ref. 6. For the RNA-Seq used to generate the PANDA
networks, there were 27 samples each for the inhibitor- and control-
treated conditions (3 individual experiments x 3 replicates x 3 time points).
The RNA-Seq is available through the Gene Expression Omnibus (GEO)
database under the accession number GSE110508, and protein phosphor-
ylation data is available from the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD008968.

Reconstructing PANDA networks
The PANDA method is an approach for estimating TF regulatory networks
based on our understanding of how TFs regulate genes. Specifically, it

models TF regulation based on three assumptions: (1) a TF that binds the
promoter region of a gene is more likely to regulate that gene, (2) pairs of
TFs, such as those within the same multi-protein complex, are more likely
to regulate some of the same genes, (3) pairs of genes that are correlated
in their expression are more likely to be regulated by some of the same
TFs. For (1), PANDA begins with an unweighted regulatory network prior of
TF-gene binding interactions. For (2), PANDA uses a TF-TF cooperativity
network where an edge exists if there is evidence that the two TFs interact.
For (3), PANDA starts with a gene-gene co-expression network where each
edge is weighted based on the Pearson correlation of the expression levels
between two genes.
Using these as inputs, PANDA then calculates two functions at each

timepoint t: (a) The responsibility, which estimates the support for an edge
between a TF and a gene based on the similarity between the other
regulators of that gene in the regulatory network and the interactions of
that TF in the TF-TF cooperativity network, and (b) the availability, which
estimates the support for an edge between a TF and gene based on the
similarity between the other genes targeted by that TF in the regulatory
network and the other genes that are co-regulated with that gene in the
gene co-expression network. The edge is then updated based on the
average of the responsibility and availability. The TF-TF cooperativity and
gene-gene co-expression networks are then also updated based on the
similarity of the genes targeted by each pair of TFs and the TFs targeting
each pair of genes, respectively. In each of these comparisons, the
similarity is calculated using the same function, which is a modified
Tanimoto. This process continues until the algorithm converges, resulting
in a regulatory network containing TF-gene edges whose weights
represent combined support from the three input data types (Supple-
mentary Fig. 7). For additional details, see ref. 9.

PANDA regulatory network prior. We created the regulatory network prior
using ChIP-seq data from the supplemental material of ref. 7. The
regulatory network prior contains 6517 TF binding interactions between
143 TFs and 2501 genes, filtered by significance (P < 0.01) and located
within the −150 to +70 nucleotide promoter window. In reconstructing
networks, we consider only these 143 TFs as defined in ref. 7 as potential
regulators. The regulatory network prior is available at https://doi.org/
10.5281/zenodo.3960874.

PANDA protein-cooperativity network prior. Predicted interactions
between TFs were obtained from STRING v108. We filtered these
interactions to include only those between the 143 TFs in our regulatory
network prior. PANDA accounts for the strength of transcription factor
protein–protein interactions, and thus we used all TF-TF combined scores
calculated by STRING as a network input. We examined the effect of
thresholding the protein-cooperativity network to include only the top
25% most confident edges as well as the effect of including eight
additional edges representing physical protein–protein interaction data27.
We observed similarly high correlations of the (inhibitor-control) edge
weights between the primary analysis and these sensitivity analyses, with

Fig. 4 ATP production increases after inhibition of PknA/PknB. a ATP levels are higher for inhibitor-treated samples compared to controls at
all time points and b across three experiments (P= 3.213 × 10−10; t= 8.597; df= 35.696; 95% CI [0.59, 0.954]; for two-sided t-test comparing
inhibitor vs. control). Samples were normalized to the amount of residual protein (see “Methods” for details). Each boxplot displays the
median (middle line), the first and third quartiles (lower and upper hinges) and the most extreme values no further than 1.5* the interquartile
range from the hinge (upper and lower whiskers).
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an (inhibitor-control) edge weight Spearman correlation of 0.997 and
1.000, respectively (Supplementary Data 6). The protein cooperativity prior
is available at https://doi.org/10.5281/zenodo.3960874.

Computing PANDA networks and transcription factor and gene node
strength. We ran PANDA (R package pandaR version 1.4.2, downloaded
from https://www.bioconductor.org/packages/release/bioc/html/pandaR.
html) with the default update parameter (α= 0.10) using the same TF-
gene regulatory network and protein–protein TF cooperativity priors, but
with gene expression data unique to samples treated with the active
compound or control compound; the input gene co-expression priors are
available at https://doi.org/10.5281/zenodo.3960874. While PANDA out-
puts a final regulatory network, a final transcription factor protein-
cooperativity network, and a final co-expression network, all downstream
analyses used only the regulatory network.
We computed TF node strength as the sum of all outbound edge

weights from a TF node in a PANDA network. The reason we compute TF
node strength instead of standard outdegree (number of outbound edges)
is because PANDA estimates edge weights for all possible TF-gene pairs.
Thus, network differences are conveyed through differences in edge
weights rather than which edges exist. Analogously, gene node strength is
the sum of all inbound edge weights for a gene node in a PANDA network.
We also examined the effect of varying α, the PANDA update parameter.

For each condition, we observed high correlation of edge weight
differences between the primary analysis network (α= 0.1) and networks
we created with α= 0.05 and α= 0.2, with an (inhibitor-control) edge
weight Spearman correlation of 0.999 and 0.998, respectively (Supple-
mentary Data 6).

ATP quantification
Triplicate samples from three individual experiments were grown and
harvested at three serial time points as previously described6. Metabolic
activity was rapidly quenched by placing the bacteria directly into 40%
acetonitrile, 40% methanol, 20% water previously cooled on dry ice. The
cells were then mechanically disrupted with 0.1 mm Zirconia beads in a
MagNA Lyser instrument (Roche) by agitating the samples four times at
7000 rpm for 45 s with a cooling step at −20 ∘C for 5 min between each
cycle. The lysate was then clarified by centrifugation (10,000 × g, 10min, 4
∘C) and filtered through a 0.22 μm filter (Costar® #8160). ATP quantification
was performed according to the manufacturer’s instructions of the ATP
Colorimetric/Fluorometric Assay kit (BioVision #K354-100) and normalized
to the residual protein quantity, determined by the PierceTM BCA Protein
Assay kit (ThermoFisher #23227).

Functional annotations
Gene Ontology (GO) and KEGG Pathway functional categories were
downloaded from PATRIC28. We removed duplications and functional
categories matching the regular expression eukary∣plant∣(?i)photo-
synth∣E. Coli∣bile∣insect. To these we added manually curated
functional categories (Supplementary Data 7).

Statistical significance of PknA/PknB-specific TFs and genes
We used permutation testing to calculate empirical P-values for the
significance of differential targeting for each TF and gene. To do this, we
ran PANDA for each of 1000 randomized gene expression matrices with
permuted gene labels. For each TF/gene, we then calculated significance
by determining the proportion of the node strength differences for the
1000 runs that were greater than the observed node strength if positive, or
less than the observed node strength if negative. The minimum possible P-
value attainable by permutation testing was 0.001, and we were limited
from obtaining more precise P-values given computational expense. We
additionally computed p-values for TF/gene node strength by performing
a paired two-sided t-test of all edge weights associated with a TF/gene for
the inhibitor vs. control condition. We performed Benjamini–Hochberg
multiple testing correction for these P-values computed using the t-test.

Bipartite network community detection
We used the CONDOR R package25 with project= FALSE and other
parameters set to default to detect communities in the inhibitor and
control networks separately. These two networks contained the same
subset of edges, but had different edge weights based on the output from

running PANDA with data from the two conditions. Edges with weight < 0
in either network were removed from both networks.

Functional enrichment analysis
To identify PknA/PknB-specific functional categories, we ran GSEA
Preranked, which we downloaded from https://www.broadinstitute.org/
gsea/as the Java version 2.0.13. We ranked TFs/genes by their difference
(inhibitor− control) in TF/gene node strength and ran GSEA using a
minimum gene set size of 10 and a maximum size of 250. We report
statistically significant results (FDR < 0.1), with positive and negative
enrichment scores representing enrichment in the inhibitor and control
treatments, respectively. We used the one-sided Fisher’s Exact Test to
evaluate the significance of each functional category for a given gene set.
We required a minimum overlap of five genes between the gene set and
the genes annotated to the functional category for significance to be
considered. Multiple testing correction was done using the
Benjamini–Hochberg method.

DATA AVAILABILITY
Data to reproduce the results can be found at https://doi.org/10.5281/
zenodo.3960874. The RNA-Seq used for this work is available through the Gene
Expression Omnibus (GEO) database under the accession number GSE110508, and
protein phosphorylation data is available from the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier PXD008968.
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