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Assessment of skin barrier function using skin images with
topological data analysis
Keita Koseki1,2,3,7, Hiroshi Kawasaki 1,2,4,7, Toru Atsugi 5, Miki Nakanishi 5, Makoto Mizuno 5, Eiji Naru 5, Tamotsu Ebihara 2,
Masayuki Amagai2,4 and Eiryo Kawakami 1,2,6✉

Recent developments of molecular biology have revealed diverse mechanisms of skin diseases, and precision medicine considering
these mechanisms requires the frequent objective evaluation of skin phenotypes. Transepidermal water loss (TEWL) is commonly
used for evaluating skin barrier function; however, direct measurement of TEWL is time-consuming and is not convenient for daily
clinical practice. Here, we propose a new skin barrier assessment method using skin images with topological data analysis (TDA).
TDA enabled efficient identification of structural features from a skin image taken by a microscope. These features reflected the
regularity of the skin texture. We found a significant correlation between the topological features and TEWL. Moreover, using the
features as input, we trained machine-learning models to predict TEWL and obtained good accuracy (R2= 0.524). Our results
suggest that assessment of skin barrier function by topological image analysis is promising.
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INTRODUCTION
The skin provides an effective barrier between the external
environment and the body, preventing the entry of pathogens
and microorganisms, as well as restricting water loss1. Skin barrier
research has gained huge momentum after the discovery of the
filaggrin mutation (FLG) in atopic dermatitis (AD) patients2.
Filaggrin is an epidermal structural protein critical for skin barrier
formation, and the FLG mutation is a major risk factor for AD3.
Studies have identified an association between the FLG mutation
and asthma and food allergies, such as peanut allergies, even in
the absence of AD3. Accumulating evidence, including the results
of murine studies, suggests that an altered skin barrier is involved
in atopic diseases, including AD4,5.
Transepidermal water loss (TEWL) is the amount of water that

evaporates from the body surface and is most widely used to
evaluate skin barrier function6. Since healthy skins have the
capacity of retaining water, high and low TEWL are indicative of
skin barrier dysfunction and intact skin or recovered skin barrier,
respectively. Recent studies suggest that TEWL not only reflects
the current state of the skin barrier, but it is also a subclinical
biomarker for AD and food allergy7,8. Since TEWL is sensitive to
environmental factors, such as temperature and humidity,
examinees are required to wait in the test environment, where
temperature and humidity are controlled for a certain period of
time (~20min) before measurement6. Therefore, direct measure-
ment of TEWL is not easily implemented as a method to estimate
skin barrier function in daily clinical practice, and more practical
alternative methods are necessary.
Instead of the direct measurement of TEWL, we considered

assessing the skin barrier function by image analysis of the skin
surface. Since it is simple to take microscopic pictures of the skin
surface, skin barrier assessment by image analysis would be beneficial
in daily clinical practice and in subclinical skin care of healthy people.
Recently, convolutional neural networks (CNNs) have been reported

as very effective in the field of medical image analysis for extracting
important features and predicting clinical characteristics9. However,
CNNs require a vast number of images, as well as significant
computational resources and fine-tuning of parameters. In addition,
the learning process for interpretation of extracted features is rather
difficult10. Therefore, we applied topological data analysis (TDA)
instead to extract features representing the shape of skin surfaces.
TDA is a collection of methods for identifying topological structures in
data11 and is now considered to be an effective tool to analyze
various data in many areas including material science12, engineer-
ing13, and biology14. Moreover, TDA has also been applied in
medicine to the quantification of tumor shapes15–17, finding patterns
in genetic data of cancer patients18, and characterizing brain artery
networks19. In dermatology, TDA has been applied to segmenting
and classifying skin lesions20–23 and quantifying the connectivity of
epidermal cells24. TDA detects the number of topological features,
such as connected components, holes, and cavities, and demon-
strates their robustness and magnitude. This information facilitates
quantification of the shape and regularity of the skin surface. A study
that examined 350 healthy adult women showed that there is a
significant difference between populations with high and low TEWL in
terms of the number of skin ridges25. These findings suggest that
structural features in the skin surface contain information associated
with skin barrier function and supports our notion that skin barrier
function may be assessed from skin images.
In this study, we propose a new skin barrier assessment

method using skin images with TDA. We extracted features
representing the regularity of skin surface patterns from images
of 244 healthy people and predicted their TEWL using machine
learning using identified features as predictive variables. We
found that the assessment of skin barrier function from skin
images using TDA holds promise in improving the accuracy of
TEWL prediction.
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RESULTS
Evaluating skin patterns with TDA
Several TDA algorithms have been proposed in terms of thresh-
olding methods called filtration functions, including the k-nearest
neighbor (kNN) density estimator, the signed distance, and the 8-
bit grayscale value (Fig. 1a). The kNN density estimator calculates
the density of white pixels by measuring the distance from the

considered pixel to the kth nearest white pixel for a fixed integer
k26. The signed distance method assigns the Manhattan distance
from the border between black and white areas with a positive
sign to a white pixel and a negative sign to a black pixel27,28. The
8-bit grayscale value reflects the brightness of a pixel ranging from
0 (black) to 255 (white)16. For each threshold value, the superlevel
set is defined as the image region where the value of the filtration
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Fig. 1 An illustration of feature extraction using TDA. a Three filtration functions are illustrated. In the upper row, the density of white pixels
is calculated using the kNN density estimator, and elevated regions in the 3D map represent a higher density. As the threshold decreases from
t1 to t3, the superlevel set (the domain above the threshold) grows from Xt1 to Xt3. In the middle and lower rows, the signed distance and the
8-bit grayscale are, respectively, used as filtration functions. As the threshold decreases, the superlevel set (white region) expands. b The
flowchart of our method. An original image is transformed into a grayscale image. For the kNN density estimator or signed distance as
the filtration function, the image is binarized with Otsu’s method. Wavelet transformation and morphological operations can be applied.
Following TDA, the persistence diagram is obtained. c A schematic diagram of thresholds and superlevel sets. In the upper row, as the
threshold decreases, the superlevel set (white region) grows larger. The middle row shows the birthplace of connected components (0-dim
topological features), and the lower row shows the holes (1-dim topological features) in the corresponding superlevel set. d The information
on the detected topological features of each image is summarized in two diagrams called the persistence diagrams. The axes represent the
log-scale thresholds where the feature appears (“birth”) and disappears (“death”). The 0-dim persistence diagram represents information of
the connected components, and the 1-dim persistence diagram represents that of holes. The color scale represents the density of points in
the persistence diagram calculated by the function “kde2d” of the R package MASS. e For interpretability and handiness, we transform “birth”
and “death” into their mean (mid-life) and their difference (life-time) and plot them. f The persistence diagrams with the axes mid-life and life-
time. The color scale represents the density of points in the persistence diagram. The three small panels on the right show the holes in each
corresponding domain of the 1-dim persistence diagram. The life-time roughly corresponds to the size of holes.
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function is larger than the threshold. TDA analyzes how the shape
of the superlevel set changes with a gradually changing threshold.
According to the choice of filtration functions, there are several

options for image preprocessing (Fig. 1b). Here, we illustrate the
TDA procedure for the case using the kNN density estimator as the
filtration function. First, we transformed the images into grayscale
and binarized them with Otsu’s method29. Wavelet transformation
and morphological operations can be applied to remove bright-
ness disproportion and noise.
After preprocessing, we quantified patterns of the images using

TDA. There are two kinds of topological features in 2D image
analysis: connected components and holes. Connected compo-
nents (0-dim topological features) are continuously connected
regions of white pixels. Holes are continuous loops through a
white region surrounding a black region. In our procedure, each
filtration function assigns large values to hollow spots, such as
sulci cutis, and small values to protuberant spots, such as cristae
cutis. Intuitively, holes represent sulci surrounding cristae, and
connected components represent connected regions made of
sulci. As the threshold decreases, the superlevel set spreads
gradually (Fig. 1c, upper row). Connected components appear and
merge, and finally, there is only one connected component (Fig.
1c, middle row). Likewise, as the threshold decreases, holes
appear, fill up, and finally, there is no hole (Fig. 1c, lower row). We
recorded the thresholds in log-scale at the point where the
connected components and holes appeared and disappeared,
described as birth and death, respectively.
The popular way to express this extracted information is

drawing persistence diagrams which show the relationship
between birth and death (Fig. 1d)30. We plotted the means of
birth and death (mid-life) and the difference between birth and
death (life-time) of each topological feature instead of directly
plotting birth and death (Fig. 1e, f) since they were easy to
interpret. The mid-life indicates the threshold at which the feature
exists. Features with a large life-time can be regarded as important
structures because it is likely that these are not noise31. Also, the
life-time of holes roughly correlates with the size of corresponding
holes (Fig. 1f, right three panels). On the other hand, the
distribution of mid-life is related to the regularity of the image.
Since features visible in the original image appear at the early
stage with high mid-life, if the image has a regular ring-shaped
structure, many holes appear convergently at the range of high
mid-life.

Relationships between TEWL and persistence diagrams
We compared the distributions of mid-life and life-time on 0-dim
and 1-dim topological features. For illustration, we show six typical
samples of cheek skin images (Fig. 2a). We found clear differences
in their persistence diagrams. In particular, the distribution of 1-
dim mid-life for case A had a sharper peak in the higher value
range than that for case E (Fig. 2b). Because case A had a regular
texture, holes appeared intensively at the range of high mid-life.
On the other hand, case E showed a wavy pattern and very little
texture, and holes appeared loosely at the range of low mid-life.
To investigate the correlations between TEWL and topological

features, we performed linear regression analysis. Although linear
regression only captures linear relationships between variables, it
enables us to intuitively understand whether two variables have a
significant relationship, how closely they are correlated, and
whether the correlation is positive or negative32. As the
comparison of case A and case E suggested, there was a strong
positive correlation between TEWL and the standard deviation of
1-dim mid-life (Fig. 2c, d) and strong negative correlation between
TEWL and the mean of 1-dim mid-life (Fig. 2c, e). These
correlations suggest that TDA can detect regularity of skin texture
patterns which are associated with skin barrier integrity. Interest-
ingly, the correlations between TEWL and some topological

features were stronger than those of background factors, such
as age and sex, and environmental factors, such as temperature
and humidity. This indicates that skin images include substantial
information associated with skin barrier function. The mean and
standard deviation had an inverse linear relationship, and a clear
trend for TEWL changes could be seen along the regression line
(Fig. 2f), suggesting that this line may be considered an indicator
of the regularity of skin surfaces. From these results, we concluded
that the topological features extracted from skin images using
TDA provide essential information associated with skin barrier
function.
We also analyzed the relationships between the moisture

content of the stratum corneum, and the features extracted from
skin images (Supplementary Fig. 1a, b). The moisture content was
measured using two devices, namely, the Corneometer (Model
CM825; Courage & Khazaka Electronic, Cologne, Germany) and the
Skicon (Model 200EX-USB; YAYOI, Tokyo, Japan). We compared
these two devices owing to differences in their mechanisms. The
Corneometer uses electrical capacitance, whereas the Skicon uses
high-frequency conductance to assess the level of hydration33,34.
Reports suggest that the Skicon is more sensitive to hydration
dynamics compared with the Corneometer; however, the latter is
useful for the measurement of very dry skins35. In contrast to
TEWL, the moisture content was not strongly related to skin
images with both devices. Instead, the moisture content was more
associated with the environmental condition.

Prediction of TEWL with machine learning
In the previous section, we showed that topological features on skin
images have a significant correlation with TEWL. Given this, we used
the features in the persistence diagrams to predict TEWL with
machine-learning algorithms. The process of prediction is shown in
Fig. 3a. First, for cross-validation, we partitioned all images into 70%
training data (997 images of 170 people) and 30% test data (431
images of 74 people). We investigated the relationships between
TEWL and summarized values (means and standard deviations of the
mid-life and life-time) of persistence diagrams; however, these values
omit a significant amount of information that may have important
relationships with skin conditions. Since we cannot apply machine-
learning algorithms directly to persistence diagrams due to the space
of persistence diagrams lacking the vector space structure (e.g., each
persistence diagram has a different number of points), we had to
vectorize the persistence diagrams before applying machine-learning
algorithms.
Various vectorization methods for persistence diagrams have

been proposed. For example, the persistence landscape embeds
persistence diagrams into a Banach space made of piecewise-
linear functions36; kernel methods were used to apply kernel-
based machine-learning methods and statistical concepts to
persistence diagrams37,38; functions defined using tropical geo-
metry were also utilized to represent persistence diagrams
without loss of information39. Among many vectorization meth-
ods, we applied the persistence image to vectorize persistence
diagrams40 because the persistence image embeds each persis-
tence diagram into a finite-dimensional Euclidean space that is
easy to handle. Besides, another approach exists that directly
combines TDA and neural networks41. The combination of the
persistence image and machine learning enabled us to easily
analyze which regions of persistence diagrams were important in
the prediction and where important features (connected compo-
nents and holes) resided in the original images27.
After vectorization of the persistence diagrams, we combined

each generated vector with age, sex, temperature, and humidity
to make the feature vector for each subject and applied several
machine-learning methods to construct TEWL prediction models.
Since high-dimensional data that is composed of highly correlated
variables often causes inefficient prediction due to
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multicollinearity and overfitting, we applied a principal compo-
nent analysis (PCA) to the features extracted from images and
extracted the most important components whose proportions of
variance were larger than 0.01. Among the several machine-
learning algorithms and linear regression model, the random
forest regression model with PCA was the best prediction model
according to the coefficient of determination (R2) (Supplementary
Table 1). Furthermore, the choices of several filtration functions,

preprocessing methods, and vectorization methods have been
considered and summarized in Supplementary Tables 2 and 3. The
preprocessing procedure with the best performance was (1)
signed distance as the filtration function, (2) persistence image
with a standard deviation of 0.1 as the vectorization method, and
(3) without wavelet transformation or morphological operations in
the preprocessing. With this procedure, the random forest
regression model predicted TEWL of the test data with high
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accuracy (R2= 0.524; Fig. 3b). Combining the three feature vectors
obtained by the three filtration functions (each under the optimal
combination of other methods) did not improve the prediction
accuracy (R2= 0.512). This is likely because all three filtration
functions extract quite similar features of the skin image and,
therefore, the information obtained using each method overlaps.
The variable importance of each region in the persistence

diagrams was calculated using the random forest regression
model (Fig. 3c). The regions that contributed significantly to
the regression of TEWL had high importance. For three subjects, we
extracted only those features in the regions of highest importance
and drew their locations over the original images (Fig. 3d).
The locations of connected components were represented by their
birth positions (i.e., the locations where they appear), and those of
holes were represented by their death positions (i.e., the locations
where they are filled in)27. We confirmed that large structures such
as pores and hairs were not included in the important features.
We also predicted the moisture content of the stratum corneum

with the random forest regression model from the same variables
as for TEWL (Supplementary Fig. 1c, d). The choices of several
filtration functions, preprocessing methods, and vectorization
methods were considered and are summarized in Supplementary
Tables 4 and 5. Although the accuracy was lower than the
prediction of TEWL, the moisture content can also be predicted
with R2= 0.219 for the Corneometer and R2= 0.364 for the Skicon.
This is consistent with the linear regression results, where the
moisture content measured with the Skicon had a stronger
association with the topological features and also with the
environmental condition.

DISCUSSION
In this study, we predicted TEWL from skin images with good
accuracy by combining TDA and machine learning. An advantage
of this method is that it takes far less time than the direct
measurement of TEWL. In contrast to the direct measurement of
TEWL, which requires subjects to wait in the test environment with
controlled temperature and humidity for about 20 min, our
method requires only a short time for taking a picture of the
subject and a few seconds for analyzing the image. Therefore, we
believe that our method can be applied in daily clinical practice
and to the skin care of healthy people. Another advantage of our
method is that it requires a relatively small number of images. In
this study, we used only 997 images of 170 subjects to train the
prediction model. Typically studies using CNNs in dermatology
use 10,000–100,000 skin images to train models42–44, which is
sometimes problematic in clinical image analysis where not so
many images of the same standard are available for training. TDA
extracts predefined essential information on the skin surface
structures and does not require learning for feature extraction.
Because of this characteristic, our method based on TDA can be
easily transferred to new projects which utilize images of different
standards. Feature extraction methods such as TDA are suited for

situations where a small number of images is available and clear
features exist; conversely, deep learning is suited for situations
where many images are available and defining specific features is
difficult. Therefore, it is essential to use deep-learning and non-
learning feature extraction methods in parallel when dealing with
medical images of various types and sizes.
Our results showed that TDA can quantify the regularity of skin

surfaces, which correlates with TEWL. A previous study also
applied TDA to detect the patterns of the microsurface structure
of the gastrointestinal tract; images were classified according to
their patterns into three groups with variable risk for cancer (oval,
tubular, and irregular patterns with no, low, and high risk,
respectively). Approximately 90% of the classification matches
were performed by medical doctors15. Moreover, in cardiac image
analysis, a study applying TDA to computed tomography images
successfully extracted the shape of the trabeculae, the fine muscle
columns on the ventricular walls which had been missed by
previous methods45. These results and ours suggest that TDA is
suitable for the image analysis of organs with fine structures. Since
there are many organs with fine structures in the body, such as
the lung, liver, and brain, there are many potential applications of
TDA in the field of medicine. In dermatology, several studies
applied TDA to the malignancy classification of melanomas using
skin images taken by dermatoscopes or stereomicroscopes20–22.
Another study proposed a method of applying TDA to classify
seven skin diseases including melanomas and basal cell carcino-
mas23. These studies have shown that skin image analysis using
TDA is useful for the qualitative assessment of skin diseases. Our
application of TDA, on the other hand, allowed us to quantitatively
evaluate the skin phenotype. This will lead not only to the
stratification of existing skin diseases but also to the prediction of
pathological changes in chronic skin diseases such as AD.
Quantification of skin structures using TDA may lead to the
establishment of objective diagnostic criteria for skin diseases. In
this study, the moisture content of the stratum corneum did not
correlate strongly with topological features of the skin. This is
probably because the moisture content reflects the state of the
deeper layer of the stratum corneum, which does not appear in
the surface46. The Raman microspectrometer (Model 3510; River
Diagnostics BV, Rotterdam, The Netherlands) has been used to
determine molecular concentration profiles in the deep skin47,48.
Combining topological features of the skin surface with such deep
skin information may allow for more detailed skin condition
monitoring and stratification.
Historically, dermatology has evolved through the observation

of body surfaces by specialists49. However, recent developments
in molecular biology and genomic sciences have revealed
mechanisms and causative genes of skin diseases, and many
biologics have appeared49. For precision medicine considering
these mechanisms, it is necessary to objectively evaluate the skin
condition and systematically select treatment that is suitable for
each individual patient. Although the present study is exclusively
designed for healthy people, the methodology may be

Fig. 2 Relationships between TEWL and features of skin images extracted using the kNN density estimator. a Typical examples of skin
images. Cases A and B show relatively regular skin texture and low TEWL, and cases E and F show relatively rough skin surfaces and high
TEWL. The written consent was obtained for publication of the photographs. b The persistence diagrams of cases A and E with marginal
distributions. It is remarkable that the mid-life of case A has a sharper peak with a higher value range than that of case E. c The t-value of each
variable is calculated using simple linear regression predicting TEWL. As explanatory variables, we used the mean and standard deviation of
mid-life and life-time for 0-dim and 1-dim topological features, the number of all connected components and holes, age, and sex. Variables
with a false discovery rate (FDR) larger than 0.01 are colored red (if its t-value is positive) or blue (if its t-value is negative). d, e The results of
simple linear regression predicting TEWL from the mean and the standard deviation of 1-dim mid-life with the coefficient of determination
(R2) and p-value. Since sex is the most important variable in determining TEWL other than the topological features of the images, each point is
colored red or blue according to the subject’s sex. The points representing cases A–F are also labeled. The shaded areas represent the 95%
confidence intervals of the regression. f The mean and the standard deviation of 1-dim mid-life are linearly related, and a clear observed TEWL
trend change can be seen along the regression line. The shaded area represents the 95% confidence interval of the regression.
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extrapolated to dermatological disease research for precision
medicine. More samples may be needed to reflect the diversity of
the patients; in addition to phenotypes, genetic factors such as
FLG mutations should also be analyzed to improve understanding
of the disease pathology. Deep clinical phenotyping based on TDA
can provide a basis for precision medicine in dermatology by
quantifying clinical characteristics and associating them with
molecular biological knowledge.

METHODS
Subjects and measurement
We recruited 244 healthy subjects between the ages of 0 and 64 years.
Among them, 143 were women, and 101 were men; 132 were from Akita,
and 112 were from Tokyo, Japan (Supplementary Table 6). We only chose
subjects who did not use external topical medicines and did not have any
skin diseases or other factors such as warts and stains in the measured
region. For each subject, measurements were performed twice, in June and
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Fig. 2a are also labeled. As indicators of accuracy, the coefficient of determination (R2), the root mean squared error (RMSE), and the mean
absolute error (MAE) are shown. c The variable importance of each region in the persistence diagrams is calculated by the random forest
regression model according to how much the variable contributed to the regression of TEWL. d For cases A, C, and F in Fig. 2a, the birth
position of connected components (red) and the death position of holes (blue) in the most important regions of the persistence diagrams are
drawn (upper row) and enlarged (lower row).
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December 2018. We obtained informed consent for analysis and
publication of measured data and skin photographs from all participants
and ethical approval from the Kenshokai ethical committee for data
acquisition [IRB no. 20180810-2 and H30-044] and from Keio University
School of Medicine Ethics Committee for data analysis [IRB no. 20160191-6]
in accordance with the Declaration of Helsinki. The procedure of the
measurement performed in June and December involved certain steps.
Before measurement, subjects washed their face using makeup remover
and facial wash. For infants who could not wash their faces themselves, we
wiped their faces with damp cotton wool twice. Subjects waited for more
than 15min in the test room with temperature and humidity kept to
20.0 °C and 50%, respectively. We took three pictures of the left cheek (the
intersection point of the horizontal line through the inferior margin of the
nose and the vertical line through the left edge of the left eye) using a
microscope and measured TEWL and the moisture content of the stratum
corneum of the same region. We used a digital microscope (Model KH-
8700; Hirox, Tokyo, Japan) and a vapometer (Model SWL5001JT; Delfin,
Technologies Ltd, Kuopio, Finland) to measure TEWL and the Corneometer
(Model CM825; Courage & Khazaka Electronic, Cologne, Germany) and
Skicon (Model 200EX-USB; YAYOI, Tokyo, Japan) to measure the moisture
content of the stratum corneum. We measured TEWL three times and the
moisture content of the stratum corneum five times per subject and used
their medians in the subsequent analysis.

Image processing
We processed skin images using the Python packages OpenCV50 and
PyWavelets51. We trimmed the images into 1400 × 1200 pixels to delete
scale bars and transformed them into grayscale using the OpenCV function
“cv2.cvtColor” and “cv2.COLOR_BGR2GRAY.” In the wavelet transformation,
the grayscale image was decomposed into levels from 0 (coarsest) to 10
(finest). Wavelet coefficients at coarse resolutions represent large
structures of the image, including disproportionate light intensity. The
image was then reconstructed using only some of these levels
(Supplementary Fig. 2).
The images were binarized using Otsu’s method. In the morphological

operations, the eroding operation was applied using the OpenCV function
“cv2.erode” to expand the black region with the structuring element
obtained by the OpenCV function “cv2.getStructuringElement(cv2.
MORPH_CROSS,(3,3)).”

Application of TDA using the kNN density estimator
The kNN density estimator was applied as the filtration function using the
R package TDA52. The specific process was as follows: We set a grid spacing
of 10 pixels on an image. On each grid point, the density of white pixels
was estimated by measuring the kth nearest white pixel with the
parameter k set to 100. We gradually decreased the threshold from ∞ to
−∞ and recorded the thresholds in log-scale at the point where the
connected components and holes appeared and disappeared as birth and
death. We calculated the mean (mid-life) and the difference (life-time) of
these and plotted them to draw the persistence diagrams. We calculated
the means and standard deviations of the mid-life and life-time,
respectively.

Linear regression analysis
After the skin images had been processed by grayscale transformation,
wavelet transformation using levels 4–10, Otsu’s method, eroding
operation for five times, and TDA with the kNN density estimator, we
performed 14 separate simple linear regression analyses using the R lm
function to predict TEWL from 14 explanatory variables, such as sex, age,
temperature, humidity, the number of all connected components and
holes, and the means and standard deviations of mid-life and life-time of
connected components and holes. To investigate the influences of
environmental factors on TEWL, we included the temperature and
humidity as explanatory variables; these were the averages of the daily
temperature and humidity over one month. We calculated the t-value and
the two-sided p-value of each regression. The false discovery rate was
calculated using the R p.adjust function with the method of Benjamini and
Hochberg53.

Comparison of machine learning models for predicting TEWL
First, we performed machine learning using the R package caret to
investigate which algorithm performs best54. We removed the meaningless

dimensions with very low variances from the count data of the partitioned
persistence diagrams using the caret nearZeroVar function. We performed
PCA using the R prcomp function. The eight most important components,
namely, PC1–PC8, with contribution ratios larger than 0.01 were used.
Then, we created two feature vectors for each sample. One was made of
the count data together with age, sex, temperature, and humidity, and the
other was made of PC1–PC8 together with age, sex, temperature, and
humidity. We used each feature vector, respectively, to predict TEWL
and compared their accuracies. We split all data into 70% training data and
30% test data using the R sample function to evaluate the accuracy of
prediction. We constructed several models for predicting TEWL using the
caret methods “rf” (random forest), “svmRadial” (support vector machine
with Gaussian kernel), “enet” (elastic net), “xgbLinear” (gradient boosting
using linear functions), “xgbTree” (gradient boosting using tree models),
“nnet” (neural network), and “lm” (linear model). Parameter tuning of each
model was performed using 10 separate 10-fold cross-validations. The best
parameters were chosen according to the root mean square error (RMSE).
Each trained model predicted TEWL from each image. Because we took
three pictures of each subject in each measurement, we chose the median
of the three predicted values as the genuine predicted TEWL of the
subject. We evaluated the prediction models by calculating RMSE, the
coefficient of determination (R2), and the mean absolute error (MAE). Since
the random forest performed best, we used it as the prediction algorithm
of TEWL in the following procedures. To apply the random forest
afterwards, we used the RandomForestRegressor function of the Python
package scikit-learn to predict TEWL because it is easier to speed up by
parallelization than caret55.

Comparison of vectorization methods, filtration functions, and
preprocessing methods
Next, two vectorization methods of persistence diagrams were considered:
counting points in each region and persistence image. The dynamic range
of persistence diagrams was partitioned into 20 × 20 regions. In the
persistence image, for each point in the persistence diagram, we
associated a Gaussian distribution centered at the point with the standard
deviation set to 0.1 or 1. Then, the distribution was multiplied by linear
weighting function which is 0 at the x-axis (i.e., where life-time equals 0)
and 1 at the maximum life-time of all persistence diagrams. Finally, all the
weighted distributions for all points in the persistence diagram were
added and integrated over each region to obtain a 400-dimensional
vector. We implemented the persistence image by modifying the Python
package persim of scikit-tda56.
Furthermore, the choice of algorithms of TDA was considered. In

addition to the kNN density estimator, the signed distance and 8-bit
grayscale were considered as the filtration functions. The signed distance
and 8-bit grayscale were applied using the Python package HomCloud
(http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud-english.html).
Finally, the choice of preprocessing methods was considered. We

assessed the performance of prediction with or without the wavelet
transformation and morphological operations. Additionally, to investigate
the effect of parameters in the wavelet reconstruction, seven combinations
of levels were examined.

Calculation of the variable importance
The variable importance was calculated using the random forest regression
model, which had the vectorized data of persistence diagrams, age, sex,
temperature, and humidity as explanatory variables. We obtained an
average of the variable importance calculated 10 times with different test
data selected randomly. When using PCA, the importance of the regions of
persistence diagrams was calculated from the importance of principal
components. The information of birth positions and death positions was
obtained using the HomCloud function “homcloud.interface.
draw_birthdeath_pixels_2d.”

DATA AVAILABILITY
Except for skin images, all data used in this study are included in the GitHub
repository (https://github.com/kosekei/skin_TDA). The skin images used in this study
are available from the authors upon request.
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CODE AVAILABILITY
All scripts used in this study are included in the GitHub repository (https://github.
com/kosekei/skin_TDA).
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