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Simulation of heterosis in a genome-scale metabolic network
provides mechanistic explanations for increased biomass
production rates in hybrid plants
Michael Vacher 1,2 and Ian Small 1

Heterosis, or hybrid vigour, is said to occur when F1 individuals exhibit increased performance for a number of traits compared to
their parental lines. Improved traits can include increased size, better yield, faster development and a higher tolerance to
pathogens or adverse conditions. The molecular basis for the phenomenon remains disputed, despite many decades of theorising
and experimentation. In this study, we add a genetics layer to a constraint-based model of plant (Arabidopsis) primary metabolism
and show that we can realistically reproduce and quantify heterosis in a highly complex trait (the rate of biomass production). The
results demonstrate that additive effects coupled to the complex patterns of epistasis generated by a large metabolic network are
sufficient to explain most or all the heterosis seen in typical F1 hybrids. Such models provide a simple approach to exploring and
understanding heterosis and should assist in designing breeding strategies to exploit this phenomenon in the future.
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INTRODUCTION
As early as 1876, Charles Darwin provided the first scientific
observations that interspecific hybrids tended to show more
vigour than intraspecific hybrids.1 The phenomenon of heterosis
has been recognised for over a century.2 Heterosis can be
observed in both plants and animals, and presumably would occur
in any diploid organism where such F1 hybrids can be obtained.
Animal and plant breeders have benefited from hybrid vigour to
produce increasingly more effective strains. In the USA, the use of
hybrid maize has contributed to a dramatic six-fold increase in
yield since the 1930s.3 Its benefits have stimulated extensive study
into improving the design and selection of commercially valuable
hybrids (reviewed in ref. 4). However, the molecular explanation
for the phenomenon remains a topic of lively discussion. Early
studies showed that heterosis was proportional to the genetic
distance between two parents.5–7 More recent work has added
considerable detail about how the genetic landscape of the
parental lines might influence heterosis.8,9 Several competing but
not mutually exclusive genetic models have been proposed in an
attempt to provide some mechanistic explanation of the
phenomenon.
The dominance hypothesis holds that independent sets of

deleterious alleles accumulate over time and particularly during
inbreeding of parental lines.5,7 In these conditions, dominant
alleles originating from one parent would complement inferior
alleles from the second parent, thus resulting in a phenotypic
improvement. The overdominance hypothesis suggests the
existence of allelic interactions that induce greater expression of
heterozygous loci in hybrids.10,11 Neither of these hypotheses
involve interactions between non-allelic loci. Additional hypoth-
eses that do involve such interactions have been proposed.
Pseudo-overdominance11 is the appearance of overdominance due

to repulsion-phase linkage of dominant alleles.4 The effects of
epistasis on heterosis are also becoming increasingly clear as the
complexity of the biological networks underlying multigenic traits
becomes better understood.12 Epistasis not only shapes which loci
can express heterosis but it can also mimic overdominance.13 All
of these mechanisms could, and probably do, contribute to
heterosis. However, debate continues over which are the more
important, because of the difficulty in experimentally distinguish-
ing these intertwined genetic effects.
The potential complexity of the mechanisms contributing to

heterosis has encouraged attempts to take a ‘systems’ approach to
the topic, with large-scale molecular profiling to analyse gene
expression and biochemical phenotypes.14–23 Such studies have
provided much data but perhaps fewer clear explanations than
might be hoped, with different studies reaching different
conclusions about which molecular mechanisms predominate.
An alternative approach to treating such complexity is to

attempt to model it mathematically or computationally. Modelling
allows deliberate simplification of the system to make interpreta-
tion of the results easier, either by reducing the number of
components, or their interactions, or both. Genetic models of
heterosis have been studied for many years, but generally leave
out downstream biological interactions that intervene in the
complex interplay between genotype and phenotype. Only a few
attempts have been made to bridge this gap and link genetic
models of heterosis to biological networks that can simulate the
extent of potential epistatic interactions between loci, and these
have been limited to small-scale networks.13,24 We take this
approach a step further by adding a simple genetics layer to a
genome-scale model of plant primary metabolism. This combined
model demonstrates plausible levels of heterosis under a set of
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realistic assumptions based on simple additive effects coupled to
epistasis.

RESULTS
Adding genetics to a model of metabolism
Standard descriptions of genome-scale metabolic networks do not
generally incorporate any notion of genetic variability or hetero-
zygosity, thus to study heterosis, an additional layer of genetic
information is required. We modified a general model of
Arabidopsis metabolism25 such that each reaction is assigned to
a genetic locus, and each locus can be assigned a collection of
alleles, allowing the simulation of diploid and polyploid indivi-
duals. The original metabolic model was designed for flux balance
analysis, in which steady-state metabolic fluxes are calculated for
each reaction under external metabolic constraints on the
network (e.g. limitations on the rate of photosynthesis). In general,
the metabolic fluxes are optimised to maximise the desired
output, for example, biomass production. In our additions to this
model, we added internal genetic constraints. Each allele consists
of a constraint that can be applied to a reaction in order to confine
its metabolic flux. The rationale behind this is that the genetic
information determines the level of expression and thus the
activity of the enzymes in the metabolic network. In the
simulations described here, this genetic information acts in cis,
that is, we have included no trans-acting regulatory factors. This
simplification does not prevent heterosis appearing in the
simulations because many cross-locus interactions are already
provided by the metabolic network.
The constraint attached to each allele was chosen randomly, as

follows. First, the generic model was optimised for the maximisa-
tion of biomass production (using flux balance analysis), resulting
in a reference flux distribution (RFD). Flux variability analysis
(FVA)26 was then performed on the network to calculate an
envelope of alternate fluxes for each reaction that could maintain
optimal biomass production. Allele-specific constraints were then
generated using the FVA as a guide (such that all alleles had
constraints within their allowable flux range, simulating recurrent
natural selection for efficient biomass production). Each individual
within the population was assigned two randomly chosen alleles
at each locus (to simulate a heterozygous individual). In simulated
crosses, alleles at each locus were transmitted randomly,
independently and unaltered; that is, we did not attempt to
simulate genetic linkage, mutation or any epigenetic effects. By
default, we assumed that the genetic effects of multiple alleles are
additive, that is, we took the average genetic constraints from the
alleles at one locus to set a single constraint for each reaction.
Prior to any further calculations, the flux constraints assigned to

each individual were normalised such that the sum total of all
constraints corresponds to the sum total of all the fluxes in the
RFD. Thus, the total amount of ‘enzyme’ that any individual can
produce is fixed in our simulations. This constraint was introduced
to avoid trivial results where rate of biomass production is simply
dependent on the total flux capacity (equivalent to the trivial real-
life observation that larger individuals can sustain higher rates of
biomass production). Holding total flux capacity constant forces
any changes in rate of biomass production in the simulations to
be dependent in changes in metabolic efficiency—producing
more interesting outcomes. The biomass production network was
then optimised for each individual using the constraints specific to
that individual. Thus, for each reaction in the network, we obtain
four flux values (in the case of a diploid individual): the two
potential flux constraints encoded by the alleles at the locus, the
genetic flux constraint calculated from these allele values (and
subsequent normalisation) that was used during flux balance
analysis (henceforth referred to as the enzyme capacity) and the

calculated flux through the reaction following optimisation of
biomass production (henceforth referred to as the computed flux).

Effects of selection on inbreeding and heterosis
To model the genetic composition of the inbred lines used in
conventional breeding programs, we simulated the effect of
selection by inbreeding 40 independent heterozygous popula-
tions over 50 generations (Supplementary Fig. S1), of which two
examples are shown in Fig. 1a. At each generation, the best-
performing individuals within each population (judged by rate of
biomass production) were selected and crossed together to
generate the following generation of increasingly inbred indivi-
duals. Over the first 30 generations, we observed an improvement
in the mean biomass production rate. At the same time, the
homozygosity of the population increased (Fig. 1b). In further
generations, gains in the rate of biomass production slowed.

Fig. 1 Selection for inbred populations and heterosis in crosses
between them. a Starting with forty initial independent populations
(two of which are shown here, the others in Supplementary Fig. S1),
we simulated the effect of selection pressure over 50 generations.
Each generation contains 500 individuals, from which the top 5%
(individuals having the highest biomass production rate) were
selected and used as parents for producing the next generation.
After 50 generations, the two inbred lines were crossed to produce
the F1 and subsequently the F2 populations. The F1 population
attained ~34% of the maximum possible biomass production rate. a,
b share the same horizontal axis. b The accumulation of
homozygous alleles within these populations. After 50 generations
the inbreds are homozygous at over 90% of their loci, whereas F1
individuals are 0% homozygous and the F2 individuals 50%
homozygous. c Distribution of observed heterosis in 780 simulated
crosses between the 40 inbred populations. Here we are defining
heterosis as the ratio between the rate of biomass production in the
F1 individual and the average of the rates in the two parents (i.e.
mid-point heterosis). Values are the mean of 500 F1 or F2 individuals
for each cross
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These general trends were consistent between the 40 indepen-
dent populations (and in multiple repeats of this experiment).
After 50 generations, when mean homozygosity exceeded 90%,
crossing individuals from two inbred populations produced
heterozygous F1 hybrid populations showing heterosis for the
rate of biomass production (Fig. 1a). Selfing the F1 populations
produced F2 generations with a lower average rate of biomass
production, even lower on average than that of the parental
inbreds (Fig. 1c).

Diverse routes to heterosis
Each individual simulation corresponds to a linear optimisation
problem where an objective function (production of biomass) is
maximised. The computed flux through this objective function
provides a highly multigenic trait indicative of overall perfor-
mance. Detailed analysis of the rest of the metabolic network
provides useful information regarding which reactions are
contributing to heterosis. In order to identify reactions contribut-
ing to the increased performance in the F1, for each F1 population
we calculated the correlation coefficient between the magnitude
of heterosis in each F1 individual and the computed flux for each
reaction in the network (Supplementary Table S1). A total of 154
reactions (~34% of the total) were strongly correlated with
heterosis (|r| > 0.90) in at least one F1 population. These reactions
included both internal reactions and transporters associated with
the production of biomass components. Thus, as would be
expected, heterosis in these simulations appears to be due to
increased metabolic flux through pathways relevant to biomass
production. This can be shown formally by calculating the
coupling between each reaction and the production of biomass.27

Indeed, 90% of the highly correlated reactions were found to be
coupled with biomass production (Fig. 2). Nevertheless, not all
biomass-coupled reactions contribute equally to heterosis.

Single vs. multi-locus contributions to heterosis
To examine the contribution of different reactions in the network
to heterosis in more detail, we systematically altered alleles in the
F1 individuals to render them homozygous for one or other
parental allele at each locus in turn, and recalculated the
computed flux for biomass production. If the recalculated flux
was lower than that of the original F1 individual, then this
revealed the direct contribution of the altered parental allele to
heterosis. Figure 3 shows a heatmap depicting the direct
contribution of all loci calculated in this way. The results indicate
that different loci contribute to heterosis in different crosses, as
one might expect. However, the patterns are not entirely random;
some loci contribute much more to heterosis than others when
viewed across many independent crosses. Thirty-one per cent of
the reactions showed a strong direct contribution to heterosis in
at least one F1 population. Surprisingly (at first sight), the loci at
which direct contributions are found do not generally correspond
to reactions coupled to biomass production or whose fluxes
correlate with heterosis (Fig. 2). This prompted us to look for, and
quantify, indirect effects. The direct contributions of all loci can be
summed to give the heterosis arising only from single-locus
effects. This in turn can be subtracted from the overall heterosis,
leaving the part due to multi-locus effects. The comparison
between these two components of heterosis (Fig. 4 and
Supplementary Fig. S2) demonstrates the overriding importance
of multi-locus interactions in these simulations. In ~70% of
individuals, multi-locus effects make a larger contribution to
heterosis than all the single-locus effects combined, and 40% of
individuals show positive heterosis (owing to multi-locus effects),
even though the sum of single-locus effects is negative
(individuals coloured in red in the top left quadrant of Fig. 4).

Hybrids make more efficient use of resources
The efficiency of a reaction in our networks can be defined as the
ratio between the computed flux and the enzyme capacity of the
reaction (set by the genetic constraints). This represents the
proportion of synthesised enzyme that is actually active. Figure 5
shows that when comparing F1 hybrids to their parents, there is a
distinct improvement in reaction efficiencies—a higher metabolic
flux is maintained with equal investment in enzyme synthesis. In
particular, there is a sharp increase in the number of reactions
operating at near maximal efficiency. This increase in efficiency
underlies heterosis. These efficiency gains are lost in the F2
generation, when the efficiencies return to the level seen in the
inbred parents (or even lower).

Biochemical mechanism: the relaxation of metabolic bottlenecks
The presence of many reactions in the network operating at below
100% efficiency implies the presence of metabolic bottlenecks.
These bottlenecks are imposed by the direct genetic constraint on
certain metabolic steps. However, they also impact the rest of the
network by forcing upstream or downstream reactions to operate
at rates below their maximal capacities. These bottlenecks are
partially relaxed in F1 hybrids, as illustrated by the reactions
whose efficiency improves. An example provided in Fig. 6 shows
how multi-locus effects obtained by crossing parental lines can
relax the constraints imposed by specific local bottlenecks,
allowing a higher metabolic activity through the whole pathway.
The arrangement of these bottlenecks can be due to random
genetic differences in the original populations or due to selection
for different biomass production strategies within the two
parental inbred lines.

Fig. 2 Venn diagram showing sets of reactions that contribute to
biomass production and/or heterosis. Of the 456 reactions operat-
ing in the network, about one-third are coupled to biomass
production, or their flux is correlated with heterosis in at least one
F1 population, or alleles at the corresponding locus can be shown to
directly contribute to heterosis. However, although the overlap
between biomass coupling and flux correlation with heterosis is
high, most direct genetic contributions to heterosis come from loci
corresponding to uncoupled and uncorrelated reactions. The data
on which the diagram is based are summarised in Table S1. The
thresholds used to establish the set boundaries were |r| >0.9 (for
correlations) and variance >1e− 8 for the contribution to heterosis
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‘Fixing’ heterosis by recurrent selection
It is evident that in the context analysed here, heterosis is largely not
dependent on heterozygosity at any locus (i.e. mixing of parental
alleles at one locus), but rather on epistatic effects across two or
more loci. If this is the case, then it should be possible to ‘fix’ the
improvements obtained in the F1 generation by selecting for the
optimal combinations of parental alleles over subsequent genera-
tions. Therefore, we continued to select for biomass production in
the F2 and ensuing generations produced by selfing (Fig. 7). The
depression in the rate of biomass production in the F2 was rapidly
reversed within a few generations, and from about the F5
generation, the rate exceeded from that observed in the F1. After
approximately six generations, the new ‘inbred’ lines produced were
nearing complete homozygosity while preserving rates of biomass
production significantly higher than in the original F1.

DISCUSSION
Despite substantial efforts to define a universal theory explaining
the phenomenon, the understanding of the molecular basis for
heterosis has remained elusive. By reproducing and explaining
several, if not all, aspects of heterosis, the modelling approach
presented in this study can shed some light on this long-standing
question. The models reproduced the progressive gain in
performance and reduction in heterozygosity under intense
selection over several generations and the subsequent plateau
as the best alleles become fixed in the population.28,29 The models
also demonstrated biologically plausible levels of heterosis,
averaging around 10% of increased metabolic flux, which is in
the range of what is commonly observed when crossing typical
inbreds. The models also reproduced the collapse of heterosis in
the F2 generation. Inspection of the reaction fluxes in the models

Heterotic effect
Postive

Negative

No effect

Fig. 3 The contribution of individual metabolic reactions to heterosis. The heatmap depicts the contribution of each reaction in the network
to heterosis in 780 F1 populations (the same populations as described in Fig. 1c and Supplementary Fig. S1). The contribution was calculated
as the effect of rendering the locus homozygous for each parental allele on the rate of biomass production in the hybrid. Effects were
considered ‘positive’ if rendering a locus homozygous resulted in an increase in the rate of the biomass production and negative if it resulted
in a lower rate of biomass production. Contributions were summed across all 500 individuals in each F1 population. The full table of values
with the names of the reactions are given in Supplementary Table S1. The red symbols above the heatmap indicate the reactions coupled to
biomass production
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provides a rational explanation for the mechanisms responsible
for the observed improvement in hybrid F1 plants and allows the
investigation and quantification of the contribution of different
aspects of the genetic models.
Although the results we obtain appear to mimic heterosis, an

obvious question is whether the models we describe accurately
reflect a significant component of the processes underpinning
heterosis in living organisms. Our models are necessarily greatly
simplified, but we believe they do reproduce the most salient
features of the genetics of heterosis. The results of any
computational model are dictated by the choices made in its
design; we believe we have made sensible and even conservative
decisions in the choices of the metabolic and genetic models, and
in the structure of the populations and the selection regime. As an
example of a conservative choice, we used FVA analysis to set the
range of the initial alleles within the population (equivalent to
restricting its genetic diversity). Without using FVA to restrict the
choice of starting alleles, individuals could contain strongly sub-
optimal alleles (i.e. would be effectively ‘mutants’ in a genetic

sense). We felt this would not be a good starting point for
simulating heterosis in natural or breeding populations where
recurrent selection will have eliminated almost all strongly sub-
optimal alleles even prior to the creation of inbred lines. By
reducing the ‘genetic variability’ in the starting populations, the
use of FVA to set the bounds reduces the magnitude of the
potential heterosis, but results in a more plausible simulation.
An important finding is that simple additive genetic effects are

entirely sufficient to provide significant levels of heterosis without
any requirement for dominant or overdominant genetic effects
(by this we mean non-additive interactions between alleles at the
same locus). Most experimental observations of gene expression
in F1 hybrids have found that additive expression is by far the
most common case.15,17,21 This, of course, does not rule out that
dominance or overdominance might play important roles in
specific instances, and this is supported by genetic studies
specifically looking for loci underlying heterotic effects.18,23,30

Epistatic effects are hard to fully account for in such genetic
studies if they involve multiple loci. Similarly, previous attempts to

Fig. 4 The effect of single and multi-locus contributions to heterosis. The scatter plot shows all 390,000 individuals, indicating the relationship
between the sum of all individual locus effects on heterosis (x-axis) and multi-locus effects (y-axis). Multi-locus effects were calculated as the
difference between overall heterosis and the sum of all individual locus effects. The distributions of the two variables are shown above and to
the right of the plot. Individuals in red show positive heterosis, that is, a rate of biomass production greater than the average of the two
parents
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include epistasy in computational models of heterosis have by
and large been limited to effects between two or only a few loci
(e.g.31 which underestimates the interconnectivity in most
biological contexts). The importance of epistasy and biological
networks in shaping heterosis has been discussed at length4,12

but has been difficult to examine in practice. The originality of
connecting a simple genetic model to a large metabolic network,
as we have done, is in the capture of the complex epistatic effects
created by the topology of the network. It is clear that in our
simulations, effects involving multiple loci far outweigh the
effects of any individual locus, or even of all individual effects
summed together. Models such as those we describe should
make it much easier to investigate the contribution of epistasy to
heterosis.
If inter-locus interactions are more important than intra-locus

interactions for heterosis (and in our models this is certainly the
case), then the prediction is that the gains in the F1 generation
can be fixed in homozygous inbreds that preserve the best
parental allele combinations at different loci. We showed that in
the models this is relatively simple to achieve by recurrent
selection over a few generations. This is greatly facilitated in our
simplified system by the lack of any genetic linkage that would
interfere with the reassortment of parental alleles. Nevertheless,
the results recapitulate a study in Arabidopsis, which showed that
the improved phenotypic traits obtained in an F1 hybrid could be
stabilised through the generation of the so-called ‘hybrid mimic’
lines.32

Despite the good match of the model outputs to experiment
observations of heterosis, there are many ways in which these
models could be improved, or at least extra complexities could be
added that may be needed to more finely simulate specific
biological contexts. Our model did not incorporate any notion of
genetic linkage, allowing alleles to be inherited completely
independently, which would lead to unrealistic rates of allele
segregation and selection, but should not greatly affect the
conclusions we draw here. More importantly, the model is lacking
several layers of network complexity: notably there are no
‘regulatory genes’, and the metabolic model similarly lacks any
feedback loops or metabolic regulation. These deficiencies should
not alter the main concepts and conclusions demonstrated in this
study, but may make it more difficult to apply such models for
real-world purposes (such as predicting the levels of heterosis that

would be obtained in specific crosses, or predicting ideal selection
pathways to obtain inbreds for maximising heterosis). Never-
theless, we believe that this would be an interesting and
rewarding direction to take this research in the future, as
promising results in other studies have been achieved even
without the benefit of explicit models of molecular interactions.33

By allowing a system-wide view, computational models provide
valuable insights into complex biological processes or phenomena
such as heterosis. Our models provide an approach for rigorously
quantifying various contributions to heterosis by different genetic
or metabolic processes. We hope that such models can ultimately
be applied to improve the rational design of breeding and
selection programs to maximise heterosis for agronomically
relevant traits.

METHODS
Metabolic network and simulations
We used the metabolic network of Arabidopsis thaliana presented in ref. 25

The model consists of 549 reactions, 407 metabolites and 6 sub-cellular
compartments. The composition and topology of the network were not
altered, except for the integration of allele-specific constraints as
described below. We used a parsimonious flux balance analysis (pFBA)
to simulate growth in all the experiments. This method uses a two-step
optimisation in which the growth rate is optimised using traditional flux
balance analysis, followed by the minimisation of the total flux through all
the reactions.34 Minimising the total flux limits the number of possible
solutions and improves the predicted flux distribution by representing an
efficient enzyme usage within the network. The original model provides
three different biomass compositions: carbon-limiting, nitrogen-limiting,
and optimal growth conditions (under which biomass accumulation is
only limited by photon flux into photosynthesis). The latter was
systematically used as the objective function in our simulations. Given
the stoichiometric matrix of the network (S), flux balance analysis
computes the vector of fluxes v, using the assumption that the system
is at steady state:

Maximise vbiomass ¼
X

i
civi ¼ c � v (1)

subject to S � v ¼ 0 (2)

and αj � vj � βj : (3)

In order to minimise the total flux, all the reversible reactions are split
into two irreversible reactions, resulting in the stoichiometric matrix Sirrev.
Thus, each reaction is constrained to carry a positive flux and the total flux
is minimised subject to the optimal biomass production rate:

Minimize
X

j
virrev;j (4)

subject to Sirrev � virrev ¼ 0 (5)

and virrev;biomass ¼ vbiomass (6)

and 0 � virrev;j � βj : (7)

Generating allele-specific constraints
On the initial parents, metabolic constraints attached to each allele were
generated as follows:

(1) First, a pFBA was performed on the original model, resulting in an
RFD. The analysis was set up to maximise the flux through the
objective function (biomass) while minimising the sum of all the
fluxes in order to limit futile cycles.

(2) FVA was used to compute the maximum and minimum fluxes for
each reaction that maintain a minimum fraction (95%) of the
optimum biomass production rate. Alternative FVA minimum
fractions (90% and 99%) were also tested, the results are available
in Supplementary Fig. S1.

(3) Each reaction was attributed a pair of alleles (to simulate a diploid
organism). In this context, an allele corresponds to a random
variable following the discrete uniform distribution over the set of
possible fluxes within the FVA range of a given reaction.

Fig. 5 Variation of metabolic efficiency between inbreds, F1 and F2.
The graph displays the metabolic efficiency for a collection of
390,000 F1 hybrids, their parents and the subsequent F2 population.
Efficiency is calculated as the proportion of the flux capacity for each
reaction that is actually used (computed flux/genetic flux con-
straint). A higher proportion of reactions show high efficiencies
(over 95%) in F1 hybrids than in their inbred parents or in the F2
individuals
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(4) Finally, reactions were constrained by assigning numerical values their
upper or lower bound (depending on the reaction directionality, which
was taken from the RFD). Exchange reactions and biomass reactions
were left unconstrained in all the simulations. For all the other

reactions, the constraint corresponds to the average of its allele values,
normalised such as the sum of the constraints across all loci is equal or
lower than the sum of all the fluxes in the RFD. The normalisation
ensures that all the individuals have a similar metabolic capacity.
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Fig. 6 Multi-locus relaxation of bottlenecks in the chorismate pathway in an F1 hybrid. The right side of the figure represents a section of the
chorismate biosynthetic pathway. On the left, the boxplots show the differences between enzyme capacity and computed flux for these four
steps in the pathway. At the bottom, the boxplots show the efficiency of the pathway in the three populations. The data are from a collection
of F1 hybrids and their parents (ParentA, ParentB). In the inbred parents, the fluxes through two reactions (EC 4.2.3.4 and EC 4.2.1.10) are
limited by particularly low enzyme capacities. These bottlenecks reduce the activity of the upstream and downstream reactions. In the
resulting F1 hybrids, the additive effect of the two alleles partially complements each of the two bottlenecks, resulting in a greater average
efficiency for the pathway as a whole. In this simple example, relaxation of the metabolic bottleneck primarily only involved two loci; in most
cases, the interactions are more complicated to unravel

M. Vacher and I. Small

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)    24 



Quantifying heterosis
The degree of heterosis of an F1 hybrid was defined as its biomass
production rate divided by the average biomass production of the two
parents, that is, mid-parent heterosis.

Simulated crosses
To simulate the inheritance of genetic material, one allele from each parent
was randomly selected for each reaction. The new pair of alleles was
associated with the corresponding reaction in the resulting network. The

reaction bounds were then constrained and normalised as described
previously.

Selection over multiple generations
To simulate the effect of selection pressure, individuals were ranked based
on their biomass production rate and the top 5% were selected. These
best-performing individuals were then used as parents to produce the
following generation. Each generation consisted of 500 individuals. This
process was repeated until the number of desired generations was

a

c

b

d

Fig. 7 Selection of new inbred lines derived from F1 hybrids. An F1 individual exhibiting a typical degree of hybrid vigour was selected and
used to generate a collection of 1000 F2 individuals. Twenty F3 populations were generated by selecting and selfing 20 F2 individuals; 10 of
these were chosen at random, and 10 were selected for high biomass production rates. Each of the F3 populations consisted of 500
individuals from which 2% were selected (either at random, or on the basis of high biomass production rate) and selfed to produce 500 new
individuals in each subsequent generation. The process was repeated until the F11 generation was reached. The left side shows biomass
production rates and allele frequencies for the populations where the best-performing individuals were selected at each generation. The right
side shows biomass production rates and allele frequencies for the populations where the individuals were selected at random from each
generation. Columns show data from left to right for generations F2–F11. The top panels show the distribution of biomass production rates in
each generation; the dashed line corresponds to the biomass production rate of the original F1 individual. In the heatmaps the intensity of
the colours indicates allele frequencies in the population at each locus (red= parent_A; blue= parent_B)
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reached. During the production of these increasingly inbred lines, selfing
was prevented (a newly created individual is the result of a crossing
between two distinct parents from the same line).

Production of F1 and F2 hybrids
F1 individuals were obtained by randomly sampling 30% of the inbreds
from two independent parental lines and crossing them together until the
number of desired F1 hybrids was reached (in general, 500 individuals).
The two parents were always from distinct populations; however, several
F1 individuals could come from the same combination of parents. Such
siblings will contain different combinations of alleles as the parents are not
completely homozygous. The F2 generation was generated in a similar
manner; 30% of the individuals from an F1 population were randomly
selected and crossed with each other. In our implementation, an F2
individual always results from a cross between two distinct F1 parents (no
selfing allowed) from the same population. To maximise the diversity of F1
and F2 hybrids, we used all possible combinations of crosses between our
40 inbred populations, resulting in 780 independent F1 and F2 populations
containing 390,000 individuals in each generation.

Design and implementation of the simulation workflow
The simulation of the metabolism of many individuals over multiple
generations requires significant computing resources. To avoid scaling
problems, the workflow was designed for parallel high-performance
computing. We used a ‘divide and conquer’ design paradigm to break the
computing tasks into single sub-problems corresponding the model
optimisations. The entire workflow was written in Python. The simulations
were performed using the COnstraint-Based Reconstruction and Analysis
(COBRA) Python package35 and the GNU Linear Programming Kit (http://
www.gnu.org/software/glpk).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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following address: https://bitbucket.org/mvacher/heterosis_manuscript.
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