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Integrated genetic and metabolic landscapes predict
vulnerabilities of temozolomide resistant glioblastoma cells
Selva Rupa Christinal Immanuel 1,2,3, Avinash D. Ghanate 1,2,4, Dharmeshkumar S. Parmar1,2, Ritu Yadav1,2, Riya Uthup1,
Venkateswarlu Panchagnula 1,2 and Anu Raghunathan 1,2✉

Metabolic reprogramming and its molecular underpinnings are critical to unravel the duality of cancer cell function and chemo-
resistance. Here, we use a constraints-based integrated approach to delineate the interplay between metabolism and epigenetics,
hardwired in the genome, to shape temozolomide (TMZ) resistance. Differential metabolism was identified in response to TMZ at
varying concentrations in both the resistant neurospheroidal (NSP) and the susceptible (U87MG) glioblastoma cell-lines. The
genetic basis of this metabolic adaptation was characterized by whole exome sequencing that identified mutations in signaling
pathway regulators of growth and energy metabolism. Remarkably, our integrated approach identified rewiring in glycolysis, TCA
cycle, malate aspartate shunt, and oxidative phosphorylation pathways. The differential killing of TMZ resistant NSP by Rotenone at
low concentrations with an IC50 value of 5 nM, three orders of magnitude lower than for U87MG that exhibited an IC50 value of
1.8 mM was thus identified using our integrated systems-based approach.
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INTRODUCTION
The grand challenge of designing new therapies is the cellular
complexity of a multi-hit, multifactorial disease like cancer and the
rapid emergence of chemo-resistance1–5. Genome scale measure-
ments allow cataloging drug and therapeutic candidates6,7.
However, their integration with constraints-based metabolic
modeling presents a paradigm shift in understanding home-
ostasis, disease, and treatment strategies6,8. Cancer cells are
punctuated by their characteristic ability to proliferate and for
unchecked proliferation in part due to mutation and in part due to
disruption of homeostatic control coordinated by metabolic
networks9–14 and unchecked signaling pathways15,16. In this work,
we showcase unique therapeutic windows that exploit metabolic
pathway vulnerabilities during cell growth to tackle chemother-
apeutic resistance.
Glioblastoma Multiforme (GBM), is an aggressive brain cancer

with inherent heterogeneity17–19. Temozolomide (TMZ), an
alkylating agent is the most effective chemotherapeutic agent
against GBM. However, TMZ resistance is increasing creating an
urgent need to identify new therapeutic strategies20–23. Our
previous study24 differentially analyzed growth limiting metabo-
lites and nutrient preferences for respiration in TMZ resistant
neurospheroidal cells (NSP) isolated from an authenticated cell-
line population of U87MG cells. In this study, we have identified
the Complex I inhibitor, rotenone as an alternate drug to induce
killing of the drug resistant NSP. Our work highlights the use of
constraints-based modeling integrated with exome, limited
transcriptome and metabolome data to identify vulnerabilities of
a chemo-resistant glioblastoma cell to identify differential
response of an Electron Transfer Chain (ETC) inhibitor rotenone.
We pioneer a scalable systems biology workflow from isolation of
resistant heterogenous populations to molecular profiling/mea-
surements integrated with metabolic modeling to rationally

identify reprogramed pathways resulting in identifying potential
alternate drugs.

RESULTS
Differential metabolomic signatures of temozolomide sensitive
and resistant cells
We first analyzed the growth of U87MG and NSP glioblastoma
cells in the presence of TMZ in varying concentrations (Fig. 1a–d).
Growth was unaffected in both NSP and U87MG at 10 μM TMZ
(Fig. 1b). U87MG had lowered growth rates in the presence of
100 μM TMZ (Fig. 1b; 2.5-fold change or 43% reduction) and
showed a death profile at 750 μM TMZ (Fig. 1d). However, NSP
continued to survive but showed consistently lower growth rates
in the presence of 100 μM (Fig. 1c; 1.8-fold lower) and 750 μM TMZ
(Fig. 1d; 2.3-fold lower). Differential consumption and release
(CORE) profiles of metabolites that represents the exo-metabolite
status after 96 h of growth (Fig. 1-i) is attributable to the drug dose
response of TMZ that were identified from both the cell types.
Lactate secretion was always higher in U87MG (Fig. 1e, f) when
cells survived inspite of the presence of TMZ indicating a
continued Warburg effect12–14 and efforts towards anabolic
macromolecule biosynthesis. The drug dose dependent 3-fold
higher lactate-to-pyruvate ratios in U87MG also indicated
differential cytoplasmic NADH/ NAD+ ratios and altered redox
state (Fig. 1e, f). This indicated an increase in the reduced forms of
co-factor NADH (Supplementary Table 4) and a potentially
compromised pyruvate dehydrogenase (PDH) activity. The
increased NADH in U87MG during cell death suggests inability
to recycle NAD+.
Increased intracellular succinate to AKG (SUCC/AKG) ratios were

observed with increasing TMZ concentration and thus was a
potential index of higher methylation and drug action resulting in
lowered cell growth (Fig. 1g, Supplementary Figs 4, 5, and 6). Time
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Fig. 1 Metabolomic characterization of temozolomide resistance. Growth of U87MG and NSP in the absence of TMZ (a), in the presence of
10 μM TMZ (b), 100 μM TMZ (c), and 700 μM TMZ (d). The growth rates of U87MG and NSP were calculated using the Gompertz function (lines
inside the dot plots) using GraphPad Prism Software. e Extracellular lactate (Lac) to Pyruvate (Pyr) ratio and f Intracellular Lac/Pyr ratio.
Absolute concentration ratios (shown as bar plots) were calculated and plotted to delineate Warburg effect. g Intracellular succinate (Succ) to
a-keto glutarate (AKG) ratio. The absolute levels were normalized to cell number to estimate the values plotted. h Extracellular ornithine levels.
NSP cells show higher levels of Ornithine irrespective of TMZ treatment, a phenotype that is inherent in NSP. The boxes in the boxplot indicate
the upper and lower quartiles of the data and the middle line is the median with the whiskers extending to 1.5× interquartile range. Dots are
the sample data points (n= 5 for time points 0 h, 24 h, 48 h, 72 h, and 96 h). i Exo-metabolome profile and j Endo-metabolome profile
comparison across U87MG and NSP cells. The heatmap is plotted using absolute concentration (C) differences between 96 h (t96) and 0 h (t0),
and calculated as Ct96–Ct0. These values are processed to indicate Z-score (color scale) using Euclidean clustering. k Exo-metabolome PCA and
(l) endo-metabolome PCA showing the clusters according to the TMZ concentrations used for treatment as 0 μM, 10 μM, 100 μM, and 700 μM.
m and n. VIP scores for growth essential metabolites according to Exo-metabolome (m) and Endo-metabolome (n) profiles. Error bars indicate
mean ± s.d.

S.R.C. Immanuel et al.

2

npj Systems Biology and Applications (2021) 2 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



dependent growth profiling indicates maximal differential cell
counts between 24 and 48 h. This corresponds to a maximum fold
change (1.4 to 1.7-fold) in SUCC/AKG ratios. With decrease in
growth profile differences, SUCC/AKG ratios also reduce (Supple-
mentary Fig. 6). Succinate levels were increasingly higher in
U87MG and lower in NSP with varying TMZ concentrations
(Supplementary Fig. 5). Increased AKG (Supplementary Fig. 4) in
NSP could be a result of preferred glutamine metabolism24.
Extracellular Ornithine levels (Fig. 1h, Supplementary Fig. 1) were
drug independent and consistently lower in U87MG with a higher
consumption rate and depleted completely in presence of TMZ in
contrast to NSP (Fig. 1h). Higher ornithine levels in NSP could
potentially be through an operational urea cycle and related
pyrimidine nucleotide metabolism. Principal Component Analysis
(PCA) for CORE profiles were shaped by increasing TMZ
concentrations for both U87MG and NSP cells (Fig. 1k). Figure 1l
summarizes through a PCA plot differential endo-metabolite levels
from initial time points indicating varying intracellular milieu that
dictates the differential metabolism and response to drug. The
heatmap of the exo-metabolite profiles was plotted using
absolute concentrations (Fig. 1i) to identify maximum impact at
700 μM TMZ on the CORE of metabolites by U87MG and NSP. A
drug induced increase in pyruvate concentrations in U87MG
alone, indicates potentially higher NAD+ recycling. Varied extra-
cellular microenvironments (Supplementary Fig. 1) were observed
as succinate, ornithine, histidine and uric acid have increased
secretion in NSP while arginine, asparagine and glutamate are
higher in U87MG. Differential dynamics of metabolites showed
varied glutamine, glutamate and AKG phenotypes across U87MG
and NSP (Supplementary Fig. 1). Intracellular profiles and
clustering data indicate metabolic reprogramming between
U87MG and NSP independent of drug dose (Fig. 1j, Supplemen-
tary Fig. 2).
Concentrations of amino acids including glutamine, serine,

tryptophan were higher intracellularly in U87MG while succinate,
malate, citrate/isocitrate and ascorbate were higher in NSP
indicating a higher TCA cycle flux (Supplementary Fig. 2). Partial
least squares discriminant analysis (PLS-DA) and VIP score plots
(Fig. 1k–n) shows glutamine as critical to growth/survival of NSP in
the extracellular microenvironment (Fig. 1m) and lactate and
glucose critical to that of U87MG. Glucose, glutamate and lactate
become critical intracellularly (Fig. 1n) for NSP survival in the
presence of TMZ (Supplementary Fig. 2). The circulation of lactate
into alanine via the Cori cycle potentially becomes important for
NSP for survival in the presence of TMZ. Aromatic amino acids
seem to be more critical for growth of NSP than U87MG. Malate is
potentially critical to survival of NSP suggesting a functional
Malate-aspartate/pyruvate shunt, also validated by exome data
(Fig. 2d) and in silico predictions (Fig. 4). Dynamic metabolite
profiles and CORE for glutamine, serine and tryptophan in the
presence of temozolomide compared to glucose further indicate a
potential switch in substrate uptake and metabolism in NSP
(Supplementary Fig. 1). The simultaneous measurement of
respiration and growth profiles through BiologTM phenotype
microarray testing also identified differential coupling between
growth and respiration on 57% of the C/N sources tested
including glutamine in NSP24 (Supplementary Figs 11–14).

Genotypic landscape dictates heterogeneous states of
temozolomide response
In order to see how genotype was driving metabolic reprogram-
ming associated with TMZ response and growth, we sequenced
the exome of U87MG and NSP cells (Fig. 2, Supplementary File 3).
Curating the distribution of mutations (Supplementary Fig. 8)
identified 29668 and 1036 Single Nucleotide Polymorphisms and
indels in U87MG and 30575 SNPs and 1201 indels in NSP (Fig. 3a).
Novel mutations not reported in dbSNP and COSMIC databases

were identified as 1804 and 795 in U87MG and NSP, respectively,
with greater than 97% reported in both the databases (Supple-
mentary Fig. 7). Of the total 12,130 genes that harbored sequence
changes, 397 genes and 1893 associated SNP mutations were
unique in U87MG while 559 genes and 2804 associated SNPs were
unique in NSP (Supplementary Fig. 8). All the genetic variations
were distributed across each chromosome without bias; Chromo-
somes 2, 3, 17, and 19 harbored maximum sequence alterations
(Fig. 2b, c). Functional annotation (Oncotator derived) of genomic
alterations identified maximum (>9000) missense mutations
changing protein sequence and driving functional change. About
8% of the metabolic genes mutated were unique to NSP while
only 3% were unique to U87MG (Supplementary Fig. 9). PolyPhen
(PPH2; Polymorphism Phenotyping)25,26 was used for annotating
and predicting potential impacts of mutations on protein
structure/function of all identified SNPs in coding genes for
U87MG and NSP (Supplementary File 3).
Signaling genes associated with substrate uptake, central

metabolism, electron transport, respiration and growth were
mutated in U87MG and NSP (Fig. 3d, e). The functional impact of
these mutations was calculated using PPH2 to have a deleterious
effect in most cases (Supplementary Table 1). Amino acid
transporters SLC38A3, SLC38A4, SLC1A5 varied in NSP alone,
explaining differential CORE profiles. Such changes could result in
functional changes including differential transport mechanisms or
metabolite pathway utilization as shown in the differential growth
and respiration profiles on selected nutrients (Supplementary Fig. 11
and S15). ABC transporters involved in drug efflux are differentially
expressed and impact drug transport and growth rates in NSP and
U87MG24 (Supplementary Fig. 19; Supplementary File 4). Unique
mutations were identified in negative regulators PTEN and TSC1
for NSP and U87MG, respectively, in receptor tyrosine kinase PI3K-
AKT-mTOR pathways. mTOR, a gene that is linked to cell cycle
progression by regulating cell growth, has a significant role in
controlling metabolic homeostasis at the organismal level27.
mTORC1 signaling can be affected by mutational, transcriptional
or translational changes in genes that result in activation or loss of
function of both positive and/or negative regulators. These
include but are not limited to receptors of growth factors, tyrosine
kinases, PI3-kinase, Akt, mTOR, PTEN, LKB1, RHEB, TSC1, TSC2, S6K
(Fig. 2e; Supplementary Fig. 9). The SIRTUIN genes (SIRT4/6)
responsible for NAD/NADH sensing were differentially mutated
and control differential glutamine metabolism (Figs. S11 and S15).
Electron transport chain/Oxidative phosphorylation genes were

extensively mutated with unique mutations in U87MG only in
Complex II (sdhA) and Complex III (CYC1). ATPase (ATP4A)
harbored unique mutations (Fig. 2d, Supplementary File 3) in
NSP alone. The higher levels of intracellular succinate in U87MG
are explained by the unique mis-sense mutation (dbSNP
#rs76896145) in mitochondrial complex II (succinate dehydrogen-
ase, sdhA). This validates the PPH2 likelihood prediction (prob-
ability of 0.998 and FDR of 0.044; (Supplemental Supplementary
Table 1). Functional impact of the p.S456L mutation on sdhA
activity is evident in the differential respiration and growth levels
of U87MG AND NSP on succinate as sole carbon source in the
BIOLOGTM phenotypic microarray data (Supplementary Fig. 7A).
The unique mutation in U87MG is a potentially compensatory
mutation that allows growth on succinate in the BIOLOGTM

profiles (Supplementary Fig. 7B). The oxidation of succinate to
fumarate (tricarboxylic acid (TCA) cycle) is catalyzed by sdhA,
carrying the unique mutation in U87MG. A mutation can disrupt
electron flow through the iron-sulfur clusters of sdhB, which is
anchored to the inner mitochondrial membrane by sdhC and
sdhD subunits, ultimately disrupting the flow to the ubiquinone
pool to generate ATP. AKG-dependent histone demethylases
involved in epigenetic regulation of oncogenes and tumor
suppressor genes are potential targets for inhibition by succinate
accumulation.
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There is a mutation in Cytochrome C-1 (Cyc1 gene) one of the
11 genes in the mitochondrial respiratory chain (MRC) complex III
(Supplementary File 3). The unique mutation in the Cyc1 gene in
NSP has an impact on respiration as seen in the cellular reductase

profile obtained using microarray phenotyping for D-actinomycin
(Supplementary Fig. 19). Due to its localization on the trans-inner-
membrane, a mutation can disrupt the Q-cycle mechanism and
coupling associated with electron transfer from ubiquinol
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(reduced coenzyme Q or CoQ) to cytochrome c accompanied by
proton translocation from the mitochondrial matrix to the
intermembrane space. Complex III is critically placed at the
crossroads of glycerol-3-phosphate dehydrogenase, dihydrooro-
tate dehydrogenase (DHODH), electron transfer flavoprotein (ETF)
and sulfide–quinone reductase (SQR), all alternate electron
transfer pathways that lead to CoQ28. Such a disruption could
result in an increase in AMP to ATP ratio, thus activating AMPK.
Mutations in Adenylate kinase ADK could modify the ratios of ATP,
AMP, and ADP resulting in impact of p53 and AMPK signaling. A
differential upregulation or expression of genes from these
pathways24 is an indication of the known crosstalk between
AMPK and the cellular survival axis of PI3K/Akt/mTOR pathway
OAZ1 the controller of the enzyme Ornithine Decarboxylase

(ODC1) regulating polyamine synthesis and associated cell growth
was mutated in U87MG alone (Supplementary File 3) supporting
differentially lower levels of ornithine. The frameshift in the ODC
protein at p.F219fs Chr 2, position #10583624 potentially impacts
dimer formation decreasing ornithine levels as observed in
U87MG compared to NSP cells (Supplementary Fig. 10).
ACO1, an isozyme for aconitase, harbors a missense mutation

(Supplementary Table 1, Supplementary File 3) supporting the
increased citrate/isocitrate accumulation in NSP that potentially
shaped higher IDH1 gene expression24. Unique mutations were
also identified in NSP in Glutathione metabolism (GCLM, GGT2,
GPX1) (Supplementary File 3). These mutations may uniquely
modify the processes of GSH synthesis (ATP dependent) and
degradation required to be in strict balance and control for normal

intracellular processes. The activity of Glutathione peroxidase-1
(GPX1) can prevent DNA damage and inhibit synthesis of
inflammatory mediators such as prostaglandins and leukotrienes.
There is a possible relationship between the activity of GPX1 and
concentrations of selenium binding protein (SBP1). SBP1 poten-
tially reduces the activity of GPX1. GPX1 is a selenoprotein that
catalyzes the glutathione dependent reduction of organic
hydroperoxides and hydrogen peroxide (H2O2). Sodium selenite
is known to increase GPX-1 protein and activity in a dose-
dependent manner29 and attenuating oxidation of NADPH and
NADH30. Low concentrations of Sodium selenite have a higher
impact on respiration in U87MG than NSP (Supplementary Fig. 17).
An increase in the sodium selenite concentration impacts NSP
more drastically as compared to U87MG, lowering the NAD
production. The unique mutation in Guanylate cyclase (GC) beta
subunit in NSP, indicates potential change in NO metabolism
modulating downstream signaling. Differential NO levels could
impact mitochondrial respiration differentially through unique
mutations in Complex IV, COX4 (Fig. 2d). This could potentially
reduce ATP synthesis31 and impact respiration coupled growth24

(Supplementary Figs 11–14).

Constraints-based metabolic model predicts alternate flux
distributions in central metabolic pathways in temozolomide
resistant cells
A central metabolic reconstruction of human metabolism32,
containing 380 reactions, was contextualized to represent
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sensitive and resistant glioblastoma cells in silico using experi-
mentally determined metabolite uptake rates (Supplementary File
5) from dynamic concentration profiles, growth rates and
enzymopathies from exome sequencing. A cell specific biomass
composition was determined for U87MG and NSP taking into
account literature mass fractions of different macromolecules such
as lipid, protein, DNA, and RNA and cell dry weights32 (see
“Methods” section). The model was validated by estimating
uptake rates of primary nutrients with more than 90% accuracy
(Supplementary Table 3). Lower oxygen uptake rates were
predicted to support experimental growth and substrate uptake
rates for NSP as compared to U87MG indicating potentially a more
hypoxic micro-environment for chemo resistant NSP than U87MG.
Using an in silico NADH oxidase to constrain a core model of
glioblastoma metabolism predicted more NAD+ recycling for
U87MG (NADH oxidase flux higher) than NSP (Supplementary Fig.
20A, Supplementary File 5). This was validated by differential
NADH concentrations and NAD/NADH ratios observed (Supple-
mentary Table 4). Flux variability analysis identified differential flux
span/ranges (Fig. 3e) for U87MG and NSP in reactions related to
TCA cycle and glycolysis subsystems and the folate and the
malate-aspartate shuttles. The bidirectional ornithine carbamoyl
transferase reaction in U87MG is forced unidirectionally in NSP
explaining the potential downstream effects of ODC1 gene
mutation and ornithine levels. Reprogrammed metabolic network
states assessed through Monte Carlo sampling (see “Methods”
section) of the solution space of flux distributions identified
differentially correlated sets, one forming a micro cycle leading to
proline/ornithine and cholesterol metabolism in NSP alone
(Supplemental File S5). The upstream precursors (acetate,
acetoacetate, hydroxybutyrate) (Supplementary Fig. 16) and
downstream metabolite vitamin D (Supplementary Fig. 18) of
the cholesterol pathway have differential impact on growth of
U87MG and NSP. There was a differential probability of flux
distribution and the magnitude of flux in the contextualized cell
specific in silico U87MG and NSP models. Pathways including
glycolysis, TCA cycle, folate, and malate/aspartate shuttle (Fig.
3a–d) in U87MG and NSP were reprogrammed. A drug dependent
differential probability of flux distribution within the cell lines was
also evident (Fig. 3e). Folate pathways including serine and glycine
metabolism also have higher probability of higher flux in U87MG
indicative of increased probability of methylation and TMZ
response. The in silico predictions thus indicate reprogramming
of metabolism (Fig. 4) validated through rigorous experimentation
between glioblastoma cells that are sensitive and resistant to the
drug. Thus, drugs that can impact these reprogrammed pathways
including cholesterol lowering and oxidative phosphorylation
limiting agents, are potential targets for TMZ resistant NSP.

DISCUSSION
Cells of neuronal origin rely on oxidative phosphorylation to meet
energy demands. Glycolysis and TCA cycle are major pathways
providing metabolic precursors for biosynthesis and energy
production. The most significant pathways involved in metabolic
adaptation in cancer cells seem to be aerobic glycolysis,
glutaminolysis, and mitochondrial oxidative phosphorylation. All
these pathways have higher flux distributions and activity in TMZ
sensitive U87MG as compared to TMZ resistant NSP, as identified
through our integrated analyses (Fig. 4). The activities and
metabolic flux of these pathways are critically tuned to ensure
optimal nutrient allocation and distribution for cellular prolifera-
tion, growth and function. This reprogrammed metabolism
observed in U87MG, also seen in other cancers9, potentially
undergoes another round of reprogramming in NSP to become
resistant to the drug, TMZ. These include pathways related to
carbon metabolism (nutrient uptake, growth signaling, glycolysis,
TCA cycle, 1C methionine, and folate cycles), Nitrogen metabolism

(Urea cycle, pyrimidine synthesis), and energy metabolism
(oxidative phosphorylation and ETC) (Fig. 4). The integrative
analysis of these pathways showcases the tacit connections and
cross talk between metabolism, methylation, growth and drug
response.
Constraints-based modeling elucidated the novel mechanisms

of TMZ resistance and suggested that the drugs impacting
cholesterol lowering and oxidative phosphorylation would arrest
the NSP survival. In a follow up screen in a 92 cytotoxic drug panel
of phenotypic microarray analysis (Supplementary Fig. 19),
Berberine, Deguelin, and Rotenone were identified as effective
against NSP alone (Fig. 4 inset) validating the predicted modeling
results. Detailed drug response profiles of rotenone were
established for both NSP and U87MG. Significantly, the IC50 values
were identified as lower by an order of magnitude calculates as
5 nM for NSP as compared to 1.8 mM for U87MG (Supplementary
Fig. 20B, C). The synergistic use of rotenone also reduced the dose
of TMZ required for cell death as identified by metabolic
reprogramming through integrated constraints-based analysis
(Supplementary Fig. 21). A combination of temozolomide and
rotenone exhibited a positive synergy on both U87MG and NSP. At
5 nm Rotenone, the sensitivity to temozolomide was restored and
the IC50 for TMZ was 1000-fold lower for NSP (Supplementary Fig.
21B). Higher concentrations of Rotenone reduced the IC50 dose
value of TMZ in U87MG to 7-fold (Supplementary Fig. 21A).
Taken together, our approach of integrated constraints-based

analysis identified the critical role and vulnerability of Complex I of
the ETC in survival of NSP and thus helped identify rotenone as an
alternate drug for inducing death of TMZ-resistant NSP. The
adaptation or evolution of NSP, the resistant cell, in the presence
of distinct selection pressures (therapeutic drug, TMZ), towards a
behavior and metabolism closer to the normal cell function
indicated by increased oxidative phosphorylation and the balance
between glycolysis and mitochondrial oxidative phosphorylation
is essential. Such integrated systems level approaches, are
essential to unraveling the tacit connections between epigenetics,
metabolism and genotyping and are scalable to the clinic to fill a
critical need for predictive models in individualized therapy.
Regardless of the requirement of rigorous characterization in
animal models and clinically derived cell lines to extend the
promise of this study, we foresee the capability of these
approaches to expedite choices for personalized medicine.

METHODS
Cell culture
U87MG cell line (HTB-14; Human Glioblastoma Multiforme from ATCC) was
cultured in DMEM (Dulbecco’s Modified Eagle’s Medium, Gibco) with
Glucose (1 mg per mL) and L-glutamine (0.584mg per mL). 10% fetal
bovine serum (FBS, GibcoTM, ThermoFisher Scientific) and 1% non-essential
amino acids (Sigma-Aldrich) was used additionally for growth. Cell lines
were maintained at 37 °C in a humidified atmosphere of 5% CO2/95% air.
For the separation of NSP, the sub-population sorting assay was performed
for Fluorescence-activated cell sorting (FACS) with cells at 70–80%
confluency using BD FACSAria III (BD biosciences Pvt. Ltd) and separated
the populations using Hoechst 33342 staining procedure24. The detailed
protocol is available in our previous study24. After separation using FACS,
NSPs were initially maintained in neurobasal medium (GibcoTM, Thermo-
Fisher Scientific) supplemented with B27 supplement (GibcoTM, Thermo-
Fisher Scientific), 0.2 μg per mL of epidermal growth factor, EGF
(ThermoFisher Scientific) and 0.2 μg per mL of basic fibroblast growth
factor, bFGF (ThermoFisher Scientific). Further sub-culturing and passaging
of NSP was carried out using a similar medium as U87MG to avoid any
contribution from different micro-environments in delineating hetero-
geneity of molecular signatures. NSP were cultured as free-floating spheres
in appropriate low attachment T-75 flasks or 6 well or 24 well plates
(NuncTM, ThermoScientificTM) for this study.
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Growth and temozolomide dose response curves
Growth of the cells (U87MG and NSP) were studied by monitoring their
proliferation via cell count over a period of 168 h (7 days). The initial
seeding set had a starting population (No) at ~10,000 cells per well. The
growth profile was studied in a 24 well plate (Nunc tissue culture-treated)
for ease of harvesting. Both U87MG and NSP cells were harvested every
24 h and counted using a hemocytometer based on the trypan blue dye
exclusion assay. Before counting, the NSP population was also disaggre-
gated by trypsinization. For dose-response experiments, cells were plated
in replicates at ~20,000 cells per well in 24-well plates (NuncTM tissue
culture treated, ThermoScientificTM) in full growth medium for 24 h and
then treated them with different doses of TMZ (10 µM, 100 µM, and
700 µM). Three biological replicates were performed with three technical
replicates in each biological replicate on a 24-well plate (NuncTM tissue
culture treated, ThermoScientificTM). Growth and temozolomide response
curves were graphed with the number of cells on the Y axis and time on
the X axis. The data was fitted using a logistic Gompertz function using
GraphPad Prism software and the growth parameters were calculated.

Metabolite profiling using liquid chromatography-high resolution
mass spectrometry (LC-HRMS):
Sample extraction, dilution, and internal standard spiking. Eight samples
(collected at the end of every 24 h of growth curves) from each experiment
setup (Without drug, 10 µM TMZ, 100 µM TMZ, and 700 µM TMZ) were
harvested over a period of five days and used for the metabolic profiling to
understand nutrient uptake and release kinetics. A sample pooling
strategy33 was applied to reduce the number of samples and for high-
throughput quantification. A viable cell count was performed to count the
number of cells in each sample from growth curves. After cell count, the
samples were centrifuged at 2795 × g (4 °C). The supernatant was used for
extracellular analysis and the pellet was used for intracellular analysis.
Extracellular samples. Each replicate sample was prepared and stored at

−80 °C; thawed on an ice bath to aliquot 100 µL of sample for extraction.
The aliquot was transferred into a fresh 1.5 mL centrifuge tube. Four
hundred microliter of chilled methanol (previously stored in −80 °C) was
added. The solution was thoroughly mixed for 2 min followed by
centrifugation for 15min at 2795 × g (4 °C). The tubes were carefully
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removed, 300 µL of supernatant was withdrawn and transferred into a
fresh tube (Dilution level: 5×).
Dilutions. A two-step serial dilution of supernatant was performed using

50% acetonitrile in water. In the first step, 50 µL of sample was thoroughly
mixed with 450 µL of diluent (Dilution level: 50×). This solution was further
diluted by mixing 100 µL of sample solution with 400 µL of diluent
(Dilution level: 250×). Before injection, 100 µL of sample solution was
mixed with equal volume internal standard solution containing 4.4 µM
verapamil in 50% acetonitrile in water with 0.2% formic acid.
Intracellular samples. The cell pellet was washed with PBS (Phosphate

buffer saline) (pH–7.4) by centrifugation at 2795 × g (4 °C). This step was
repeated twice to remove any media residues. In the subsequent steps,
HPLC grade methanol (100% methanol on dry ice for the first round, and
80:20 methanol/water at 4 °C for the next two rounds was used for
extracting metabolites. The extracted samples were stored in aliquots at
−80 °C until use. All data collected from LCMS analyses are provided in
Supplementary File 2.
LCMS parameters setup and software details. The UPLC and MS was

operated using Xcalibur (Thermo Fisher Scientific Pvt. Ltd., Version 2.0)
software platform, whereas HESI source parameters were set using Tune
module (Thermo Fisher Scientific Pvt. Ltd., version 2.1). Samples were
stored in temperature controlled Accela autosampler maintained at 4 °C
during LC-HRMS analysis. A reverse-phase C18 hypersil gold column
(10 cm × 2.1 mm× 3.0 μm) was used for chromatography. The mobile
phase consisted of 0.1% formic acid in deionized water (Mobile phase ‘A’)
and 0.1% formic acid in acetonitrile (Mobile phase ‘B’). The elution gradient
was set as 70% of mobile phase A (0.0–2.5 min), 10% A (3.5–5.5 min), 70%
A (5.5–8.0 min) with a constant flow rate at 1000 μL per min. Five microliter
of samples was injected for analysis using the auto-sampler unit. The data
was acquired in both positive and negative ion mode in two separate
batches. Metabolomics data analysis was carried out by the Qual and Quan
browser modules of Xcalibur (Thermo Fisher Scientific Pvt. Ltd.). The same
protocol was followed in our previous study24.

CORE (consumption and release) clustering and PCA (principal
component analysis)
The concentrations for all 35 metabolites identified from LC-MS/MS
analysis were further clustered using ClustVis web tool (http://biit.cs.ut.ee/
clustvis/). Consumption and release concentrations were calculated by
subtracting the concentration at 0 and 96 h. These values were used as
inputs for generating heat maps and for PCA. Heat maps and clustering
was performed with the criteria of unit variance scaling (applied to rows)
where all 35 metabolites were the rows in the heat maps. Both rows and
columns were clustered using correlation distance and average linkage
with the tightest cluster first in tree ordering. PCA was carried out by using
SVD with the imputation algorithm specified in the ClustVis tool. In some
specific cases (BIOLOGTM experiments), the Euclidean algorithm was used
for clustering to interpret the data. Variable Importance in Projection (VIP)
scores and PLS-DA were calculated using MetaboAnalyst, a web-based
metabolomic analysis tool34–37.

Genomic DNA extraction and Exome sequencing
The complete/genomic DNA extraction from cultured U87MG and NSP
cells was performed using DNeasy Blood and Tissue Kits Spin-column
protocol (Qiagen, India). A total of 4 × 106 each U87MG and NSP cells were
centrifuged for 5 min at 300×g and resuspended in 200 μL PBS each.
Twenty microliter proteinase K was used in the initial step to lyse the cells.
The manufacturer’s protocol was followed. 4 μL RNase A (100mg per mL)
was used to remove any RNA contamination from the extracted DNA by
incubating for 5 min at room temperature. ~15 µg of genomic DNA was
extracted from each sample. This extracted DNA was used for the exome
sequencing. Exome workflow of Ion ProtonTM systems (Life technologies
Pvt. Ltd., India) was used to obtain the exome sequences of U87MG and
NSP cells. Ion TargetSeqTM Exome kit and Ion ProtonTM sequencer was
used for acquiring the exome data that was further processed through
TorrentSuite and Ion Reporter software to identify the variants and for the
coverage analysis (Supplementary File 3).

Functional annotation of Exome data
The variants of U87MG and NSP cells thus identified by exome sequencing
had been analyzed for its functional effect using Oncotator web tool
(https://portals.broadinstitute.org/oncotator/). Oncotator is a web-based
application commonly used for annotating human genomic point

mutations including Single Nucleotide Polymorphisms (SNPs) and Inser-
tions and Deletions (INDELS). This includes genomic annotations (Gene,
transcript, and functional consequence annotations for hg19 database),
protein annotations (Site-specific protein annotations from UniProt,
functional impact predictions from dbNSFP and cancer variant annota-
tions), and common SNP annotations from dbSNP database. The input file
contained the details of the position in chromosomes, reference and its
corresponding variants identified that was uploaded in the web tool for
analysis. The output file had the results with details of the gene name,
gene IDs, HUGO symbol, variant classifications (Silent, 5’-UTR, 3’-UTR,
Intron, Missense, Frame_Shift_deletions etc.), gene description, protein/
amino acid change and its biological functions. These details helped
further analysis and interpretation (Supplementary File 3).

Phenotype microarray analysis
Biolog Phenotype MicroArrays™ (PM-M1 to PM-M14) from Biolog, Inc. USA
(www.biolog.com) consist of panels of PMM screening assays—(i) Energy
metabolism pathways; (ii) Ion and hormone effects on cells and (iii)
Sensitivity to anti-cancer agents. In PM-M1 to PM-M4, the metabolic
pathway activities were assayed by using the cell suspension (~20,000
cells/well) prepared in an inoculating fluid (IF-M1 or IF-M2) that lacks
carbon and energy sources (provided with the BIOLOGTM plates). Biolog
Redox Dye Mix MA or Biolog Redox Dye Mix MB, was added to all wells.
This measurement employs a tetrazolium dye that can be reduced to a
purple formazan that can be measured at 590 nm with a microplate reader.
The redox energy produced when a cell metabolizes a substrate is used to
convert the color from yellow to purple formazan. The rate of formazan
production changes linearly with time and corresponds to the number of
viable cells. iMark™ Microplate Absorbance Reader (Bio-Rad), with a
wavelength range of 400–750 nm, was used in our study to measure the
absorbance. Cell suspension (~20,000 cells per well in a culture medium
that is serum-free and containing D-glucose and L-glutamine was used for
PM-M 5 to 8 and PM-M 11 to 14. All plates were incubated at 37 °C in a CO2

incubator. The absorbance readings were measured after an initial
incubation (48 h) of cell growth, followed by adding the dye and reading
for 24 h of study (with initial intervals at 15, 30, 45, and 60min; 1 h intervals
from 2 to 6 h; and final reading at 24 h of incubation).

Drug dose response curves for Rotenone
For dose response experiments, four replicates at 20,000 cells per well
were plated in 96 well NuncTM tissue culture plates for U87MG and low
attachment ones for NSP in complete growth medium for 24 h, treated
with different concentrations of rotenone followed by cell viability tests
using MTT assay. Appropriate cell controls (without rotenone treatment)
were used to estimate IC50 dose value. The concentrations of rotenone
used in the IC50 estimation for U87MG cells were 0.5 mM, 0.1 mM, 1mM,
2mM, 3mM, 4mM, and 5mM. The concentrations of rotenone used in the
IC50 estimation for NSP cells were 5 nM, 10 nM, 20 nM, 50 nM, 100 nM,
0.5 mM, and 1mM. The results were graphed and drug dose response
parameters were calculated using Graph Pad Prism.

Flux balance analysis using constraints based metabolic network
analysis
A published model for central core metabolism32 consisting of 386
reactions (Supplementary File 5) that are highly conserved in cancer, was
used to build U87MG and NSP specific models. The model consisted of
reactions involved in metabolic functions such as, biomass precursor
synthesis, core energy metabolism, co-factor transfer, regeneration
reactions, and relevant pathways for high secretion/uptake metabolites
etc. Cell specific biomass composition was determined for U87MG and NSP
taking into account literature mass fractions of different macromolecules
such as, lipid, protein, DNA, and RNA32. Specifically, protein dry weight
fraction was assumed to be 70% of dry cell weight and DNA mass fraction
was calculated considering 44 chromosome units for the U87MG as
reported by ATCC records. While the remainder of biomass fraction was
distributed amongst lipid and RNA as per literature reported values32.
Metabolic fluxes were estimated using flux balance analysis for these

models by solving following linear Eq. 1.

Z0 ¼ max c:vf g (1)
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subject to,

S:v ¼ 0 (2)

vmin
i � vi � vmax

i (3)

where, S is the stoichiometric matrix, c corresponds to the vector of
objective applied to individual reaction, v is the reaction flux vector and
vi
min, vi

max denotes the bounds for ith reaction flux range.
Systemic effects of genomic variants on cellular metabolism are well

known. In order to incorporate enzymopathic effects of system specific
unique mutations for these two cell lines, a list of reactions was identified
(as shown in Supplemental file S5 following gene-protein-relation having
genes with mutations having deleterious effects predicted by PPH2. This
method uses the Naives Bayes approach coupled with entropy-based
discretization that predicts a likelihood that the mutant allele impacts
protein function, phenotype or fitness i.e., is the mutation benign or
damaging. Such intracellular reaction’s flux bounds were constrained
following Eq. 238.

newV i;maxð Þ ¼ v i;minð Þ þ 0:25 ´ abs v i;minð Þ � v i;maxð Þ
� �

(4)

In Eq. 2, v(i,min) and v(i,max) represent feasible flux range in each reaction
from an unaltered model system, identified using flux variability analysis
(FVA). For estimation of fluxes, these models were constrained using
exchange rate for twenty-one metabolites including glucose, lactate and
amino acids. (Supplementary File 5) Additional constraints on biomass
reaction using experimental growth rates, ATP maintenance reaction as
1.07mmol/gDW/h based on measurements32 and on oxygen uptake rate
(OUR) based on estimations following flux balance estimations for maximal
OUR feasible by the models. These contextualized models were evaluated
following their in silico phenotypic predictions using constraints-based
methods such as, flux balance analysis and uniform random flux sampling
of flux solution space. We also added an in silico pseudo-hypoxia reaction
(NAD [c]+H2[c]→NADH [c]+ H[c]) involving the conversion of cytosolic
NADH to NAD+ according to the previous study of testing the pseudo-
hypoxia in cancer cells39, to estimate the levels of NADH and NAD+ in the
cell-specific contextualized models.

Flux variability analysis (FVA)
Plurality of solutions exists for the FBA problem, since the cell can choose
multiple flux distributions to result in a unique objective function. FVA
identifies the set of feasible fluxes at the optimal objective. The method
calculates the minimum and maximum allowable fluxes through each
reaction using a double optimization linear programming approach for
each reaction of interest. The FVA problem, an extension of the FBA, is set
up as

max=min vif g (5)

Subject to,

S:v ¼ 0 (6)

vobj � YZ0 (7)

vmin
i � vi � vmax

i (8)

where vobj is an optimal solution for (Eq. 1). Y is a control parameter to
define the problem with respect to the default optimal state (Y= 1) or
alternate sub-optimal network states (0 ≤Y < 1) for objective function. The
non-uniqueness of the FBA solution allows calculation of a range of flux
that is feasible for each reaction, thus defining the rigidity and plasticity of
the network.

Uniform random sampling of reaction flux
Similar to FVA, properties of metabolic flux states can be deciphered by
random sampling of feasible flux space within the enclosing parallelepiped
solution space38. This can be achieved by choosing a random point
uniformly along each edge of parallelepiped following Monte Carlo
sampling. Equation 3 illustrates how random points are chosen within the
solution space.

αi ¼ αi;min þ Rn αi;max � αi;min
� �

(9)

In Eq. 3, Rn is a random number chosen between 0 and 1 while αi,min

and αi,max defines the flux range of feasible flux state along each reaction
vector identified using FVA. These points can then be further compared to

the set of constraints imposed on a constrained based metabolic model, in
order to verify whether the random point falls in solution space.
Solution sampling in this manner not only offers insights about plasticity

of the metabolic network but offers latent information about metabolic
flux states such as, coregulated list of trans-acting metabolic reactions. In
addition, information about rewiring of the metabolic network imposed by
system specific constraints can also be elucidated by inspecting the
population distribution of random sampling for each reaction38.
Flux sampling for U87MG and NSP cell line models was carried out using

a Markov Chain Monte Carlo method of Artificial Centering Hit-and-Run
(ACHR) sampler from COBRA toolbox. The initial point for the sampler was
chosen amongst 1000 warmup points identified by combining random
and orthogonal points. A total of 50,000 randomly distributed sampling
points were computed with 1000 iterations between each stored point.
Distribution of individual reaction flux values across the sampling
population was represented as a histogram of feasible flux value and
associated frequency in the convex polytope of solution space.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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