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A dynamic multi-tissue model to study human metabolism
Patricia Martins Conde 1,2, Thomas Pfau1, Maria Pires Pacheco 1 and Thomas Sauter1✉

Metabolic modeling enables the study of human metabolism in healthy and in diseased conditions, e.g., the prediction of new drug
targets and biomarkers for metabolic diseases. To accurately describe blood and urine metabolite dynamics, the integration of
multiple metabolically active tissues is necessary. We developed a dynamic multi-tissue model, which recapitulates key properties
of human metabolism at the molecular and physiological level based on the integration of transcriptomics data. It enables the
simulation of the dynamics of intra-cellular and extra-cellular metabolites at the genome scale. The predictive capacity of the model
is shown through the accurate simulation of different healthy conditions (i.e., during fasting, while consuming meals or during
exercise), and the prediction of biomarkers for a set of Inborn Errors of Metabolism with a precision of 83%. This novel approach is
useful to prioritize new biomarkers for many metabolic diseases, as well as for the integration of various types of personal omics
data, towards the personalized analysis of blood and urine metabolites.
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INTRODUCTION
Genome scale reconstructions of the human metabolism have
become ever more sophisticated in the recent years (EHMN1,
Recon1-32–5, and HMR1-26,7). Multi-tissue models based on these
reconstructions, or from scratch8,9, are used to investigate the
interplay between different tissues. And while there are profiles
for uptake, and release of substances from individual cell lines
(e.g., Jain et al.10), this information is often lacking for human
tissues, and has to be inferred from other species. Thus, it is
difficult to properly constrain a multi-tissue model, as literature
sources vary, and bounds might be too stringent. Recently a study
by Hyötyläinen et al.11 suggested to relax these hard constraints
by using a quadratic programming approach in which hard
bounds are replaced by penalties for data violation. This approach
enables the direct use of data in a model, while contradicting
bounds are relaxed in an automatic fashion, with many smaller
violations preferred to large individual violations. However, this
approach still does not address another issue with multi-tissue
models of higher organisms. What is the metabolic objective of
the organism? For microbes, biomass accumulation has been
extensively used as objective yielding good results12, and this has
also shown promising results for plants13, and even infant
growth14. This objective is also commonly used for cancerous
tissues which grow rapidly15. However, for a mature organism that
no longer grows, this objective is questionable. Other suggested
options include enzymatic optimization, or energetic optimization,
the former trying to minimize the overall fluxes, the latter trying to
minimize the use of ATP16. But while efficiency is a reasonable
target, it is likely not to be the major driving force in an organism.
In human, one observable factor is that blood metabolite levels
are tightly regulated17, and metabolism is likely to play an
important role in keeping these levels steady. Abnormal levels of
metabolites commonly indicate diseases, e.g., Diabetes Mellitus
and Inborn Errors of Metabolism (IEMs). Temporary perturbations
of metabolite levels occur primarily due to nutrient uptake or food
scarcity. This would imply that a good objective drives metabolite
levels towards the healthy range after perturbations by nutrient
uptake and simultaneously tries to keep metabolite levels stable
while fasting.

In this paper, we introduce a novel framework for multi-tissue
modeling that allows to incorporate blood metabolite levels and
flux measures of tissue uptake/secretion. We validated our model,
first by predicting the effect of temporary perturbations, i.e., long
duration fasting, nutrient uptake and also by simulating exercise
at different intensity levels. We further applied stronger perturba-
tions such as the knock-out of genes-associated with IEMs to
investigate their impact on blood metabolites levels, and on urine
excretion rates. 90% of the investigated metabolic changes
occurring during incremental exercise could be matched with
previous data, and the prediction of blood amino acids biomarkers
had a precision of 83%.

RESULTS
Description of the multi-tissue model
In this work a dynamic multi-tissue model able to predict human
metabolic activities in different healthy and unhealthy conditions
was developed. To achieve this, three constraint-based metabolic
tissue models (Fig. 1), liver, muscle and adipose tissue were
reconstructed from Recon2.043 and tissue specific transcriptomic
data, and integrated to create a multi-tissue model that contains a
total of 7251 reactions, and 5311 metabolites. After reconstructing
each individual tissue model using the FASTCORMICS workflow
(see Methods), each one was evaluated independently to
determine how many known tissue-specific functions each model
was able to perform, as defined in Gille et al.18. Two examples of
tested functions are: (1) the ability to produce ATP from glucose or
a fatty acid, in presence or absence of oxygen; (2) the ability to
degrade an amino acid to ammonium. In total, the liver model
could perform 139 out of the 142 tested functions, the muscle
model 88 out of the 98 functions, and the adipose tissue model 91
out of the 98 tested functions. To conclude, each model was able
to perform a minimum of 90% of the known tissue specific
functions (Supplementary Data 1), indicating the high quality of
the reconstructions.
In the following step, the different tissue models were coupled.

Each model was thereby individually connected with its own
storage compartment containing glycogen, triacylglycerol (TAG),
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protein and amino acids stores, if applicable, and with the blood
compartment. The latter contains a storage for the different blood
metabolites, thus allowing for the description of the dynamics of
these metabolites. Each of these stores were initialized with the
average amounts generally found in healthy individuals, as
described in the Methods section. To mimic food absorption
from the gut to the blood, a previously established differential
equation19, which has been used to simulate glucose absorption,
from the gut to the blood, was integrated in the workflow of the
multi-tissue model simulation. In this work, this equation was used
to simulate the gut to blood absorption of all meal metabolites
which was achieved by optimizing the parameters for each of the
meal metabolites of interest.
In this work, a dynamic Flux Balance Analysis (dFBA)20 based

approach was employed to simulate the final coupled model. In
contrast to the general FBA approach, where the metabolic flux
can be calculated for a given specific time point and condition, the
dFBA approach enables to account for the dynamics of
metabolites by integrating the individual FBA solution over time.
In both settings, constraints on reaction fluxes, and the optimiza-
tion of an objective function are usually employed to narrow
down the solution space and to obtain biological relevant flux
solutions, respectively. The model in this paper represents the
dynamics of metabolism of three interconnected tissue models,
and to properly simulate it, an objective function, integrating
multiple sub-objectives, has been developed as follows: (1) blood
homeostasis should be maintained; (2) energy ingested in excess
may be stored in the tissue energy stores, and may be used in
periods of food scarcity; and (3) metabolic transitions are smooth
over time, and between conditions. For a more detailed
description of the model simulation workflow, and the objective
function, please refer to the Methods section.
A second evaluation on the coupled multi-tissue model was

performed. The second set of tests consisted of simulating
different physiological conditions and a set of IEMs, and validating
the model predictions using published data. In the next sections,
the model predictions will be presented and discussed
thoroughly.

Effect of fasting, ingestion of a low and a high fat meal at the
metabolic level
After setting up the model, we validated it through the simulation
of different metabolic conditions occurring throughout the day. I.
e. in the morning when we wake up we are in a fasting state, and

after having breakfast the metabolism needs to adapt to a fed
condition. Thus, these states were simulated and the ability of
metabolism adaption between conditions was verified.
We started by simulating a fasting condition for 3 days, which

corresponds to 4320 min, to determine if the model was able to
capture known effects occurring during the fasting state, such as
liver glycogen depletion. As can be seen in Fig. 2, the three tissues
activated different energy-associated metabolic pathways during
the fasting condition. At around 2 days of fasting (2880 min), a
metabolic switch was apparent. This shift corresponds to the point
where glycogen stores were completely depleted in the liver
tissue. The starch and sucrose metabolism flux was at the
maximum in the liver, but once the glycogen stores became
depleted it became inactive. This pathway contains all the
reactions involved in either the production or hydrolysis of
glycogen. The effect was further confirmed by the flux through
the glycolysis/gluconeogenesis pathway, and through the tissue
storage degradation pathway. The latter one, in the liver, contains
the reaction which leads to the degradation of the glycogen
stores. These two pathways followed a similar pattern as the starch
and sucrose metabolism. They became fully inactive after the
glycogen stores were depleted. To compensate for this effect, and
to fulfill the energy demands of the multi-tissue model, there was
an increase in the flux through the tissue storage degradation, and
the triacylglycerol synthesis pathways in the adipose tissue. The
triacylglycerol synthesis pathway contains reactions producing and
degrading TAG. In the liver, the flux through the glycolysis/
gluconeogenesis pathway was decreased, while the flux through
the fatty acid oxidation increased. To conclude, the model
predicted that after 2 days of prolonged fasting, the liver glycogen
stores were completely depleted, which led to an increase of TAG
hydrolysis rate in the adipose tissue.
Throughout the day, the metabolism goes through different

metabolic states: from fasting, usually in the morning, to feeding,
after ingesting a meal, and depending on the individual’s lifestyle,
the type of meal selected will be different. Thus, we decided to
compare and determine the metabolic effect of ingesting two
meals with different fat content21. These two meals, representing
a healthy and a high fat breakfast, were compared to each other
and to the fasting condition (Fig. 3 and Supplementary Fig. 1).
Thus, three different conditions were simulated for 6 h (360 min): a
fasting condition, a low and a high fat meal consumption. When
comparing the fluxes of all tissues through all the metabolic
pathways in the three contrasting conditions, the results suggest
that the adipose tissue was metabolically less active than the liver
and muscle in all cases (Supplementary Fig. 1). This result was
expected as this tissue has a lower ATP demand, when compared
to the liver and the muscle. In addition, the adipose tissue
appeared to be quite unaffected by the different tested
conditions, possibly because the pathway fluxes in the adipose
tissue were much smaller when compared to the other two
tissues. The model predicted that the liver tissue was the main
amino acid metabolizer, as the flux through the amino acids
metabolic pathways was larger in liver. There were two excep-
tions: the aromatic amino acids and the glycine, serine, alanine
and threonine metabolism, which were mainly active in the
muscle (Supplementary Fig. 2).
To further investigate the effect of the three simulated

conditions (fasting, low and high fat meal) on the energy-
associated metabolic pathways, the fluxes were normalized to the
maximum flux per pathway, and per tissue (Fig. 3).
When compared to the fasting condition, the fed state led to

the activation (e.g., glycolysis/gluconeogenesis), or inactivation (e.g.,
fatty acid oxidation) of metabolic pathways, which as the post-
absorptive state progressed, slowly returned to the fasting flux
values. The effect of the meals on the majority of the energy-
associated pathways was still highly pronounced 6 h after the
meal ingestion.
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Fig. 1 Model overview. The multi-tissue model is divided in two
parts. The first part, denoted here as CBM, contains the three tissue
models, the blood compartment, and the urine excretion reactions.
The second part, denoted here as virtual stores, contains the blood
stores which are updated at each time step. The internal stores of
each tissue are represented in grey with the stored compounds
named in the boxes. The food absorption mimics the food absorbed
by the gut and transferred to the blood. TAG= Triacylglycerol.
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Fig. 2 Metabolic pathways activity in different tissues associated with energy metabolism during fasting. The pathway tissue storage
degradation contains different reactions depending on each tissue. In the adipose tissue, this pathway contains the reaction that leads to the
degradation of TAG from the adipose tissue stores. In the muscle, and in the liver, this pathway corresponds to the degradation of glycogen
from the glycogen stores, and to the degradation of TAG from the fat stores in each tissue. The black arrow, occurring at around 2880min,
represents the point when the liver glycogen stores were depleted, leading to a switch in the metabolic activity. Each flux in a pathway was
normalized to the maximum flux of that pathway for all tissues.
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Fig. 3 Comparison of the effect of different conditions on the energy associated pathways in different tissues. The tissue storage
degradation contains different reactions depending on the tissue. In the adipose tissue, this pathway contains the reaction that leads to the
degradation of TAG from adipose tissue stores. In the muscle, and in the liver, this pathway corresponds to the degradation of glycogen from
the glycogen stores, and to the degradation of TAG from the fat stores in each tissue. The tissue storage synthesis contains different reactions
depending on each tissue. In the adipose tissue, this pathway contains the reaction that leads to the TAG synthesis, and its storage in the
adipose tissue. In the muscle, and in the liver, this pathway corresponds to the synthesis, and storage of glycogen, and TAG in each tissue. Each
flux in a pathway was normalized to the maximum flux of that pathway for each tissue. The fluxes were normalized in this way, as no striking
pathway flux dynamics could be observed in the adipose tissue when the normalization was performed to the maximum value of a pathway
among all tissues. ROSdetox= Reactive oxygen species (ROS) detoxification; TS synthesis= Tissue storage synthesis; TS degradation= Tissue
storage degradation; TAG Synt= Triacylglycerol synthesis; Glyco/Gluconeo=Glycolysis, and gluconeogenesis; FAoxid= Fatty acid oxidation.

P. Martins Conde et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)     5 



In the fed state, the glycolysis/gluconeogenesis pathway became
the main source of energy in the three tissues, and the TAG
entering the adipose tissue was stored, and not used as an energy
source. Concomitantly, the fatty acid oxidation was decreased in
the fed state.
The ROS detoxification pathway was more active in the liver and

in the muscle during all the conditions, and the high fat meal led
to a further increase of ROS detoxification in these tissues.
The results correctly suggest that the liver was the main

metabolizer of amino acids22. Furthermore, during the fasting
state, fatty acid oxidation was increased in all tissues. In the fed
state, the fatty acid oxidation rate decreased while the glycolysis/
gluconeogenesis rate increased, and this metabolic adaptation has
already been previously reported23–25. In addition, in this
condition, the degradation of the internal energy did not occur,
instead energy compounds derived from the meal (e.g., TAG and
glucose) were used and the surplus was stored in the internal
energy stores. The activation of these metabolic pathways,
following a meal, are in good agreement with known human
metabolism22. In addition, the ingestion of a high fat meal led to
an increase of ROS detoxification in the liver, and to a higher
degree in the muscle. It has already been shown that meals rich in
carbohydrates and lipids lead to the increased production of
ROS26,27, which has been associated with the development of
insulin resistance27,28. These results confirm the potential detri-
mental effect that high fat diets might have on muscle and liver
metabolism, and show the value of the availability of such a
modeling approach.
As shown in Supplementary Fig. 3, both meals led to an

increase in TAG storage in the adipose tissue and in the muscle,
which became more pronounced, with the increased amount of
fat in the meal. On the one hand, glycogen storage was larger in
the liver following a high fat meal. On the other hand, the low fat
meal elicited an increase in glycogen storage in the muscle.
To conclude, these results confirm that during fasting the

internal energy stores were used for energy production. In the fed
state, during the analyzed time-course, the internal energy stores
were not depleted. Instead meal metabolites were used for energy
production. The surplus of energy obtained from the meal was
stored in the internal energy stores as glycogen or TAG. As
expected, the high fat meal caused an important increase of TAG
storage, which was minor after the consumption of a low fat meal,
showing the potential detrimental effect of high fat meals
consumption in the development of obesity.

Effect of physical activity at the metabolic level
A regular individual not only eats and fasts during the day, but also
does some kind of physical activity, such as slow walking or intense
exercising. Similar to the fasting or the fed condition, it is known
that during exercise, the metabolism is adapted and that the
energy sources used while exercising are dependent on the
exercise intensity22. Thus, to determine if the model was able to
capture key metabolic changes occurring during exercise, exercise
was simulated for various intensities and durations. Exercise was
mimicked by increasing the ATP consumption in the muscle model.
I.e. an intense exercise load of 90% of the maximum oxygen
consumption rate (O2; max) was simulated by a 42 times fold
increase of the ATP consumption, in the muscle, above the basal
level. For more details, please refer to the Methods section.
Tables 1 and 2 summarize the effect of exercise on specific

fluxes in the adipose tissue, liver and muscle. The change of the
fluxes between the different conditions i.e., from a resting state to
an exercising state was extracted and compared to literature data.
Overall, the model was able to correctly identify flux changes
occurring during exercise.
In the first experiment, exercise performed at 40% O2; max and at

60% O2; max were compared to previous data29. The model was
able to correctly predict an increase in fatty acids, lactate and
glycerol export by the adipose tissue (Table 1). When comparing
both simulations (Supplementary Fig. 4), the most intense exercise
induced a decrease in glycerol export, and an increase in lactate
export and glucose uptake in the adipose tissue. The fatty acids
export did not change between the simulations, as its flux was
already at the maximum allowed value. The oxygen uptake was
not affected by exercise, and was constant throughout both
simulations.
In a second experiment, exercise performed in an incremental

manner was simulated and the predicted flux changes were
compared to previous data30. The experimental setup consisted
on simulating a steady exercise for 2 h, and after 30min of
recovery the intensity of exercise was incremented from 70% to
90% O2; max every 10 min. Table 2 lists the flux changes occurring
for specific fluxes in the liver and in the muscle. The glucose
export by the liver increased during incremental exercise until
70% O2; max and at 90% O2; max, the glucose export decreased.
However, the flux remained larger than the one in the pre-exercise
and resting condition. The muscle glucose uptake followed the
same pattern as the glucose uptake in liver. The oxygen uptake in
the muscle increased proportionally to the exercise intensity. The
oxygen uptake in the liver followed a similar pattern, with the

Table 1. Effect of exercise on adipose tissue fluxes.

Tissue Flux Condition Literature29 40% O2, max Prediction 40% O2, max Literature29 60% O2, max Prediction 60% O2, max

Adipose tissue Glucose uptake Exercise Down Up Down Up

Post-exercise Up Down Up Down

O2 uptake Exercise Down Unchanged Down Unchanged

Post-exercise Up Unchanged Up Unchanged

Glycerol export Exercise Up Up Up Up

Post-exercise Down Down Down Down

Lactate export Exercise Up Up ? Up

Post-exercise Down Down ? Down

Fatty acids export Exercise Up Up Up Up

Post-exercise Down Down Down Down

Simulation 1: 90 min of 40% O2, max exercise followed by 3 hours resting. Simulation 2: 60 min of 60% O2, max exercise followed by 3 hours resting. The fatty
acids flux correspond to the sum of the all fatty acids fluxes in the adipose tissue model. Abbreviations: Up flux increase; Down flux decrease; Unchanged flux
unchanged; ? uncertain flux change.
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exception that at 90% O2; max it decreased. Lactate was secreted in
large amounts by the muscle during exercise, and was taken up by
the liver. The maximum secretion, and uptake rates were similar at
70% O2; max, and at 80% O2; max (only slightly increased). The
increase of the exercise intensity to 90% O2; max, mainly affected
the lactate export in the muscle which increased (Supplementary
Fig. 5). All together, the model predictions matched known
changes in 90% of the cases.
Supplementary Fig. 6 represents the prediction of the

contribution of the different energy sources during incremental
exercise. During a fasting resting state, fat derived energy (free
fatty acids, and other fat sources: representing the muscle TAG
degradation in muscle, and the blood TAG absorption) was the
main energy source in the muscle. When exercise started, energy
was mainly derived from muscle glycogen degradation, whose
degradation rate was proportional to the exercise intensity. On the
other hand, the energy supply from fat decreased. At high
intensity exercise (90% O2; max), the uptake of free fatty acids was
completely suppressed, and the muscle glycogen degradation
became the main energy source. Fatty acid and glucose oxidation
increased during incremental exercise. On the one hand, exercise
performed at high intensity led to the decrease of fatty acid

oxidation below the resting value. On the other hand, glucose
oxidation doubled at high intensity exercise.
In the previous simulations exercise was simulated during a

fasting condition. However, nowadays due to the high availability
of food, people remain often in a postprandial state during the
day. Therefore, we wanted to investigate whether the model was
able to show any metabolic changes between exercise performed
in the fasting or in the postprandial condition. To this end,
3 simulations were performed: a low fat meal simulation followed
by either resting (M→ R) or exercise (M→ E), and exercise
followed by a low fat meal (E→M). Specific tissue fluxes and
tissue stores amounts were compared among these three
conditions (Supplementary Figs. 7 and 8).
The ingestion of a low fat meal led to an increase in glucose,

and TAG uptake in muscle, and to a decrease in fatty acids uptake
in muscle, and glycerol secretion in the adipose tissue (Supple-
mentary Fig. 7). In the fed state, the whole-model glucose
oxidation increased and the fatty acid one decreased. These
effects were apparent in all three simulations after the meal was
ingested.
In the M→ E condition, during exercise the glucose uptake,

TAG, and fatty acids uptake in the muscle were increased, as well

Table 2. Effect of steady, and incremental exercise on muscle, and on liver fluxes.

Tissue Flux Condition Literature30 Prediction

Liver Glucose export Steady exercise Up Up

Resting Down Down

Incremental exercise 70% O2, max Up Up

Incremental exercise 80% O2, max Up Unchanged

Incremental exercise 90% O2, max Down Down

O2 uptake Steady exercise Up Up

Resting Down Down

Incremental exercise 70% O2, max Up Up

Incremental exercise 80% O2, max Up Up

Incremental exercise 90% O2, max Down Down

Lactate uptake Steady exercise Up Up

Resting Down Down

Incremental exercise 70% O2, max Up Up

Incremental exercise 80% O2, max Up Up

Incremental exercise 90% O2, max ? Up

Muscle Glucose uptake Steady exercise Up Up

Resting Down Down

Incremental exercise 70% O2, max Up Up

Incremental exercise 80% O2, max Up Unchanged

Incremental exercise 90% O2, max Down Down

O2 uptake Steady exercise Up Up

Resting Down Down

Incremental exercise 70% O2, max Up Up

Incremental exercise 80% O2, max Up Up

Incremental exercise 90% O2, max Up Up

Lactate export Steady exercise Up Up

Resting Down Down

Incremental exercise 70% O2, max Up Up

Incremental exercise 80% O2, max Up Up

Incremental exercise 90% O2, max Up Up

Simulation 3: 5 min of 50% O2, max exercise followed by 1h55 of 70% O2, max exercise (steady exercise). After 30 min resting, incremental exercise was
simulated. Each phase of the incremental exercise was simulated for 10 min (10 min exercise at 70% O2, max, 10 min at 80% O2, max, and 10 min at 90% O2, max).
Abbreviations: Up flux increase; Down flux decrease; Unchanged flux unchanged; ? uncertain flux change.

P. Martins Conde et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)     5 



as the glycerol secretion from the adipose tissue. The whole-
model fatty acid and glucose oxidation increased more than 5
times, when compared to the M→ R condition. Furthermore,
when exercise stopped, the TAG and the fatty acids uptake rate in
the muscle decreased but remained above the pre-exercise value.
The model predicted a different effect, if exercise was performed

before or after a meal. The muscle glucose uptake was larger in the
M→ E, than in the E→M condition. The adipose tissue secreted
larger amounts of glycerol during M→ E, than in the E→M
condition. If exercise was performed before the meal (E→M), the
whole-model fatty acid oxidation was increased and the glucose
one was decreased when compared to the M→ E condition.
During exercise, the liver glycogen usage was similar in both

conditions. However, in the E→M condition, the degradation rate
of TAG in adipose tissue and glycogen in muscle was larger than
in the M→ E condition.
On the other hand, the ingestion of a low fat meal led to a slight

storage of energy in the different tissues (Supplementary Fig. 8).
In the next step, a similar analysis was performed to investigate

how the ingestion of a high fat meal impacts metabolism during
exercise. The results suggest that a high fat diet did not affect
dramatically the tissue fluxes (Supplementary Fig. 9). However, a
more drastic effect was visible at the tissue energy storage
(Supplementary Fig. 10). When compared to the low fat meal, the
high fat meal led to an increased storage of TAG and glycogen in
the different tissues.
Taken together, these results show the potential of the model to

predict the effect of various exercise intensities and the ingestion of
meals with different nutrient composition on tissue metabolism.

Prediction of IEMs specific biomarkers
IEMs are inherited metabolic diseases characterized by an
impairment in the metabolic activity of an enzyme or a
transporter. If people affected by one IEM have unrestricted diets,

toxic metabolites might build up in the body fluids (i.e., blood and
urine) and tissues. Therefore, it is important to identify potential
biomarkers for all IEMs to get a quicker diagnosis and to avoid
health complications at long term31. Thus, we simulated the effect
of 65 IEMs during different conditions (in the fasting condition and
after the ingestion of a low and a high fat meal) and predicted
their biomarkers. To validate the results, the set of predicted
biomarkers for 17 IEMs was compared to biomarkers previously32

manually extracted from OMIM.
Figure 4 shows the predicted biomarkers in the blood and in

the urine biofluids for a set of 17 IEMs. At the blood level, the
model correctly predicted 10 biomarkers, with only 2 false
predictions. The model predictions reached a precision of 83.3%.
We then assumed that biomarkers, generally found in the

blood, might also be found in the urine, and we analyzed the
results. At the urine level, the model was able to identify known
biomarkers, but also other not reported biomarkers. The model
predicted a large number of false positive biomarkers in the urine,
especially for Arginase deficiency. In the urine, the majority of
amino acids, except methionine, were identified as being
increased in the Arginase deficiency condition. Thus, we
performed a more extensive investigation of this IEM. During
the simulation of this IEM, urea synthesis from arginine was
knocked-out. Urea synthesis leads to the removal of NH4, which is
toxic for the human body. In the healthy fasting condition, we
observed a basal urea production (Supplementary Fig. 11), due to
the protein turnover reaction. After a meal was ingested, the urea
production rates increased. This increase did not occur in the
unhealthy condition. The knock-out of Arginase1 gene led to the
complete impairment of urea production, in the fasting, but also in
the fed condition. Due to this impairment, the amino acids could
not be completely degraded and were then excreted through
the urine.
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Fig. 4 Prediction of amino acids biomarkers in different biofluids for a set of IEMs. In red: metabolites predicted to have increased levels in
an IEM. In blue: metabolites predicted to have decreased levels in an IEM. In white: metabolites predicted to remain unchanged in the
presence of an IEM. Plus sign (+): metabolite level known to be increased in an IEM. Minus sign (−): metabolite level known to be decreased in
an IEM. The data was taken from Shlomi et al.32 The score value represents the number of conditions, that the metabolite was predicted to be
a biomarker in. As the IEMs were simulated in three different conditions, the absolute score value ranges from 0 to 3. With 0 representing a
metabolite not identified as a biomarker, and a score of i.e., 3 representing a metabolite identified as being a biomarker in all 3 simulated
conditions (fasting, low fat meal and high fat meal). Abbreviations of IEM names: AHCY= S-adenosylhomocysteine hydrolase; AKU=
Alkaptonuria; ARG= Arginase deficiency; CYST= Cystinuria; LPI= Lysinuric Protein Intolerance; FIGLU= Glutamate Formiminotransferase
Deficiency; HIS= Histidinemia; HCYS= Homocystinuria; HYPRO1= Hyperprolinemia Type I; MSUD=Maple Syrup Urine Disease; MAT I/III=
Methionine adenosyltransferase I/III deficiency; MMA=Methylmalonic Acidemia (MMA); PKU= Phenylketonuria; PKU2= Phenylketonuria
Type II; TYR1= Tyrosinemia Type I; TYR3= Tyrosinemia Type III; NKH= Glycine Encephalopathy/Nonketotic Hyperglycinemia.
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To further validate the predictions for Arginase deficiency,
known biomarkers were extracted from multiple databases and
they were compared against the model predictions (Supplemen-
tary Table 1). The model predictions showed good agreement
with the literature, if we ignore the fluid where the biomarker was
predicted. Ornithine was the only metabolite, which change was
not matched with literature at the blood, and at the urine level.
Ornithine was predicted to be increased in the blood, and in the
urine, however, in literature, it has been reported to be normal, or
decreased in the Arginase deficiency condition. This mismatch is
explained by the fact that ornithine is also associated with other
pathways, i.e., creatine synthesis. In the Arginase deficiency
condition, the majority of the amino acids were increased, and
the model tried to decrease glycine and arginine levels by
converting these amino acids to ornithine and guanidoacetic acid.
Guanidoacetic acid was then used to produce creatine which was
predicted and also reported to be increased in this condition.
Ornithine participates in the synthesis of citrulline, which is
involved in the urea cycle. Since the urea cycle was impaired, not
all ornithine could be used to produce citrulline. Thus, the system
tried to split the accumulation of ornithine by converting some
ornithine to citrulline and γ-aminobutyric acid and the remaining
ornithine was just excreted through the urine or accumulated in
the blood. Overall, the model was able to identify more correct
biomarkers in the urine, than in the blood. And some known
blood biomarkers, were predicted to be biomarkers in the urine
instead of the blood i.e., urea, glutamine, while uracil, a known
urine biomarker, was predicted to be a biomarker in both fluids.
The prediction of some known biomarkers on the urine instead of
the blood, and the effect that the Arginase deficiency had on
model, is easily explained by the model structure, and its
assumptions. The full list of predicted biomarkers for the 65 IEMs,
identified in both biofluids, is given in Supplementary Data 2.
The investigation of the other IEMs led to the observation that

in 3 out of 5 false predictions, phenylalanine was predicted to be
increased, as well as tyrosine.
Regarding all the false negative results, there were 7 biomarkers

that could not be predicted at the blood and at the urine level.
Furthermore, we observed that our model predicted less false
negative biomarkers when compared to others32. However, our
approach could not predict tyrosine as a Phenylketonuria (PKU)
biomarker. Thus, we investigated the dynamics of tyrosine at the
different storage and excretion levels to determine if it decreased
in this condition (Fig. 5). Indeed, the tyrosine level at the muscle
storage, and the tyrosine excretion rate through the urine were
decreased after the ingestion of a meal. However, this decrease
was not large enough, and thus this metabolite was not predicted
as a biomarker. At the blood level, the tyrosine concentration
dynamics was similar between the healthy and the respective PKU
condition.
These results show the predictive capacity of this framework,

and the importance of simulating and predicting metabolites
changes at the intracellular, but also at the extracellular level.

DISCUSSION
We developed a dynamic multi-tissue model able to reproduce
known features of human metabolism. The model was developed
in a way, which tried to simplify its structure while still retaining its
ability to explain human physiology.
The proposed model was simulated using a dynamic Flux

Balance Analysis approach20, and optimized for a complex
objective function, which relies on three main sub-objectives: (1)
maintenance of blood homeostasis. During fasting conditions,
blood levels should remain stable, and in the fed conditions they
should return to the basal levels within a few hours after the meal.
This sub-objective was supplemented by two others: (2) all energy
ingested in excess will be stored, i.e., as triacylglycerol in the

adipose tissue, and will be used, to a higher extent, when the
body goes through periods of food scarcity, i.e., long periods of
fasting. Most of the reactions’ flux in constraint-based metabolic
models are not constrained, and during the optimization of the
model, multiple flux solutions might be equally valid. Thus, a third
sub-objective was added, (3) which aim was to prevent sharp
changes over time, in the metabolic fluxes. The choice of this
multi-objective function allowed the model to mimic quite well
the metabolism and the metabolic flow between the three tissues
and the blood. Each of the sub-objectives are optimized
simultaneously, and can be weighted equally, or not. As an
example, in this model, the same weight was selected for each of
the blood metabolites. The effect of this assumption led to each
metabolite being penalized similarly, as will be further described
during the discussion of the IEMs results. In the future, the
penalization coefficients could be further tuned to further improve
the prediction capacity of the model.
Commonly, reactions flux are constrained with hard bounds.

However, due to model incompleteness, experimental errors, and
noise, imposing hard constraints on reaction fluxes can lead to
infeasible solutions. In order to prevent it, “flexible” constraints11

can be applied on the reactions’ bounds. During model
optimization, the flux solution will try to remain inside the
expected flux range, and it will only deviate from the expected
range, if really necessary. Because of the large nature of the model,
and the complexity of the objective function, and to avoid
infeasible solutions, we decided to apply flexible constraints on
the reaction bounds.
One advantage of constraint-based metabolic models is that

they necessitate much less parameters, when compared to those
models based on ordinary differential equations (ODEs). As
described, constraint-based metabolic models rely on the
optimization of one objective function, and the application of
specific constraints in order to obtain condition specific flux
solutions. Due to the small number of parameters, these models
can be easily scaled to describe the complete metabolism of one,
or more tissues. As demonstrated, the model was able to describe
the complete metabolism of three tissues, showing the enormous
potential of this approach. The proposed model was validated by
simulating different physiological (fasting, starvation, feeding and
exercise), and unhealthy conditions (different IEMs).
During the first hours of fasting, the model showed little

dynamics, and the metabolic pathways usage was stable. At
around 2 days of fasting, the model showed a dynamical switch,
when the liver glycogen stores were completely depleted, forcing
the system to adapt and choose other energy sources. It is known
that liver glycogen depletion occurs after 48 to 60 h of fasting33,34,
therefore the predicted time of the complete glycogen depletion
is in the same range as the reported one. When glycogen stores
deplete, the body relies mainly on fatty acids issued from the
degradation of adipose tissue TAG22, to avoid the depletion of
blood glucose. The model was able to capture this metabolic
change by predicting an increase in the triacylglycerol synthesis
and fatty acid oxidation fluxes. Concomitantly, the glycolysis/
gluconeogenesis fluxes decreased, confirming the usage of fatty
acids as main energy source.
It has been reported, that the liver is the primary metabolizer of

amino acids, with the exception of branched chain ones (leucine,
isoleucine, and valine)22. However, the aromatic amino acids,
phenylalanine, tyrosine, and tryptophan were predicted to be
mainly metabolized in the muscle. This was unexpected, as in
reality the degradation of these amino acids occurs primary in the
liver22. This occurred because prior to the model reconstruction,
we collected the complete canonical pathway of the aromatic
amino acids degradation, and used these reactions as part of the
set of core reactions for the contextualization of the tissue models.
Thus, this will be addressed in future iterations of this model.
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The predicted metabolic pathways activities during the fasting,
and the fed condition are in agreement with the literature. It is
known that in the fed state, fatty acid oxidation rates
decrease23,24, and the internal energy stores are no longer used.
If energy is ingested in excess, it is stored either as glycogen or
TAG22. The model predicted that the energy storage pattern after
a low, or a high fat meal was different. The results show that a
high fat meal elicited a larger energy storage than the low fat
meal. This is expected as the high fat meal contained a larger
amount of TAG and of glucose.
Furthermore, it has been shown that high levels of blood

glucose lead to the increase of the glycolysis rate25, which was
predicted to be increased in the three tissues. In addition, the
increase of the glycolysis rate was proportional to the amount of
glucose contained in the meal.

The activity of the ROS detoxification pathway was affected by
the fed condition, mostly in the liver and in the muscle, and this
effect was more pronounced after the high fat meal. Increased
levels of blood glucose, and fatty acids lead to the production of
increased amounts of ROS26,27. Previously, ROS has been
associated with the development of insulin resistance27,28, which
is the first detectable defect in type 2 diabetic patients and it can
occur 10 years before the apparent disease35.
During a normal day, individuals go from a state of fasting to

feeding, and also do some kind of physical activity, which can be
done either in the fasting state or after eating. Therefore, to
further validate the model, we predicted and partially validated
the effect of the exercise intensity and the meal composition on
metabolism. This was achieved by modifying the ATP consump-
tion in the muscle, to reflect the exercise intensities of interest.

a b

c d

e f

Fig. 5 Dynamic profile of phenylalanine and tyrosine during Phenylketonuria and healthy conditions. LF meal= Low fat meal; HF
meal= High fat meal; PKU= Phenylketonuria.
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First, we determined by how much the ATP consumption in the
muscle would need to be increased to reach 90% of the maximal
O2 uptake. All the other exercise intensities were calculated
linearly. The approach used to calculate the different exercise
intensities relies on two main assumptions. The first assumption is
that an average individual was used in this work. In the future, the
model could be further adapted to represent the metabolism of
athletes, by i.e., adapting the maximal O2 uptake. The second
assumption, which was used due to the lack of data in this field,
assumes that the linear increase of ATP consumption in the
muscle, leads to the linear increase of O2 uptake in humans.
It has been previously established that fat, and carbohydrates

are the main energy sources during exercise, and depending on
the intensity of the exercise, one source is favored over the other.
While at lower to moderate exercise intensities, fatty acids are the
main source36,37, at high intensity glycogen becomes the main
one38. The developed model was able to correctly reflect this
switch in energy source depending on the intensity level. It
correctly predicted that the muscle glycogen usage was propor-
tional to the exercise intensity38. The fatty acids uptake in the
muscle reached the maximum flux at 60% O2; max, and remained
at this value for moderate to high intensity exercise. At 90%
O2; max, fatty acids uptake was completely suppressed. These
results suggest that the maximum flux rate used was too small
and increasing the value of this flux should be foreseen for future
simulations.
Furthermore, at the highest exercise intensity, fatty acids were

no longer taken up, and the internal and the external TAG usage
was decreased, together with the fatty acid oxidation rate, which
decreased below the basal value. It has been reported that the
maximal fat oxidation rate lies between 40.8% and 75% of the
O2; max

39,40, which is close to the maximal predicted fatty acid
oxidation rate (around 80% O2; max). In addition, at this intensity,
glycogen became the main energy source, as previously reported
by van Loon et al.38, and the glucose oxidation rate doubled.
Performing exercise in the fasting state has been suggested to

be more favorable regarding the lipid metabolism23. The
proposed model correctly predicted that fatty acid oxidation rate
was larger if exercise was performed before a meal (E→M), rather
then after a meal (M→ E)23. We demonstrated that performing
exercise during fasting promotes fatty acid oxidation, through the
increase the TAG degradation rates. If a meal was ingested after
the exercise, the TAG level in the adipose tissue remained lower
when compared to the level where a meal was ingested prior to
the exercise. This effect was similar for both meals. Carbohydrates
ingestion after exercise allows the glycogen stores to replenish41.
In the model, this effect was more pronounced when a high fat
meal was ingested before or after exercising. It is important to
note again that, not only this meal contained more TAG, but also
more glucose.
Overall, these results suggest that more TAG is burned in the

adipose tissue, if exercise is performed in the fasting state. If a
meal is ingested after exercising, it allows the slight replenishment
of glycogen, and simultaneously, it keeps the adipose tissue TAG
levels below the M→ E level.
These results can be relevant for the treatment of human

obesity. To maximize fat oxidation and potentially fat loss, exercise
should be performed in the fasting state, and at low to medium
intensity levels, as for high intensities, fatty acid oxidation was
predicted to be almost suppressed.
After analyzing the metabolic effect of different physiological

conditions, the model was further validated, by predicting
biomarkers for a set of IEMs and by comparing them to literature
data. The model mainly predicted urine biomarkers, which is
explained by the blood homeostasis assumption used to constrain
the model. Metabolites could be exported through the urine, if the
exporting rate was kept within the healthy range, while their
storage in the blood was penalized. Therefore, it was preferable to

export biomarkers through the urine, instead of accumulating
them in the blood.
The model predicted blood biomarkers, that were also

predicted as urine biomarkers. This happens when the urine
secretion rate is at the maximum allowed flux, or outside the
healthy range. When the urine secretion fluxes are saturated,
the model minimizes the objective function value by splitting the
penalization among different reactions. Thus, the metabolites that
accumulate in the blood are also exported through the urine. To
summarize, the model only predicted a blood biomarker, if the
respective urine metabolite was also predicted as a potential
biomarker.
Arginase deficiency led to the prediction of almost all urine

amino acids as potential biomarkers. During this condition, urea
synthesis was completely impaired. The urea synthesis pathway is
involved in the detoxification of NH4, which is one by-product
produced during the degradation of amino acids. Due to the
impairment on urea synthesis, NH4 could not be removed through
the urea synthesis pathway. Thus, the model tries to remove NH4

from the system by eliminating it through the urine. When this
elimination is saturated, NH4 might accumulate in the blood. As
the final step of the amino acids degradation is impaired, amino
acids are eliminated through the urine, and to some extent they
are stored as protein in each tissue, even if protein storage is
penalized. One way to avoid this effect would be to have a specific
penalization coefficient for each metabolite, which would reflect
the preference for the elimination, or the accumulation of the
metabolite. However, this kind of data would be very hard to
obtain. E.g., the biomarkers data, collected in Supplementary Table
1, show that the biomarker change is quite homogeneous among
the databases, but not all biomarkers could be retrieved in all the
databases. Some biomarkers are known to be present in the
blood, and in the urine, while other biomarkers could only be
retrieved in the urine i.e., uracil, or orotic acid. These results
suggest that either these metabolites have not still been identified
as blood biomarkers, or they are preferentially secreted through
the urine.
The model predicted 5 false positive biomarkers at the urine

level, of which 3 corresponded to the increase of phenylalanine in
3 IEMs (Alkaptonuria, Tyrosinemia Type I, and Type III). In these
conditions, the tyrosine degradation pathway is impaired and this
impairment leads to the known accumulation of tyrosine.
Phenylalanine, which is the tyrosine precursor, will also accumu-
late as tyrosine cannot be degraded, and will be secreted through
the urine to avoid any blood concentration changes. Similar to the
Arginase deficiency, this occurs because the model penalizes big
changes at the blood level, and favors the sum of small changes.
Thus, the objective function value is lower if the model
accumulates small amounts of the two amino acids, instead of
having a high accumulation of tyrosine.
Two other false positive biomarkers were predicted for Maple

Syrup Urine disease (MSUD), and corresponded to lysine and
tryptophan. After an in depth investigation, we observed that the
DLD gene associated with MSUD, also regulates one reaction
belonging to the downstream degradation pathway of lysine. This
impairment in the lysine degradation pathway leads to
the possible accumulation of oxoadipic acid, which is also the
degradation product of tryptophan. Thus, an increase in the levels
of lysine and tryptophan was not surprising, because of the
impairment in the degradation pathways of these two amino
acids. These results might suggest that either these amino acids
have not yet been reported as potential biomarkers, or that the
degradation pathway of these two amino acids is less affected
than the one from the branched chain amino acids, potentially
because an unknown enzyme might be able to compensate for
this loss.
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We have demonstrated that this approach shows good
agreement with literature data and allows to prioritize potential
biomarkers when performing metabolomics analysis.
In conclusion, we developed a dynamic multi-tissue model

which not only captures the physiological effects, but is also able
to identify potential biomarkers. This framework can be applied in
the field of personalized sports nutrition, such as in the
improvement of sports performance. This could be done by
predicting which diet would elicit the faster muscular glycogen
and protein storage repletion. In addition, this approach can be
extended to the analysis and biomarker prediction of other
metabolic diseases, by performing gene knock-outs for each gene
present in the model. In addition, personalized models of any
metabolic disease could be contextualized with individual
expression data and metabolomics data, which would serve as a
basis for the development of personalized treatments and
adapted meals for each type of studied disease.

METHODS
While genome-scale reconstructions of human metabolism are readily
available1–7, high quality models of individual tissues are still rare.
However, algorithms for automatic reconstruction of draft context-
specific models are available and can be used to create a starting point
for tissue specific models, with the FASTCORE family of algorithms having
shown the ability to generate good quality draft models42. Here, an outline
about how these algorithms were adapted to generate draft models for
three tissues (liver, muscle and adipose tissue) is presented. Further details
are given about how the quality of the generated models was assessed.
Finally, the approach used to connect these models and the concepts
applied to interrogate the system are described.

Data collection and processing
Tissue specific transcriptomics data from the GEO database was extracted
for the three tissues of interest. Tissue datasets were selected by filtering
for the following keywords: liver, skeletal muscle, and subcutaneous
adipose tissue. Only transcriptomics datasets in the healthy condition,
generated by the platform U133 Plus 2.0, were selected (Supplementary
Table 2). This platform was selected, as Barcode was compatible to it. The
data was processed using the Gene Expression Barcode43–45 discretization
approach, and integrated in the FASTCORMICS workflow46. In short, the
microarrays were read into R version 3.2.0, with the affy package (1.48.0).
They were subsequently normalized with the fRMA package (1.22.0), and
then discretized with Barcode using the hgu133plus2frmavecs vector
(1.5.0).

Tissue models’ reconstruction
Three healthy tissue models (liver, skeletal muscle, and subcutaneous
adipose tissue) were reconstructed from Recon2.043. Prior to the
reconstruction, Recon2.04 was mass and charge balanced, and some
reactions were corrected. All the modifications performed are listed in
Supplementary Data 3. The tissue-specific models were reconstructed
using a modified FASTCORMICS workflow46. In addition to the data derived
from the gene expression profiles, reactions from canonical pathways
known to be active in the tissues and additional transporters were added
as core reactions. They were added to avoid gaps in the canonical
pathways and to make sure that known transporters were present in the
final model reconstruction, since FASTCORMICS tends to remove as many
unsupported transport reactions as possible.
These supplementary core reactions were comprised of:

● Reactions belonging to canonical pathways which should be present
in the tissue models i.e., degradation of amino acids.

● Reactions not expressed based on the transcriptomic level, but
expressed based on proteomics data (data from the Human Protein
Atlas database).

● Reactions involved in the recycling of co-factors.

The full list of supplementary reactions is given in Supplementary Data 4.

Tissue models’ evaluation
Each reconstructed model was evaluated by testing tissue-specific
functions based on the physiological functions previously published by
Gille et al.18 (see Supplementary Data 1). The reconstruction and the model
function testing was performed iteratively. Meaning that, if a function test
was not successful, gaps were searched in the reconstructed tissue model
and filled in order to allow the function to be carried out.

Literature data
A list of human healthy tissue uptake, and release fluxes for different
metabolites was collected from literature. In addition, data from other
mammals (e.g., mice for liver amino acids exchange fluxes) was used, if
human data was not available. All included fluxes and their references are
listed in Supplementary Data 5. All fluxes are given in μmol per min.

Coupling the three tissue models
Tissue coupling is important to allow a systematic investigation of the
reconstructed model, which was achieved by the following approach:
In the first step, after each tissue model was reconstructed, transport

reactions between the cytosol and the extracellular space were added for
metabolites which were present in the model cytosol and have already
been detected in either blood or urine, according to the data from the
human metabolome database (HMDB)47–50. For each of these metabolites,
Recon2.043, and Recon35 were searched for possible transport reactions. If
the reaction was present, then it was added to the model, if not the
following transport reaction was added: met[c]↔met[e]. These transpor-
ters were added because during the reconstruction process many
transporters were removed, and some IEMs biomarkers (either in urine
or in blood) were metabolites which were only present in the cytosol of the
models.
In the second step, a blood compartment was added to allow metabolite

exchange between the different tissue models. Furthermore, a blood pool,
and a virtual gut, mimicking food absorption (Fig. 1), from where nutrients
could be absorbed to the blood, were added. Mean blood and urine
concentrations in healthy, and unhealthy adults were collected from
HMDB47–50, together with the respective ranges.
The blood concentrations were then converted to amounts, assuming a

total blood volume of 5 L (Supplementary Data 6).
In the third step, the urine concentrations were converted to fluxes. The

conversion was performed as follows:

● The metabolite concentrations in urine were given in μmol per mmol
of creatinine

● The healthy creatinine amount secreted over a period of 24 h in urine
was gathered51 (9.4 ± 2.68 mmol per 24 h)

● The 24 h creatinine value was converted from mmol per 24 h to mmol
per min

● The urine metabolite concentrations were multiplied by the creatinine
amount to obtain metabolite secretion fluxes (Supplementary Data 7)

Finally, glycogen stores were added to the liver, and the muscle models,
while triacylglycerol (TAG), and protein stores were added to the adipose
tissue, liver, and the muscle models. Tissue weights, and tissue stores initial
conditions are listed in Supplementary Table 3, and Supplementary Table
4, respectively. The tissue weights employed correspond to a healthy 30-
year-old Caucasian European male, weighing 70 kg, and measuring
176 cm, and the initial conditions correspond to usual values found in
healthy non fasting men. An ATP demand and a protein turnover reaction
(Supplementary Tables 5 and 6, respectively) were added to each tissue
model, and were based on the biomass reactions from Bordbar et al.8. The
protein production reaction was determined as follows: the average of
the protein turnover reactions among the three tissues was calculated. The
sum of the amino acids coefficients was scaled to 1 and the protein
production was made ATP consumption dependent. In addition to the
protein stores, amino acids stores were added to the muscle model
(Supplementary Table 7). All exchange reactions were charge balanced to
avoid losing or gaining charges in the system, and a buffering reaction was
added to the blood compartment (H[bl]+ HCO3[bl]↔ H2O[bl]+ CO2[bl]).
A general overview of the model structure can be found in Fig. 1.

Overview of the objective function
A common issue for metabolic modeling in mature higher organisms is the
selection of an appropriate objective function that properly reflects the
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aim of metabolism. The modeling approach proposed here was based on
three main assumptions:

1. That metabolism aims to maintain a blood concentration homeostasis.
2. That energy might be stored if in excess, to be used during scarcity

conditions.
3. That metabolic changes are smooth and not sharp.

This objective must then be subjected to limitations and requirements, such
as flux bounds or known turnover and maintenance costs. Extensive literature
search was performed to collect tissue specific metabolic fluxes to constrain
the multi-tissue model (Supplementary Data 5). All the fluxes were converted
to total tissue flux per minute, using the values listed in Supplementary Table
3. Incorporation of these constraints can be achieved either by fixing hard
bounds, or by applying penalty terms on the model objective based on
violations of these terms, as suggested by Hyötyläinen et al.11.
To fulfill the assumed objective, a two step approach was used. In the

first step, the model is optimized to achieve homeostasis, and to store
energy sources while already aiming for some smoothness. In the second
step, the remaining reactions are optimized to achieve a smooth transition.

First optimization step: objective definition

1. The main objective (blood metabolite homeostasis, see Supplemen-
tary Fig. 12) requires a blood metabolite pool to remain as constant
as possible over time. This is achieved as follows: first, given a basal
blood metabolite level Amountm, basal and a blood metabolite level
Amountm, t, in time step t, then the deviation of the blood
metabolite level from its basal level in time step t is Amountm, dev, t

= Amountm, t− Amountm, basal. Further, it is assumed that reaction
Exm, with associated flux vmEx, is the exchange reaction between the
blood storage, and the blood compartment. Then, the following
constraints can be added to the model:

Amountm; dev; t � vmEx � TimeStept � am;basal
violation � Amountm; dev; t

�1 � am;basal
violation � þ1

(1)

where TimeStep corresponds to a time step of 1 min. This time step
was selected according to Krauss et al.52 and Wadehn et al.9 and was
used for all the performed simulations. By adding the square of
am; basal
violation, to the quadratic objective (i.e., minimizing the square), the

system aims to minimize the deviation of blood metabolites from
their basal levels.

2. Another aim of the model is to replenish transient stores of the
organism (Supplementary Fig. 13), such as the glycogen and fat
stores in the individual tissues. In addition, the degradation of
protein in the different tissues can be used to accommodate protein
turnover. During a meal, amino acids might be stored as protein, but
neither the protein storage, or degradation is preferential. These
stores are added as a linear or quadratic part of the objective as:
X

store2C; P
βstore � vstoredegradation

2 þ
X

store2C
αstore � vstorereplenish þ

X

store2P
αstore � vstorereplenish

2

(2)

with the respective α and β values (please refer to Supplementary
Table 8) selected in such a way that conversion from one store to
another is not beneficial to the objective, and that glycogen
replenishment is preferential to fat production.

3. This objective is supplemented by an aim for smoothness which is
defined as:

Fluxa; t�1ðvaÞ � va � vaviolation � Fluxa; t�1ðvaÞ

�1 � vaviolation � þ1
(3)

where t− 1 corresponds to the previous time step, and a represents
each reaction in the model.

First optimization step: flexible constraints
In addition to the aims detailed above, there are several flexible constraints
(Supplementary Fig. 14), which are implemented such that they also
influence the objective value. These constraints are:

1. Constraints on the fluxes of reactions with known flux ranges (i.e., all
reactions from RK), which are defined as:

Fluxi;min
lit ðviÞ � vi � viviolation � Fluxi;max

lit ðviÞ

�1 � viviolation � þ1
(4)

where Fluxi;min
lit and Fluxi;max

lit are the minimal and maximal healthy
literature values for flux i from reactions in RK, respectively. viviolation
can then be used as a representation of the violation of the bounds,
and its square is added to the objective as a penalty term. These
constraints are introduced for all i∈ RK. For all supplementary
transport fluxes (RCS), and protein degradation reactions (RPD),
similar constraints with Fluxi;min

lit ¼ Fluxi;max
lit ¼ 0 were employed.

2. Known metabolite levels are also incorporated by a similar
mechanism. Metabolite amounts are converted into fluxes based
on their amount range:

Amountm;min
lit � Amountm; t � vmEx � TimeStept � amviolation � Amountm;max

lit � Amountm; t

�1 � amviolation � þ1
(5)

where Amountm, t correspond to the current metabolite amount at
time t. These constraints are constructed for all metabolites m from
B and MAA.
The square of the violation of known ranges amviolation is then

added to the objective.
3. Modified quadratic coefficients for specific reactions (Supplemen-

tary Table 9)
Coefficients were modified according to the function that the

reaction should fulfill. (1) The maximum allowed flux for the liver
glycogen storage reaction was very high, as this reaction can carry a
higher or a lower flux depending on the physiological state of the
body. Therefore, a flexible constraint, based on the fasting rates, was
set to a very high coefficient value to further penalize the deviation
from these bounds. The same procedure was employed for the CS
reactions. (2) The flexible bounds for the oxygen uptake in the
muscle are bounds in the resting state. However, during the
simulation of exercise, the model needs to uptake more oxygen.
Thus, the uptake of oxygen was slightly penalized. (3) When going
from one metabolic state to another, the model needs to adapt its
metabolism. Since it might be impossible for the model to have a
smooth transition from the previous to the current time step, a
coefficient of 0.001 was given to still penalize the deviation from the
previous time step, while still allowing some flexibility during the
metabolic adaptation. (4) All the other coefficients for all the other
reactions included in the quadratic objective function were set to a
value of 1.

This leads to the following objective function:

Z ¼ P
m2B;MAA

am; basal
violation

2 þ P

a 2 RK ; RB; RCS; RC ; RMAA; RPS ; RPD

τ � vaviolation2 þ P
i2RK ; RPD ; RCS

τ � viviolation2 þ P
m2B

amviolation
2

þ P
store2C; P

βstore � vstoredegradation
2 þ P

store2C
αstore � vstorereplenish þ P

store2P
αstore � vstorereplenish

2

(6)

With B, C, P, RK, RCS, RPS, RPD, RB, RMAA, RC as defined in Table 3. Because of
the objective being a minimization, all elements in the quadratic terms will
assume an absolute minimal value. Overall, the objective simultaneously
minimizes the deviation from the steady state condition, while replenish-
ing the stores. The choice for the individual αstore and βstore values, detailed
in Supplementary Table 8, ensures that it is not favorable to convert one
store to another.

First optimization step: hard constraints
In addition to the flexible constraints, which are represented as penalty
terms in the objective function, the following constraints are added to the
problem:

1. Internal steady state:

S � v ¼ 0 (7)

2. Maximal oxygen uptake rate:

maxUptakeO2
� vEXO2 � 0 (8)

P. Martins Conde et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2021)     5 



3. Maximal CO2 secretion rate:

0 � vEXCO2 � maxExportCO2
(9)

4. Maximal protein degradation rate:
The maximal protein degradation rate was split over all tissues,

with the flux sum of all tissues being limited by a maximal amount.

vmuscle
degradation þ vhepdegradation þ vfatdegradation � vdegradation; max (10)

The same was done for the maximal CO2 secretion rate, and the
maximal transport of fatty acids (Supplementary Data 5).

5. Maintenance energy demands for ATP, and protein turnover in each
tissue.
Maintenance energy demands are represented by enforced fluxes

for ATPase reactions: ATP+ H2O→ H++ ADP+ Pi

ATPaseHep ¼ Hepmaintenance

ATPaseMuscle ¼ Musclemaintenance

ATPaseAdiposeTissue ¼ AdiposeTissuemaintenance

(11)

6. Maximal urine secretion rate:

0 � vEXU � maxExportU (12)

where maxExportU represents the maximum secretion rate among
the healthy, and the diseased conditions.

7. Constraints on the maximal/minimal available amounts for blood
metabolites, and muscle amino acids:
The minimal and the maximal available amounts, from all

storages (blood, or amino acid tissue storages) are incorporated in
two different ways. For all blood metabolites which are available in
the food (NU), the uptake rates (through reactions of the form: Rf:
metf[blood]↔ ) are restricted by:

vf � �vfmax (13)

with vfmax, representing vm as defined in Eq. (22). The solution
became infeasible when a meal was applied, after the model had
been simulated in the fasting or exercising condition. Thus, to avoid
the infeasibility of the flux solution, Eq. (13) was modified in the
following way:

minð�vfmax; v
f ; t�1Þ � �vfmax

where the minimal value between the flux given by Eq. (22) and the
previous flux value vf, t−1 is used as lower bound for the exchange
reaction of metabolites present in food.
This constraint is used, instead of constraint Eq. (13) during the

following conditions: during the first 8 min, if a low fat meal is
applied after the simulation of fasting, and during the first 24 min if
it is applied after the simulation of exercise. Furthermore, this
constraint is applied during the first 15 min, if a high fat meal is
applied after the simulation of fasting and during the first 44 min, if
it is applied after the simulation of exercise. This time was the time
necessary for the model to adapt its metabolism between
conditions.
For all other blood metabolites j, the following constraints are

used:

� jstorage
TimeStep

� vj (14)

with jstorage representing the current amount of the metabolite
stored in the respective storage, and vj is the flux through the
respective exchange reaction.
For all amino acids in the muscle stores j, the following constraints

are used:

� jstorage
TimeStep

� vj � vjmax �
jstorage

TimeStep
(15)

with jstorage representing the current amount of the metabolite
stored in the respective storage, vj is the flux through the respective
exchange reaction, and vjmax is the maximum allowed amount of
amino acid storage.

Overall the following quadratic problem will be solved:

min Z

s:t: :

Constraints ð7Þ to ð15Þ
(16)

Second optimization step
Since the optimal flux in the first optimization step is not necessarily
unique, and a biological model commonly has rather smooth transitions, a
secondary objective is employed. For time zero, as the original flux
distribution is not available, a quadratic flux minimization is performed as
its solution is known to be unique53,54.

min
X

i2R
vi

2
(17)

For all later time points, the model aims to achieve a solution as close to
the previous as possible, to allow a smooth transition. The use of quadratic
constraints was avoided, as they require specific properties to be solvable,
and these properties are not guaranteed. In this step, the original objective
value is not used to constrain the problem. Instead, constraints are put on
the individual components of the objective, to ensure that the objective
value from the objective function (Eq. (6)) is retained. Therefore, only the
reactions which were not part of it are optimized:

min
X

τ � ðvuc � vt� 1
uc Þ2 uc =2 RK ; RB; RMAA; RCS; RPD; RPS; RC (18)

Subjected to:

vj ¼ vOpt1j j 2 RK ; RB; RMAA; RCS; RPD; RPS; RC (19)

Addressing numerical difficulties during the optimization steps
A set of Cplex parameters were modified to address the numerical
difficulties occurring during the optimization steps.

● Cplex.Param.timelimit.Cur= 60 ⋅ 10
● Cplex.Param.barrier.algorithm.Cur= 1
● Cplex.Param.barrier.convergetol.Cur= qp.Param.barrier.convergetol.

Cur ⋅ 10
● Cplex.Param.emphasis.numerical.Cur= 1

In addition, if the solver was still unable to identify an optimal solution,
the presolver was turned off, which in some cases helped to optimize the
model.

● Cplex.Param.preprocessing.presolve.Cur= 0

Table 3. List of the abbreviations used to define the constraints
during the optimisation step.

Abbreviation Definition

R All reactions present in the model

RK The set of reactions with known ranges, such as: tissue
exchangers, urine secretion reactions

B The set of metabolites with known basal concentration
levels or ranges in the blood

RB The set of blood storage reactions associated with the
metabolites in B

MAA The set of metabolites in the muscle amino acid storage

RMAA The set of muscle amino acids storage reactions
associated with metabolites in MAA

RCS The set of added transport reactions from the cytoplasm
to the extracellular space (e.g. met[c] ↔ met[e]) The
protein sources which are stored and degraded

P The set of protein sources which are stored and degraded

RPD The set of protein degradation reactions

RPS The set of protein storage reactions

RNU The set of nutrient uptake reactions (→ glc[bl])

C The set of carbon sources which are stored and degraded

RC The set of reactions associated with storages in C
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Furthermore, because of the numerical difficulties, occasionally the
solution became infeasible during the second optimization step (flux
minimization), while it was optimal during the first optimization step.
Therefore, for each time step the solution from the first optimization step
was used to update all the stores, i.e., the blood concentrations and the
internal tissue stores.

Simulating the model
The multi-tissue model was simulated using a dynamic Flux Balance
Analysis-based approach20, and optimized for the objective function
described above, using the COBRA Toolbox for MATLAB and the ILOG
Cplex solver. Each simulation was performed for a period of time, i.e.,
360min, using a time step of 1 min.
The pipeline for the simulation of each time step is described by the

following steps:

1. Initialize the model (only for time= 1min)
2. Calculate the food amount that is absorbed from the gut to the

blood using Eq. (21)
3. Update the blood amounts
4. Calculate vm using Eq. (22)
5. Set the new flux constraints
6. Perform the first optimization step
7. Perform the second optimization step
8. Update all the metabolite amounts in the blood and in the tissues

(i.e., internal energy stores, blood metabolites, amino acids in the
muscle, etc.) using the flux solution from step 6

9. Restart from step 2 until the end of the simulation, i.e., time=
360min

Simulating meals with different fat contents
Diet information, and blood metabolite profiles were obtained from Milan
et al.21. In this dataset, 20 metabolite profiles (18 amino-acids, glucose and
TAG) were available. These metabolites were measured at baseline, and
then every 60min for 300min, after ingestion of a low or a high fat meal.
The average metabolite profiles of young individuals were used to fit
the model.
The foods included in the low and in the high fat meal were converted

to nutrients using the Frida database55. If they could not be found in this
database, the SelfNutrition database56 was used instead.
If starch values were present in the database, it was assumed that half of

the starch was starch1 and the other half was starch2, to match the starch
metabolites in Recon2.04. If the starch value was not available from the
database, then the following calculation was performed:

Total starch ¼ Total carbohydrates� Total sugars� Dietary fiber (20)

This value was assumed to be the value of starch missing. Similarly, it
was assumed that half of this value corresponded to starch1 and the other
half to starch2.
Starch1, starch2, disaccharides, fructose, and galactose were converted

to glucose with the conversion factor of 11, 3, 2, 1, and 1, respectively. The
conversion step was performed as the carbohydrate hydrolysis in the gut
was not explicitly modeled.
Previously, Hovorka et al.19 employed Eq. (21) to describe the glucose

absorption in the gut. In this work, Eq. (21) was discretized, and employed
to describe all the nutrients absorption from the gut to the blood.
Hovorka’s equation:

UmðtÞ ¼ Dm � Am � t � e
�t

tmmax

ðtmmaxÞ2
(21)

where Um(t) is the absorption rate of a metabolite m from the pool, Dm is
the amount of metabolite m in the pool, Am is the bioavailability of m, and
tmmax is the time-of-maximum appearance rate of metabolitem in the blood.
For each time step, before optimising the model, the amount determined
by Um(t) was added to the current blood metabolite level. All the blood
metabolite amounts were then converted back to concentrations by
multiplying them by a blood volume of 5 L. Note: in the fasting condition,
the gut is empty and Um(t) is equal to 0.
To reflect the required adaptation of the system to the new blood

metabolite levels, a Michaelis–Menten equation (Eq. (22)), dependent on
the deviation of the current blood metabolite concentration from the
baseline [Sm], was used to limit the maximum uptake rate of the food

metabolites from the blood stores to the tissues:

vm ¼ vmmax � ½Sm�
kmM þ ½Sm� (22)

½Sm� ¼ ½Sm�current � ½Sm�basal (23)

where ½Sm�current is the respective blood metabolite concentration after the
absorption of meal metabolites, and [Sm]basal is the basal blood metabolite
concentration. Due to numerical errors, [Sm] might become negative (in the
order of 10−7. If this occurred, then vm was not calculated and was set to 0.
For each metabolite m considered in the food pool, the parameters tmmax,

vmmax, and kmM were fitted simultaneously to the average blood metabolite
profile from Milan et al.21. The optimization was performed using the
lsqnonlin function from the Optimization Toolbox in MATLAB.
The upper bounds of the fitting parameters were set in the following

way: the tmmax upper bounds were set to 200min, the vmmax upper bounds
were set to 1000 μmol per min, and the kmM upper bounds were set to
1000 μmol per L. As cystein, and tryptophan were not measured, no
parameter fit for these two amino acids was performed. Thus, for cystein,
and for tryptophan, the serine and the phenylalanine parameter values
were used, respectively. A table containing all the metabolite amounts for
each meal and the respective fitted parameters values is available in
Supplementary Table 10. The results of the model fit can be found in
Supplementary Fig. 15.

Simulating exercise
To simulate exercise at different intensity levels, it is necessary to represent
the exercise in the model. Since exercise mainly consists of energy
expenditure, exercise was simulated by varying the ATP demand in the
muscle. First, we investigated by how much the ATP demand in the muscle
would need to be increased to reach 90% of the maximal O2 consumption
in the model. This was achieved by simulating exercise by increasing the
ATP demand in the muscle until the expected O2 consumption was
observed. Thus, by multiplying the muscle basal ATP demand by a factor of
42, an exercise eliciting the consumption of 90% O2; max was observed. The
other ATP demands were determined, by assuming that the linear increase
of ATP demand in the muscle, leads to the linear increase in O2

consumption. I.e. to determine by how much the ATP consumption in the
muscle needed to be increased to reach 80% O2; max, the following
calculation was done: (42 ⋅ 80)/90= 37.3. Different experimental setups
were extracted from literature, and simulated in the multi-tissue model.
The exercise was performed, for all exercise simulations, after 12 h of
fasting to represent as close as possible the experimental setups extracted
from literature, with the exception of when a meal was given prior to the
exercise in the setup of interest. In this case, the meal was given after 12 h
of fasting, and the exercise was simulated 1 h after the meal was ingested.
Simulation including steady exercise at different intensity levels during

fasting:

● Simulation 1: 90min of 40% O2; max exercise followed by 3 h resting29.
● Simulation 2: 60min of 60% O2; max exercise followed by 3 h resting29.

Simulation including steady and incremental exercise at different
intensity levels during fasting:

● Simulation 3: 5 min of 50% O2; max exercise followed by 1 h 55 of 70%
O2; max exercise. After 30 min resting, the simulation of incremental
exercise started. 10 min exercise at 70% O2; max, 10 min at 80% O2; max,
and 10min at 90% O2; max

30 were simulated.

The following simulations were performed for a low fat meal:

● Simulation 4: 60 min of 55% O2; max exercise followed by 30min rest.
After resting the meal was applied, and the model simulated for
another 150min23.

● Simulation 5: the meal was applied. After 60min resting, 60 min of
55% O2; max exercise was simulated, followed by 180min resting23.

An additional simulation was performed to compare the effect of
exercising, or resting in the fed state:

● Simulation 6: the meal was applied, and no exercise was simulated.

The fatty acid oxidation was calculated in multiple steps. First, the
individual fatty acid oxidation reactions were collected. Depending on the
reaction, more than one molecule of acetyl-coa could be produced.
The acetyl-coa coefficient was extracted, and each flux was multiplied by
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the respective coefficient. The fluxes were summed up, and the AUC
calculated.
Multiple energy precursors can be used to provide energy during

exercise to the muscle: (1) free fatty acids absorbed from the blood; (2)
other fat sources, representing the sum of blood TAG absorption and the
degradation of TAG stores in muscle; (3) blood glucose absorbed; and (4)
glycogen degraded in muscle.
The calculation of the availability of each of these sources for ATP

production was performed in several steps:

● The AUC of the flux of the different energy precursors for the muscle
was calculated.

● TAG and glycogen were broken down into free fatty acids, and glucose
molecules, respectively. TAG contains 3 fatty acids, thus the AUC value
of "other fat sources" was multiplied by 3. Glycogen degradation
produces 8 molecules of glucose and 3 molecules of glucose-1-
phosphate, thus the AUC value of muscle glycogen degradation was
multiplied by 11.

● The degradation of one molecule of glucose, and an average free fatty
acid leads to the production of around 31, and 106 ATP molecules57,
respectively. Therefore, to obtain the ATP contribution of each energy
source, the AUC values of glucose, and glycogen-derived glucose were
multiplied by 31, and those from free fatty acids, and TAG-derived free
fatty acids were multiplied by 106.

Mapping of IEMs onto the multi-tissue metabolic model
A list of IEMs was collected from several published studies3,32,58,59 to
simulate IEMs in the multi-tissue model. These studies were selected, as
literature biomarkers were included in the papers. The IEMs were mapped
to a list of IEMs impaired genes/enzymes60, and the respective genes
extracted. IEMs were simulated only if the impaired genes directly affected
a metabolic reaction of the multi-tissue model (e.g., an IEM was only
simulated if the function deleteModelGenes from the COBRA aToolbox
indicated an effect of the gene knockout).
In total, 65 IEMs were simulated under different conditions (in the

fasting state, after a low fat meal, and after a high fat meal). The simulation
of IEMs was performed by setting the targeted reaction(s) fluxes to 0 (i.e.,
upper and lower bounds were fixed to 0, representing a 100%
inactivation). In addition, 100 "individual" models for each condition were
simulated (fasting state, low fat meal, and high fat meal). For each of these
models, the flux bounds of all the flexible constraints were randomly
decreased, or increased to mimic the metabolism differences between
individuals. The random change ranged from 0 to 10%.
In total, 498 models were simulated:

● 65 IEMs ⋅ 3 conditions
● 100 “Individual” healthy models ⋅ 3 conditions
● Average healthy model ⋅ 3 conditions

Predicting outlier data points as potential metabolic biomarkers
Metabolic biomarkers are metabolites whose levels are outside the healthy
range, either above or below. Thus, one method which might help in their
identification is by predicting which metabolite levels might be outliers.
This was achieved by performing several steps: (1) preprocessing, (2)
“outliers” identification, and (3) filtering.
Data was pre-processed as following:

● For each metabolite, the minimum amount among all simulations was
calculated. For some metabolites, the blood amount became negative
during the simulation, as well as the urine fluxes. These negative
values were in the order of 10−7, and occurred because of numerical
errors during the optimization process.

● For those blood metabolites where a negative amount was found
during the simulation, the absolute value of the negative change was
added to all the simulations in order to obtain only positive blood
amounts.

● For the urine metabolites, any negative flux was replaced by zero.

Outliers identification
After the preprocessing, the AUC of the blood level/urine excretion flux
over time was calculated for each metabolite in each condition, and
hierarchical clustering analysis was performed to identify potential

biomarkers. This was achieved by using the MATLAB cluster function from
the Statistics and Machine Learning Toolbox. Default parameters were
selected, with the exception of the linkage measure which was set to
single. The silhouette function, from the same toolbox, was used to identify
the best number of clusters (ranging from 1 to 3), for each metabolite
among all conditions (n= 498). The number of clusters represents the
following: a cluster number of 1 indicates that the metabolite was inside
the healthy range for all the conditions; a cluster number of 2 indicates
that at least one metabolite level was outside the healthy range (one
metabolite level was decreased or increased when compared to the
healthy range); finally, a cluster number of 3 indicates i.e., that in some
conditions the metabolite level was decreased, while in others it was
increased.

Final list of biomarkers
After extracting the potential list of biomarkers, two steps of filtering were
performed.

● In the first step, metabolites with AUC larger or smaller than the
healthy range were kept, and the others removed from the list. The
healthy range is defined as the minimum and maximum AUC values
obtained from the simulations of the healthy models (n= 303).

● In the last step, metabolites which were only identified as biomarkers
in the fasting condition were removed. In general, the clinical
symptoms of amino acidopathies, e.g., phenylalanine, will manifest
when the affected individuals ingest foods rich in the non metaboliz-
able amino acid, e.g., phenylalanine, leading to its accumulation in
the blood.

A score was assigned to each metabolite. This score represents the
total number of conditions (fasting, low fat meal and high fat
meal) that a biomarker was identified in. The score value ranged
from 0 to 3. A score of 0 represents non biomarkers (metabolites
in the healthy range); a score of 1 represents biomarkers identified
in only one condition (i.e., after a low fat meal, or after a high fat
meal); a score of 2 represents biomarkers identified in two
conditions; and a score of 3 represents biomarkers which were
identified in all 3 conditions. Furthermore, a sign was added to the
score value to represent an increase (plus sign), or a decrease in
the biomarker (minus sign) level, when compared to the
healthy range.

Software
The micro array data processing was performed with R version 3.2.0. All the
simulations were performed with MATLAB 2014b 32bit using ILOG Cplex
32 bit (cplex1261). The model manipulation, and simulation was performed
using the COBRA Toolbox (v2)61. The figures were either created with R
version 3.4.0 or MATLAB 2014b 32bit.
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