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Learning to encode cellular responses to systematic
perturbations with deep generative models
Yifan Xue 1, Michael Q. Ding 1 and Xinghua Lu 1,2✉

Cellular signaling systems play a vital role in maintaining homeostasis when a cell is exposed to different perturbations.
Components of the systems are organized as hierarchical networks, and perturbing different components often leads to
transcriptomic profiles that exhibit compositional statistical patterns. Mining such patterns to investigate how cellular signals are
encoded is an important problem in systems biology, where artificial intelligence techniques can be of great assistance. Here, we
investigated the capability of deep generative models (DGMs) to modeling signaling systems and learn representations of cellular
states underlying transcriptomic responses to diverse perturbations. Specifically, we show that the variational autoencoder and the
supervised vector-quantized variational autoencoder can accurately regenerate gene expression data in response to perturbagen
treatments. The models can learn representations that reveal the relationships between different classes of perturbagens and
enable mappings between drugs and their target genes. In summary, DGMs can adequately learn and depict how cellular signals
are encoded. The resulting representations have broad applications, demonstrating the power of artificial intelligence in systems
biology and precision medicine.
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INTRODUCTION
A cellular signaling system is a signal processing machine that
detects changes in the internal or external environment, encodes
these changes as cellular signals, and eventually transmits these
signals to effectors, which adjusts cellular responses accordingly.
Cellular responses to perturbations often involve changes in
transcriptomic programs1–3. The investigation of cellular signaling
systems is an important task in the field of systems biology. A
common approach is to systematically perturb a cellular system
with genetic or pharmacological perturbagens and monitor
transcriptomic changes in order to reverse engineer the system
and gain insights into how cellular signals are encoded and
transmitted. This approach has been employed in many large-
scale systems biology studies, e.g., the yeast deletion library4, the
Connectivity Map project5,6, and most recently, the Library of
Integrated Network-based Cellular Signatures (LINCS)7,8. The LINCS
project is arguably the most comprehensive systematic perturba-
tion dataset currently available, in which multiple cell lines were
treated with over tens of thousands perturbagens (e.g., small
molecules or single gene knockdowns), followed by monitoring
gene expression profiles using a new technology known as the
L1000 assay, which utilizes ~1000 (978) landmark genes to infer
the entire transcriptome7.
While there are numerous studies using LINCS data to

investigate the mechanism-of-action (MOA) of drugs and to
promote clinical translation of MOA information5,7,9–14, few studies
aim to use the data for learning to represent the cellular signaling
system as an information encoder. This would enable examination
of how different perturbagens affect the cellular signaling system.
It can be imagined that when signaling components at different
levels of a signaling cascade are perturbed, the resulting
expression data would present compositional statistical structures
that can be hard to reverse-engineer. For instance, perturbing an
upstream signaling molecule will likely subsume the effect of

perturbing its downstream molecules. Capturing such a composi-
tional statistical structure requires models that are capable of
representing hierarchical relationships among signaling compo-
nents. In this study, we developed deep generative models
(DGMs) to understand how perturbagens affect the cellular signal
encoding process and lead to changes in the gene expression
profile.
DGMs are a family of deep learning models that employ a set of

hierarchically organized latent variables to learn the joint
distribution of a set of observed variables. After training, DGMs
are capable of generating simulated data that preserve the same
compositional statistical structure as the training data. The
hierarchical organization of latent variables is particularly suitable
for representing cellular signaling cascades and detecting
compositional statistical patterns derived from perturbing differ-
ent components of cellular systems. The capability to “generate”
samples similar to the training data are of particular interest. If a
model can accurately regenerate transcriptomic data produced
under different perturbations, the model should have learned a
representation of the cellular signaling system that enables it to
encode responses to perturbations. Such representations could
shed light on the MOAs through which perturbagens impact
different cellular processes.
In this study, we investigate the utility of two DGMs, the

variational autoencoder (VAE) (Fig. 1a)15–17 and a new model, the
supervised vector-quantized variational autoencoder (S-VQ-VAE)
(Fig. 1b), for learning the signal encoding process of cells. We
show that the VAEs can reconstruct the LINCS data accurately and
also generate new data that are indistinguishable from real
observed data. We demonstrate that by adding a supervised
learning component to vector-quantized VAE (VQ-VAE)18, we are
able to summarize the common features of a family of drugs into a
single embedding vector and use these vectors to reveal
relationships between different families of drugs. Our study
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represents the pioneering efforts that systematically investigate
the power of DGMs for learning how cellular signals are encoded
in response to perturbations. Our findings support the use of
DGMs as a powerful tool in modeling cell signaling systems.

RESULTS
Modeling cellular transcriptomic processes with VAE
We carried out a series of model comparison experiments and
selected a deep learning architecture based on model complexity,
reconstruction error, and other aspects of performance (see
“Methods”). The input and output layers contained 978 nodes,
each corresponding to one of the 978 landmark genes in an L1000
expression profile. The internal architecture is composed of three
hidden layers in its encoder, with 1000, 1000, and 100 hidden
nodes, respectively (Supplementary Fig. 1); the decoder has a
reverse architecture as the encoder.
We trained three VAE models independently on datasets

consisting of different combinations of samples treated with two
types of perturbagens. The first model was trained on the small-
molecule perturbagen (SMP) dataset, which contains 85,183
expression profiles from seven cell lines treated with small
molecules (Supplementary Table 1). The second model was
trained on the genetic perturbagen (GP) dataset, which contains
116,782 expression profiles from nine cell lines with a single gene
knockdown (Supplementary Table 1). The third model was trained
on the combined SMP and GP dataset (SMGP). We excluded
4649 samples treated with two proteasome inhibitors (bortezomib
and MG-132) from the SMGP dataset as these samples form a
unique outlier distribution on the principal component analysis

(PCA) plot (Supplementary Fig. 2, see Methods). Supplementary
Table 2 shows the performance of the three VAE models trained
independently on the SMP, GP, and SMGP datasets.
To examine whether the trained VAE models learned the

distribution of the input data, we generated new data using the
trained VAE models and compared their distribution with that of
the original input data. For each of the three models, we randomly
generated 10,000 samples and projected them along with 10,000
randomly selected original training samples into the first two
principal components space (Fig. 2). From the scatter plots in Fig.
2 (a, d, and g), we can see that the VAE-generated data points
form a similar distribution in the PCA plot as the input data for all
three experiments. The consistency in the centroid location,
shape, and range of the density contour indicates that the VAE
models are able to capture the major statistical characteristics of
the input data distribution (Fig. 2).
We then performed hierarchical clustering analyses to confirm

whether the newly generated data are indistinguishable from real
data. Using 2000 randomly generated samples and 2000 randomly
selected original samples, we conducted hierarchical clustering
with 1-Pearson correlation as the distance metric (Supplementary
Fig. 3). We cut the dendrogram at 10 clusters and computed a
mixing score (see “Methods”) to examine whether the generated
data and original data were similarly distributed across clusters.
For binary-categorical data, a mixing score is of range [0.5, 1],
which gives the average proportion of data from the dominant
category in each cluster. A mixing score of 0.5 indicates an even
mixture of the two categories of data within all clusters, and a
score of 1 indicates a clear separation between the two categories
across clusters. For each of the three VAE models, this process of
sample generation, selection, and mixing score computation was

Fig. 1 The VAE model and S-VQ-VAE model. a The architecture of VAE. The encoder and decoder are two sub-neural networks. An input case
is transformed into a mean vector μ(x) and a covariance vector ΣðxÞ by the encoder, from which the encoding vector zqðxÞ is sampled and fed
to the decoder to reconstruct the input case. The distribution of the encoding vector is trained to follow a prior standard normal distribution.
b The architecture of S-VQ-VAE. S-VQ-VAE is an extension of VQ-VAE where the training of the embedding space is guided by the label of
the input data. Similar to VAE, an input case is first transformed into an encoding vector ze xð Þ by the encoder. During training, the encoding
vector is replaced by the embedding vector ey designated to represent the label y of data to reconstruct the input case. The
embedding vector is updated according to the reconstruction error. During testing, the encoding vector is replaced by the nearest neighbor
embedding vector ek .
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repeated 50 times. The mean mixing score was 0.594 for SMP-
trained VAE with a 95% confidence interval (CI) of [0.589, 0.598],
0.586 for GP-trained VAE with a CI of [0.581, 0.591], and 0.603 for
SMGP-trained VAE with a CI of [0.598, 0.608]. These mixing scores
indicate that neither real data nor simulated data exhibit
dominance in individual hierarchical clusters. Therefore, the
generated data cannot be separated from the real data via
hierarchical clustering.

A few signature nodes encode the primary characteristics of an
expression profile
To gain a better understanding of how VAEs encode the
distribution of diverse input data, we next examined the activation

patterns of hidden nodes on different layers of the SMGP-trained
VAE model. We paid particular attention to the top hidden layer of
100 nodes that serves as an “information bottleneck” for
compressing the original data, because this layer also serves as
the starting point for the generation of new samples.
For this analysis, we utilized a subset of the SMP dataset where

the samples were treated with small molecules that had been
classified into one of the perturbagen classes (PCLs) based on
MOA, gene targets, and pathway annotations as defined by the
LINCS project7. We call this subset the SMP dataset with Class
information (SMC) dataset, and it consists of 12,079 samples
treated with small molecules from 75 PCLs. For each of these
samples, we computed an encoding vector by feeding the

Fig. 2 Simulated data of VAE vs. original input data. a Scatter plot of simulated data (blue points) generated by SMP-trained VAE and the
original SMP data (red points) in the space of the first two PCA components. b The density contour of the real data in (a). c The density
contour of the simulated data in (a). d Scatter plot of simulated data (blue points) generated by GP-trained VAE and the original GP data (red
points) in the space of the first two PCA components. e The density contour of the real data in (d). f The density contour of the simulated data
in (d). g Scatter plot of simulated data (blue points) generated by SMGP-trained VAE and the original SMGP data (red points) in the space of
the first two PCA components. h The density contour of the real data in (g). i The density contour of the simulated data in (g).
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expression profile through the encoder of the SMGP-trained VAE
to the top hidden layer (zq xð Þ in Fig. 1a). We found that 12 out of
100 nodes in the encoding vector had a high variance in activation
values across samples (Fig. 3a). The average values of these nodes
show a clear bimodal distribution with one mode formed by the
12 nodes and one mode formed by the others (Supplementary
Fig. 4). For the SMC dataset, the average absolute value of these
12 nodes is 0.885 vs. 0.048 of the other hidden nodes, (two-sided
t-test p-value < 1e−10). Across the SMGP training dataset as a
whole, the average absolute value of the 12 nodes is 0.503 and vs.
0.044 of the other nodes (p < 1e−10).
For an ordinary VAE model, the prior distribution of the

encoding vector is a standard normal distribution with a mean
vector μ xð Þ ¼ 0 and a diagonal covariance matrix Σ xð Þ ¼ diagð1Þ
(Fig. 1a). During training, an element of the vector shrinks towards
0 unless it is driven by data to deviate from 0. Therefore, the
significantly high absolute values taken by these 12 hidden nodes
suggest that they encode major signals of input data. From this
point forward, we refer to these 12 hidden nodes as the
signature nodes.
We investigated whether the patterns of these 12 signature

nodes reflect the MOA of drugs by examining their association
with PCLs. A PCL was considered a major perturbagen class if at
least 150 samples were treated with perturbagens of that class in
the LINCS data. Using this definition, there are 21 major PCLs. For
each major PCL, we fed the samples treated with perturbagens of
the class through the trained VAE encoder and took the average
signature node values across samples as a vector representation of
the PCL. As shown in Fig. 3b, different PCLs presented different
patterns in the signature nodes.
We further examined whether the representations of each PCL

revealed similarities between PCLs via hierarchical clustering
analysis (Fig. 3b). PCLs that are closely clustered tend to share
similar MOAs (Fig. 3b). For example, the mTOR inhibitor and PI3K
inhibitor were grouped together according to their consistent
activation directions (positive vs. negative) for most signature
nodes, and they are both known to impact the PI3K/AKT signaling
pathway19, where mTOR is a downstream effector of PI3K. Other
examples include the grouping of Src inhibitor and Raf inhibitor,
where Src is known to activate Ras-c, which in turn activates Raf in
the Raf-MEK-ERK kinase cascade20; the grouping of topoisomerase
inhibitor and ribonucleotide reductase inhibitor, which both
impact DNA replication; and the grouping of Aurora kinase
inhibitor and PKC inhibitor, where Aurora kinases are essential in
mediating the PKC-MAPK signal to the NF-κB/AP-1 pathway21.
These observations support the idea that the 12 signature nodes
preserve crucial information representing an expression profile

resulting from a small-molecule perturbation of the cellular
system.
To further demonstrate that the primary characteristics of an

expression profile are encoded in the 12 signature nodes, we
generated new expression profiles to simulate samples treated
with a target PCL by manipulating values of the signature nodes
to mimic the patterns found the previous experiment. We preset
the signature nodes to values similar to the average values of
training samples treated with the target PCL as shown in Fig. 3b
and randomly initialized the other hidden nodes from a standard
normal distribution. In this manner, we randomly generated 500
new samples using the VAE decoder for eight major PCLs. We then
compared the randomly generated samples against real samples
to see whether their nearest neighbors were from the target PCL
(Fig. 4a). The signature node patterns used to generate samples
and the similarity of these samples to real samples and associated
PCLs are shown in Fig. 4b–i.
In most cases, more than half of the generated data had a

nearest neighbor from the target PCLs. For proteasome inhibitor
and tubulin inhibitor specifically (Fig. 4g and i), 100% of the
generated data were nearest neighbors of real samples from the
target PCL, which was repeatedly observed across independent
runs. These results agrees with the PCL clustering outcomes in Fig.
3b, where proteasome inhibitor and tubulin inhibitor were found
as outliers from the other PCLs with their distinct signature node
patterns.
We also noted that the specific value of each signature node did

not matter as long as the value correctly reflects the direction, i.e.,
positive or negative, of the node for a given PCL. This suggests
that the major characteristics of a PCL can potentially be encoded
into only 12 bits of information. The only pattern that did not have
over half of the generated samples mapped to the target PCL was
the mTOR inhibitor (Fig. 4e). Most of the samples generated using
mTOR signature nodes were closest neighbors of PI3K inhibitor-
treated samples. This is reasonable, as mTOR inhibitors act
downstream on the same pathway as PI3K inhibitors. For this
reason, the former’s effects can be in many cases replicated by the
latter. This observation also supports the conclusion that each
signature node pattern reflects a specific cellular signaling
process, which, after decoding, generates an expression profile
that may reflects how the signaling is perturbed.

Learning global representations of PCLs with S-VQ-VAE
The signature node representations of PCLs discussed above were
obtained by averaging over samples treated with small-molecule
perturbagens of a PCL. In order to learn a unique, stable global

Fig. 3 Signature nodes on the top hidden layer of SMGP-trained VAE. a The heatmap of the 100 hidden nodes of the top hidden layer for
500 random selected SMC samples. The pseudo-colors represent the values of elements in the encoding vectors. b The average of signature
nodes for samples treated with major PCLs.
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representation for each PCL, we designed another DGM, the S-VQ-
VAE, which utilizes the PCL class labels of perturbagens to partially
supervise the training process. S-VQ-VAE was extended from VQ-
VAE by utilizing the vector-quantized (VQ) technique to discretize
the encoding vector space into multiple mutually exclusive
subspaces represented by a limited number of embedding
vectors and projecting data from each class into its pre-assigned

subspace (Fig. 1b, see “Methods”). After training, each embedding
vector learns to summarize the global characteristics of a class of
data. In this study, we used S-VQ-VAE to learn an embedding
vector with a dimension of 1000 for representing each of the 75
PCLs in the SMC dataset (Supplementary Table 2).
We utilized the embedding vectors to reveal similarities and

potential functional relationships between PCLs by comparing

Fig. 4 Comparison of data generated based on the signature pattern of PCLs with real data. a Diagram illustrating the procedure for
generating new data from the signature pattern of a PCL. First, an encoding vector is initialized where the signature nodes are set according
to the signature pattern of real samples from the given PCL; the non-signature nodes are randomly initialized by sampling from a standard
normal distribution. The vector is then fed through the decoder of the SMGP-trained VAE, and a new expression profile is generated. The new
data are compared to real data by computing the nearest neighbor based on Euclidean distance, to see if the new data are closely related to
real data of the given PCL. b–i The composition of real data nearest neighbors of new data generated from latent representations simulating
different PCLs. “R” indicates the value of the signature node is not specified but random initialized as non-signature nodes.
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each PCL to all the others to identify its nearest neighbor based on
Pearson correlation. The nearest neighbor relationships between
PCLs are visualized as a directed graph (Fig. 5), in which a directed
edge indicates that the source node is the nearest partner to the
target node. We also applied the Louvain algorithm22 to detect
communities (or clusters) among PCLs, and members of different
communities are indicated as pseudo-colors (Fig. 5). The
modularity score of the communities is 0.875, which indicates
significantly denser connections existing between members
within communities compared to a randomly assigned network
of the same set of PCLs.
Some strong relationships, like bi-directional connections are

observed (Fig. 5), and many such relationships correspond to well-
documented shared MOAs between the drugs in the connected
PCLs. These include the relationships that have also been revealed
with the signature node representations above, e.g., the functional
similarity between mTOR inhibitors and PI3K inhibitors19, and the
relationship between MEK inhibitors, Src inhibitors, and Raf
inhibitors20. Other strong connections were observed between
CDK inhibitors and topoisomerase inhibitors, which may reflect
coordinated response to mitosis inhibition and DNA damage
induction23,24, between Aurora kinase inhibitors and HDAC
inhibitors which both impact the histone deacetylase pathway25,
and between gamma-secretase inhibitors, serotonin receptor
antagonists, and bile acid that affect amyloid precursor protein
processing and lipid metabolism26,27.
The members of a PCL community also shed light on the high-

level functional theme of the community. For example, the black
community on the left of Fig. 5 with Raf, Src, MEK, and EGFR
related PCLs may represent drug effects transmitted through the
EGFR-RAS-RAF-MEK signaling cascade. The orange community
(bottom left of Fig. 5), consisting of inhibitors of Aurora kinase,
HDAC, CDK, topoisomerase, ribonucleotide reductase, and DNA
synthesis, may represent the signaling transduction for regulating
DNA duplication and mitosis. The blue community (bottom right
of Fig. 5), with estrogen, progesterone, norepinephrine, and
angiotensin may represent the comprehensive effects of

perturbing hormones. These findings indicate that the global
representations learned with S-VQ-VAE preserve crucial informa-
tion that reveals the functional impact of different PCLs.

The VAE latent representations preserve PCL-related information
The latent variables at different levels of the hierarchy of a DGM
may encode cellular signals with different degrees of complexity
and abstraction28. Therefore, we next investigated the information
preserved in the latent variables of different hidden layers of the
SMGP-trained VAE. To do this, we first represented the SMC
samples with seven types of representations, including the raw
expression profiles, the latent representations obtained from the
five hidden layers of the VAE (across the encoder and decoder),
and the 12 signature node values (see “Methods”). We then used
these representations to predict the PCL label of the small
molecule used to treat each sample by training two multi-
classification models, the logistic regression (LR) and the support
vector machine (SVM). As shown in Supplementary Table 3, the
highest test prediction accuracy was achieved by using the raw
expression profiles as input data for both LR and SVM (accuracy
0.5922 and 0.5273 respectively). This was followed by the latent
representations of samples extracted from the first hidden layer of
the VAE encoder (accuracy 0.5096 for LR and 0.4528 for SVM). The
lowest accuracy was obtained using the 12 signature node values
as input data (0.3814 for LR and 0.3615 for SVM). Nonetheless, the
highest test accuracy achieved with latent representation, 0.5096,
was nearly 10 times higher than guessing at random from the 75
unevenly distributed PCLs, 0.0543. These results indicate that
although there was information loss with respect to the
classification task as the representations become more abstract
with deeper hidden layers, the latent representations preserved
significant information from the original input data.

The VAE latent representations enhance drug-target identification
Combining SMP and GP data can help establish connections
between the MOAs of small molecules and genetic perturbations,

Fig. 5 Similarities between PCLs revealed by global PCL representations learned by S-VQ-VAE. A directed edge in the graph indicates that
the source node is the nearest node to the target code based on the Pearson correlation between the corresponding representations. The
node size is proportional to the out-degree. The edge width is proportional to the correlation. The color of a node indicates the community
the node belongs to.
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which further help reveal the targets of small molecules6,12. A
simple approach is to examine whether a pair of perturbagens (a
small molecule and a genetic perturbation) leads to similar
transcriptomic profiles, or more intriguingly, similar latent
representations that reflect the state of the cellular system. Given
a known pair of a drug and its target protein, we assumed that
treatment with the drug and knockdown of the gene of the
protein would result in a similar transcriptomic response reflected
in the raw expression profile or VAE-derived latent representa-
tions. Based on this assumption, we extracted 16 FDA-approved
drugs and their gene targets from ChEMBL database that are also
available in LINCS data12,29. We computed the Pearson correla-
tions between the representations (either the raw expression
profile or a latent representation) of each SMP sample treated by a
drug and the corresponding representations of all GP samples.
The GP samples and their knockdown genes were then ranked
according to the correlations to obtain the ranks of known target
genes, in a manner similar to an information retrieval task (Fig. 6a).
We compared different types of representations to identify

which were more effective in assigning a higher rank to target
genes. As shown in Supplementary Table 4 and Table 1, for
different drugs, different representations achieved the best target-
retrieval performance as reflected by top rank and mean rank. This
suggests that VAEs can encode the impact of different drugs
within different layers in the hierarchy that potentially reflect the
relative level of drug-target interactions in the cellular signaling
network. Figure 6b summarizes the mean rank results where each
drug is assigned to the representation layer that produced the
best mean rank of its top known target. Most drugs have their
best performance achieved with VAE-learned latent representa-
tions rather than the raw expression profiles, and for five drugs,
the best performance was achieved with the 12-signature-node-
representation. Table 1 gives the best rank of the top known
target for each drug, which is comparable to Table 1 from Pabon
et al.12. Even though our approach is essentially an unsupervised
learning method based purely on expression data, 13 out of 16
drugs received an equal or better rank than from the previous
state of the art random forest model trained with a combination of
expression and protein–protein interaction features12 (bolded in
Table 1).
In addition to comparing a SMP sample to all GP samples, we

also created two smaller datasets to only include SMP and GP
samples that are correlated with the 16 FDA-approved drugs and
their targets from ChEMBL and 810 drugs and their targets from
the Drug Gene Interaction database (DGIdb)30, respectively. For
each drug-perturbed sample, we ranked their target genes using
the same approach as shown in Fig. 6a and computed average top
n recall and proportion of samples with at least one true target

retrieved in top n ranked genes for all types of representations
(Supplementary Table 5). For both datasets, the best aggregation
performance was achieved with latent representations rather than
the raw expression profile, which also supports that latent
representations are better at revealing drug-target relations.

DISCUSSION
In this study, we examined the utility of DGMs, specifically VAE
and S-VQ-VAE, for learning representations of the cellular states of
cells treated with different perturbagens in the LINCS project. We
showed that the trained VAE and S-VQ-VAE models were able to
accurately regenerate transcriptomic profiles almost indistinguish-
able from the input data. These results are intriguing because they
suggest that the DGMs may have captured signals of cellular
processes underlying the statistical structures of the data. Such
capability is highly desirable as it provides a means to investigate
how responses to diverse environmental changes are encoded in
cellular systems as signals.
Cellular signaling systems are essentially coding machines, and

training a machine capable of mimicking the behaviors of cellular
signaling systems is a critical step of using contemporary artificial
intelligence technologies to advance systems biology. A more
intriguing future direction is to investigate whether the signals of
latent variables can be mapped to the signals encoded by real
biological entities like proteins or pathways as indicated by the
previous research28. This may require further development of
interpretable deep learning models that integrate information
from multiple platforms. In our development of the models, we
compared VAE with other DGMs, including restricted Boltzmann
machines31, deep belief networks31, deep autoencoders15, and
VQ-VAEs18. VAE outperformed all of these DGMs in capturing the
expression data distribution. However, in its original form, VAE
cannot utilize additional information aside from data passed from
the input layer. The S-VQ-VAE model is an early attempt toward
the goal of combining different information sources. It utilizes
additional label information to facilitate the learning of global
representations, but essentially it does not directly combine
multiple types of data nor realize a fully interpretable multi-task
learning. More directions of model design remain to be explored.
We believe that additional information such as genetic perturba-
tions can be used to determine to which biological entity the
signal encoded by a latent variable likely corresponds. As cells are
the basic unit of life, a complete model for understanding cellular
signaling systems would represent a major breakthrough in both
machine learning and systems biology, with profound implica-
tions for cell biology, pharmacology, drug development, and
precision medicine.

Fig. 6 Drug-target prediction with different sample representations for 16 FDA-approved drugs. a Diagram illustrating the approach for
drug-target prediction. For a given drug, samples treated with the drug are fed to the SMGP-trained VAE to obtain latent representations from
different layers of the encoder and decoder. All GP samples are also fed to the VAE to obtain corresponding latent representations and
compared with the SMP samples by computing the Pearson correlation. For a given type of representation, genes are ranked according to the
correlations with respect to the representations of SMP samples treated with the drug, and the ranks of the top known target of the drug are
recorded. b The representation type that achieved the best matching (lowest mean rank) of the top known target gene for each drug.
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METHODS
Data
The SMP dataset was extracted from the Gene Expression Omnibus (GEO)
dataset GSE7013832, which contained the level 5 L1000 expression data
(moderate z-scores) of the 978 landmark genes of 85,183 samples from
seven major cell lines treated with small molecules (Supplementary Table
1). The GP dataset was obtained from the GEO dataset GSE10612733, which
contained the level 5 data of 116,782 samples from nine major cell lines
with gene knockdowns (Supplementary Table 1). A cell line was considered
as a major cell line if the cell line had over 10,000 samples. We performed
PCA on the two datasets, and the distributions of samples in the first two
principal components are shown in Supplementary Fig. 2. By comparing
the scatter plot of the SMP dataset with its density contour (Supplemen-
tary Fig. 2), we can see that the group of samples on the right of the
scatters plot is an outlier group with high variance but low density. This
group contained 4649 samples treated with two proteasome inhibitors,
bortezomib, and MG-132. Therefore, in the third dataset, the SMGP dataset
that merges the SMP dataset with the GP dataset, these outlier samples
were excluded. The removal of outliers resulted in comparable distribu-
tions between SMP samples and GP samples (Supplementary Fig. 2), which
enabled the use of the SMGP dataset for training a VAE model to reveal
connections between small molecules and knocked down genes.
The SMC dataset was a subset of the SMP dataset that contained

12,079 samples treated with 204 small molecules belonging to 75 PCLs.
The PCL information was extracted from Supplementary Table 7 of the
original L1000 paper7. The SMC dataset was used to train LR and SVM
models for predicting PCLs of samples based on cellular representations
learned from VAEs.
The dataset used to learn PCL representations with S-VQ-VAE was a

subset of the SMC dataset, the SMCNP dataset (Supplementary Table 2),
which excluded the samples treated with the proteasome inhibitor MG-
132 (bortezomib was not given a PCL label, and thus had been excluded
from the SMC dataset). This subset contained 9769 samples treated with
small molecules from 75 PCLs.

S-VQ-VAE model
S-VQ-VAE is a new DGM designed in this study for learning a vector
representation (embedding) for each PCL. The model was extended from
the standard VQ-VAE18 by adding a supervised mapping step to guide the
training of the embedding space. Like VQ-VAE, a S-VQ-VAE is composed of
three parts, an encoder neural network to generate the encoding vector

zeðxÞ given an input vector x, an embedding space to look up the discrete
representation zqðxÞ based on zeðxÞ, and a decoder neural network to
reconstruct the input data from zqðxÞ (Fig. 1b). Suppose that the encoder
encodes the input data to a vector of length D, the embedding space E is
then defined as E 2 RY ´D , where Y is the number of different classes of the
input data. In our case, this corresponds to PCLs. Each of the Y embedding
vectors of dimension D is designated to learn a global representation of
one of the classes. In forward computation, an input x is first converted to
its encoding vector zeðxÞ, which will be used to update the embedding
space. In the training phase, zeðxÞ is replaced with zq xð Þ ¼ ey to pass to the
decoder, where ey is the embedding vectors of the class y of x. In the
testing phase, zeðxÞ is replaced by its nearest code zq xð Þ ¼ ek with

k ¼ argmin
j

ze xð Þ � ej
�
�

�
�

(1)

Note that we are not assuming a uniform distribution of the embedding
vectors as in the ordinary VQ-VAE18. Instead, the distribution of codes is
determined by the input data with its discrete class labeling governing by
a multinomial distribution.
In order to design a model that can learn individual representations

through data reconstruction as well as learn a global representation for
each class in a supervised manner, the objective function of S-VQ-VAE
contains a reconstruction loss to optimize the encoder and decoder (first
term in Eq. (2)), and a dictionary learning loss to update the embedding
space (second term in Eq. (2)). The form of reconstruction loss can be
selected based on the data type, and here we used the mean square error
(MSE). Following the training protocol of standard VQ-VAE18, we chose VQ
as the dictionary learning algorithm, which computes the L2 error between
zeðxÞ and ey thus updating the embedding vector towards the encoding
vector of an input case of class y. To control the volume of the embedding
space, we also added a commitment loss between zeðxÞ and ey to force the
individual encoding vector towards to the corresponding global embed-
ding vector (third term in Eq. (2)).

L ¼ lrðx; dðeyÞÞ þ sg ze xð Þ½ � � ey
�
�

�
�2
2þβ ze xð Þ � sg ey

� ��
�

�
�2
2

�I k ≠ yð Þð sg ze xð Þ½ � � ekk k22þγ ze xð Þ � sg ek½ �k k22Þ
(2)

In addition to making the encoding vectors and the embedding vectors
converge, we added two additional terms to force the encoding vector of
an input data to deviate from the nearest embedding vector ek if k ≠ y (i.e.,
to minimize misclassification with the nearest neighbor). As given in Eq. (2),
the fourth term is another VQ objective which updates the embedding
vector of the mis-class. The final term, called the divergence loss, expands

Table 1. The rank of the top known target for 16 FDA-approved drugs from drug-target prediction with different types of representations.

Drug Target Raw E1 E2 T Sig. D1 D2

Pitavastatinb HMGCR 2a 1 1 1 1 2 1

Bortezomib PSMB10, PSMA3, PSMA1, PSMA5, PSMB7, PSMB5, PSMA8, PSMB1 1 1 1 1 1 1 1

Hydrocortisone NR3C1 72 35 37 12 11 3 1

Vemurafenib BRAF 1 1 1 1 1 1 1

Flutamide AR 36 14 39 78 160 29 163

Clobetasol NR3C1 415 10 2 7 16 13 4

Digoxin ATP1A3, FXYD2, ATP1B1 71 2 9 30 15 23 11

Mycophenolate-Mofetil IMPDH2 12 342 31 28 21 18 44

Dasatinib LCK, YES1 25 2 5 5 7 3 2

Amlodipine CACNA1D 62 243 134 111 116 97 58

Calcitriol VDR 917 164 341 661 211 1018 335

Glibenclamide KCNJ11 275 497 336 579 307 482 536

Paclitaxel TUBB6, TUBA1A, TUBB2A, TUBB2C 14 71 49 20 18 92 98

Losartan AGTR1 238 190 370 53 115 253 57

Irinotecan TOP1 308 653 331 18 13 326 504

Raloxifene ESR2 114 115 53 139 72 105 65

E encoder layer, T top hidden layer, Sig signature nodes, D decoder layer.
aThe value for a given drug and a type of representation is the top rank of the drug-target gene(s) among all genes in GP dataset when retrieved and ranked
according to the similarity between the representations of SMP samples treated with the drug and representations of all GP samples. A lower rank is better.
bDrugs with the lowest rank equal to or lower than the rank reported by Pabon et al. are bolded.
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the volume of the embedding space in order to allow different classes to
diverge from each other. Coefficients are applied to the commitment loss
(β) and divergence loss (γ) to control the strength of regularization over
the embedding space volume. According to preliminary experiments using
coefficients from [0, 1], the performance of the model is quite robust to
these coefficients. For generating the results presented in this study, we
used β ¼ 0:25, and γ ¼ 0:1. Note that the mapping step with either the
class label or nearest neighbor has no gradient defined for it. As in VQ-VAE,
we approximate the gradient in a manner similar to the straight-through
estimator34, by passing the gradient from the reconstruction loss from
zqðxÞ directly to zeðxÞ.
As a generative model, S-VQ-VAE can also be used to generate new data

from the distribution of the training data. The data generation process is
composed of two steps, similar to the ancestral sampling method. First,
sample a target class y from the distribution of classes of the input data.
Second, sample an encoding vector z � Nðey ; σ2Þ, where σ2 is the
covariance matrix of hidden variables estimated from the training data of
class y. A new sample of class y can then be generated by passing z to the
decoder of S-VQ-VAE. The generation process reflects another advantage of
S-VQ-VAE compared to unsupervised GMs: we can determine what content
the new data should present rather than interpret it afterward.
In this study, we only utilized the global representation learning function

of S-VQ-VAE. The test phase and the new data generation function of S-VQ-
VAE were not examined here. To see how S-VQ-VAE can be used as a
general generative model, please refer to our tutorial of S-VQ-VAE at
https://github.com/evasnow1992/S-VQ-VAE, where we provide an example
applying S-VQ-VAE on a benchmark machine learning dataset, the MNIST
handwritten digits data35.

Model architecture and training setting
The VAE model we implemented had three hidden layers in its encoder and
three hidden layers in its decoder; the third hidden layer of the encoder was
shared by both the encoder and decoder parts via a sampling step
(Supplementary Fig. 1) and is also called the top hidden layer. The structure
of the encoder was 978-1000-1000-100, where we had 978 nodes in the
input layer, each corresponding to a landmark gene in the LINCS data, 1000
nodes in the first and second hidden layers, and 100 nodes in the third
hidden layer (Supplementary Fig. 1). The structure of the decoder was just
the reverse of the encoder. We only included the 978 landmark genes as
input data to avoid redundant information from the inferred expression
levels of other genes. The number of hidden layers and the number of
nodes on each layer were determined based on preliminary experiments
with a wide range of model architectures. Specifically, we tried architectures
from 978-500-15 to 978-2000-1000-200 to select a model with as a simple
structure as possible and with a low training error. Based on our previous
experience, a three hidden layer model with 1000–1500 nodes on the first
hidden layer, ~1000 nodes on the second hidden layer and small
bottleneck on the third hidden layer usually performs the best28,36. The
best model we achieved in this study had a structure of 978-1000-1000-100.
We used a standard normal distribution, Nð0; 1Þ, as the prior distribution

of the top hidden layer variables pðzÞ of VAE. The input data of our models
were the L1000 level 5 gene expression data of range [−10, +10]. In order
to preserve the sign information of the input data, where a positive value
indicates high-expression of a gene and a negative value indicates low
expression of a gene, we chose the tangent function as the activation
function for all hidden layers. Note that the tangent function will map a
real number to [−1, +1], while our input data are of range [−10, +10]. In
order to reconstruct the input data, the outputs of the last layer of the
decoder were rescaled to [−10, +10] before computing the reconstruction
loss (Supplementary Fig. 1).
The loss/target function for training a general VAE is

L ¼ lrðx; dðze xð ÞÞÞ þ KLðqðzjxÞjjp zð ÞÞ (3)

where the first term is the reconstruction loss and the second term is the
KL-distance between the posterior distribution of the top hidden variables
qðzjxÞ given the input data and the prior variational distribution pðzÞ. In
our implementation, we computed the MSE as the reconstruction loss. We
trained three VAE models using the SMP, GP, and SMGP datasets
independently. Each model was trained on 9/10 (random split) of the
data and validated on the other 1/10 data. All models were trained for 300
epochs, with batch size 512 and learning rate 1e-3 (Supplementary Table
2). To generate a new sample, we first sampled from the multi-variate
Nð0; 1Þ distribution to get an encoding vector, then passed the vector
through the decoder of the VAE to generate a new data.

The S-VQ-VAE model we implemented had a single hidden layer of 1000
nodes in its encoder. The decoder was the reverse of the encoder. As in
VAE, we also used the tangent activation function for S-VQ-VAE and
rescaled the data from [−1, 1] to [−10, 10] before computing the
reconstruction loss. The number of hidden layers and hidden nodes were
selected based on preliminary experiments with architectures from one to
two hidden layers and 200 to 1500 hidden nodes in each layer. The
embedding space contained 75 codes, one for each PCL. The model was
trained on 9/10 (random split) of the SMCNP dataset for 900 epochs, with
batch size 256, and learning rate 1e-4. The model was validated on the
other 1/10 data (Supplementary Table 2).

Mixing score of binary-categorical data
To quantize the mixing level of the two types of data (real expression
profiles vs. generated expression profiles in our case), we defined a mixing
score for a k-clustering result of binary-categorical data as follows. Suppose
the total number of data to be clustered is N. For a cluster i, the number of
data in this cluster of one category is denoted as pi , and the number of
data of the other category is denoted as qi . Then the mixing score for a k-
clustering result is defined as

MSk ¼
Pk

i¼1 maxðpi ; qiÞ
N

(4)

This score equals the average proportions of data from the category that
dominates each cluster. The mixing score is of range [0.5, 1], where 0.5
indicates the two categories on average mixing evenly in the k clusters,
and 1 indicates the two categories are cleanly separated among the k
clusters. The mixing score tends to increase with the number of clusters k
used to stratify the data.

PCL prediction
Seven different types of sample representations were evaluated as
predictors for predicting the PCL label of the small molecule that treated
each SMC sample via LR, random forest, naive Bayes classifier, and SVM.
We only reported the results of LR and SVM here as these two models
consistently outperformed the others, and LR achieved the best validation
performance while SVM was significantly more tolerant of overfitting. The
seven representation types included the raw expression profile, the latent
representations from three encoder layers, the 12 signature nodes values,
and the latent representations from two decoder layers of the SMGP-
trained VAE (the top hidden layer of the encoder is shared with the
decoder, thus there are only two independent decoder layers). The latent
representation of a layer of a sample was obtained by feeding the
expression profile of the sample to the pre-trained VAE and extracting the
values of hidden nodes on the desired layer. The prediction accuracy and
Cohen’s Kappa score reported in this study were obtained by doing 10-fold
cross-validation across SMC data. Specifically, the SMC data were randomly
split into 10 subsets. In each iteration, an independent model was trained
on 9 of the subsets and validated on the 10th subset. The reported
accuracies and Kappa scores are the averages taken over the 10 models.

Drug-target identification
The known drug-target relationships from ChEMBL database29 were
extracted referring to Table 1 of Pabon el al.12, which included 16 drugs
tested in all seven major cell lines in the SMP dataset. The known drug-
target relationships from DGIdb30 were extracted from the online data
portal, which included 810 drugs tested in all major cell lines in the SMP
dataset. We considered different LINCS drug IDs with the same drug name
as the same perturbagen.
For identifying gene targets for each drug related to the results shown in

Table 1 and Supplementary Table 4, we first extracted samples treated
with the drug from the SMP dataset. Then for each sample, we computed
the Pearson correlations between the representation of the sample and
the corresponding representations of all 116,782 samples from the GP
dataset. The genes knocked down in the GP samples were ranked
according to the Pearson correlations, and the rank of the top known
target gene was recorded. Finally, the best top rank and mean top rank
across all samples treated with the same drug were computed and used to
compare different types of representations. Similar to PCL classification,
seven types of sample representations were compared based on the top
rank and mean rank.
When computing the aggregation performance for Supplementary

Table 5, we only included SMP and GP samples that were perturbed with
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drugs or their target gene knockdowns from the known drug-target
relationships. Bortezomib from ChEMBL was excluded from this experi-
ment as SMP samples perturbed by this drug (a proteasome inhibitor) are
not distribution consistent with other samples as indicated before.

Program language, packages, and softwares
VAE and S-VQ-VAE models were implemented in Python2.7 using the
library PyTorch 0.4.137. Adam optimizer was used for updating the models.
PCA analysis, LR functions, and SVM functions were from the Python library
Scikit-learn 0.21.338. For LR, we used random seed 0 for shuffling data and
solver “lbfgs” (Limited-memory BFGS) for multi-classification. For SVM we
used random seed 0 and default settings for the other hyper-parameters.
Distance computation functions, including Euclidean distance and Pearson
correlation, related to Figs. 3b, 4, 5, and drug-target prediction were from
the Python library SciPy 1.3.139. For Figs. 3b and 4 we used the Euclidean
distance for revealing general associations between expression profile
representations and for Fig. 5 and drug-target prediction we used the
Pearson correlation for emphasizing more on the orientation consistency
between representations. Hierarchical clustering and heatmap visualization
related to Fig. 3 were carried out with the Python library Seaborn 0.9.040.
The code for preprocessing LINCS data, training VAE and S-VQ-VAE models,
and carrying out model analyses are available at https://github.com/
evasnow1992/DeepGenerativeModelLINCS. S-VQ-VAE PCL representation
graph visualization and community detection related to Fig. 5 were
accomplished with software Gephi 0.9.241. The community detection
algorithm being used was the Louvain algorithm developed by Blondel
et al.22 and was run with randomization (for better decomposition), using
edge weights, and resolution 1 (for detecting smaller communities).

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The LINCS L1000 datasets analyzed during the current study are available in the GEO
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interaction dataset that supports the findings of this study can be downloaded from
the online data portal (http://www.dgidb.org/downloads). No datasets were
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