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Signal integration and information transfer in an allosterically
regulated network
Erin M. Shockley 1, Carol A. Rouzer1, Lawrence J. Marnett1, Eric J. Deeds2,3,5 and Carlos F. Lopez1,4

A biological reaction network may serve multiple purposes, processing more than one input and impacting downstream processes
via more than one output. These networks operate in a dynamic cellular environment in which the levels of network components
may change within cells and across cells. Recent evidence suggests that protein concentration variability could explain cell fate
decisions. However, systems with multiple inputs, multiple outputs, and changing input concentrations have not been studied in
detail due to their complexity. Here, we take a systems biochemistry approach, combining physiochemical modeling and
information theory, to investigate how cyclooxygenase-2 (COX-2) processes simultaneous input signals within a complex
interaction network. We find that changes in input levels affect the amount of information transmitted by the network, as does the
correlation between those inputs. This, and the allosteric regulation of COX-2 by its substrates, allows it to act as a signal integrator
that is most sensitive to changes in relative input levels.
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INTRODUCTION
Many biological signaling networks process multiple inputs and
yield multiple outputs. Examples of multiple-input multiple-output
(MIMO) biochemical systems include the mitogen-activated
protein kinase (MAPK) network, which can respond to numerous
ligands and yield a range of outputs including proliferation and
differentiation;1 the NF-κB pathway, which triggers pro-and anti-
inflammatory responses to a variety of ligands;2 and myriad
metabolic networks, which respond to multiple substrates and
allosteric regulators by producing energy and the building blocks
of cellular components.3 Recent work4–10 has highlighted the fact
that modulation of input concentrations in intracellular networks
can yield markedly different outcomes. Despite this clear
indication that MIMO systems are crucial to biological processes,
few reports exist to date to explain how multiple inputs modulate
reaction flux and information flow in a network to allow signal
processing with a range of adaptive outputs.
To explore the properties of MIMO systems in biology, we chose

to study the dynamics of cyclooxygenase-2 (COX-2), a key enzyme
that controls the balance between pro-and anti-inflammatory
signals in mammalian organisms. COX-2 lies at the interface of the
eicosanoid and endocannabinoid signaling pathways11,12 and is
itself the target of the widely used nonsteroidal anti-inflammatory
drugs (NSAIDs). Although COX-2 is a structural homodimer, it
behaves as a heterodimer. One subunit in the dimer harbors the
catalytically active site, while the other subunit contains an
allosteric site that modulates the overall activity of the enzyme.13–15

An array of substrates, inhibitors, and allosteric modulators can
bind to, and thus compete for, either site, giving rise to highly
complex reaction kinetics.16–21 The various products from COX-2
activity drive multiple downstream pro-and anti-inflammatory

processes that lead to diverse cellular fates including stress
responses and apoptosis.22–24

It is clear that COX-2 orchestrates a complex interplay between
a variety of substrates (the enzyme inputs), various allosteric
regulators, and the concentration of downstream products (the
enzyme outputs) that control processes such as inflammation.22–24

Previously, most studies of COX-2 function have used simplified
models based on Michaelis-Menten kinetics.25 Not surprisingly,
these approaches have proved insufficient to capture the rich
complexity of the COX-2 network of reactants, intermediates and
products.18 In Figs. S1 and S2, we provide an example from our
previous work indicating that a simple Michaelis-Menten based
model cannot capture available experimental data for the COX-2
network when multiple substrates are present, while a more
complex allosteric model can. We posit that a systems approach to
understand COX-2 mechanism will improve inhibitor design to
achieve desired outcomes in clinical settings.
COX-2 activity also represents an ideal model system to study

the detailed dynamics of a biological MIMO system. As a single
enzyme, it is sufficiently simple to allow for the construction,
simulation and parameterization of a detailed systems biochem-
istry model that can capture all of the relevant transitions between
intermediates and products. Nonetheless, it is sufficiently complex
that it represents a non-trivial example of how multiple inputs
lead to multiple outputs in a physiological context. We focus our
study on the allosteric regulation network of COX-2 by two
important substrates, arachidonic acid (AA) and 2-
arachidonoylglycerol (2-AG), which generate unusual dynamics
in the COX-2 network when both are present.18 Levels of AA and
2-AG also vary widely in vivo,26–28 and it is unclear how such
variation would influence COX-2 signal processing.
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In this work, we analyze the execution mechanism of a
biochemical reaction network with multiple inputs. Our work
explains how a MIMO system integrates information on the
concentration and nature of its substrates to yield potentially
different outputs. In previous work, we developed a detailed
model of the COX-2 reaction network that comprises all possible
biochemical enzyme states dictated by AA and 2-AG occupancy of
the allosteric or active sites, and all the kinetic transitions between
these states.18 The reaction rate parameters for the kinetic system
were determined using a Bayesian inference methodology29 to fit
the model to experimental data on COX-2 kinetics. This Bayesian
approach produced an ensemble of model parameters that
represent the uncertainty in the kinetic rates given the available
data and restricts our analysis to plausible kinetic states of the
network.18,29 To explore the COX-2 MIMO signal processing
mechanism, we first employed a graph-theoretic approach to
enumerate all possible paths a substrate can take from reactant to
product molecule. We found that changing the concentration of
the inputs modulates not only the most dominant path that is
taken by the system, but also the diversity of the paths the system
employs. We also used an information-theoretic approach30 to
understand the flow of information between network inputs,
various intermediates, and the product outputs. This analysis
reveals that competition between AA and 2-AG for the allosteric
and active site generates highly complex concentration-
dependence curves for COX-2 that are context-sensitive. In

addition to providing insight into how COX-2 functions as a hub
for the processing of inflammatory signals, our work suggests that
our systems biochemistry framework provides useful information
relevant to the study of other MIMO biological systems. This work
also demonstrates that the extreme context-sensitivity of MIMO
systems must be considered when attempting to modulate their
behavior through targeted interventions.

RESULTS
A mathematical model of COX-2 allostery and catalysis
We built the COX-2 Reaction Model (CORM) (Fig. 1b) to under-
stand how substrate-dependent allosteric regulation affects COX-2
catalytic rates.18 Here, we employ this model to study how
multiple signals are processed in the context of a complex
chemical reaction network, given a range of substrate concentra-
tions and input correlations. Briefly, CORM encodes the reaction
kinetics between COX-2 and two of its substrates: the fatty acid AA
and the endocannabinoid 2-AG. Both AA and 2-AG can bind at the
catalytic and/or allosteric site on COX-2 with different affinities. At
the catalytic site, AA is turned over to prostaglandin (PG) while 2-
AG produces prostaglandin-glycerol (PG-G). Binding of either
molecule at the allosteric site modulates the rate of catalysis.18

Although CORM includes only two substrates, the MIMO nature of
COX-2 kinetics results in a complex network (Fig. 1b). CORM has

Fig. 1 Network interactions within CORM. a The Multi-input Multi-output motif in a biological context. b The COX-2 Reaction Model (CORM)
represents the network of interactions in the COX-2 system. The diagram depicts the possible biochemical states that the COX-2 enzyme (blue
lozenges) can adopt through its allosteric (lower left circle) and catalytic (lower right circle) subunits, respectively. AA bound in either site is
indicated with A and 2-AG with G within the circle. AA is turned over to produce prostaglandin (PG) and 2-AG is turned over to produce
prostaglandin-glycerol (PG-G). Double-headed arrows indicate reversible reactions while single-headed arrows indicate irreversible reactions.
Credible intervals for all fitted parameters are included in SI. c Dominant PG Production Paths in CORM. Colors correspond to path fluxes in
Fig. 2a. d Dominant PG-G Production Paths in CORM. Colors correspond to path fluxes in Fig. 2b
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been calibrated to experimental data using PyDREAM, a Bayesian
parameter inference framework, to obtain the probabilistic
likelihood of parameters given experimental data, and information
about the uncertainty in those parameter values.29 Further details
of the modeling calibration process and the ensemble of
parameter values used are available in the Supplementary Data
and Fig. S3. CORM is encoded in Python using PySB, which
provides a flexible tool to query the mixture of complexes present
in the system at any time point given starting concentrations.
Many of these complexes would be costly or impossible to
measure experimentally. Employing the Python environment also
facilitated the sophisticated analyses we present in this work.31

Substrate-dependent reaction fluxes in signal execution
We first explored the net flow of reaction flux through the network
using a graph-theoretic approach to calculate all possible paths
between the unbound enzyme and each final product. Briefly, we
evaluated the system of ordinary differential equations (ODEs) in
CORM at time intervals to extract the integrated reaction flux at a
given time point for each chemical reaction. We then built paths
from product to reactant following the reactions with net forward
flux. Finally, we calculated the total chemical flux that passed
through a given path and used this as a measure of the probability
of product formation via that path; a detailed description of this
procedure is given in SI Methods and Fig. S4. All fluxes were
calculated for the first ten seconds of catalysis after mixture with
the substrates, a time chosen to match previous experimental
work.18 Path flux distributions were calculated for an ensemble of
calibrated parameter values to quantify path flux uncertainty
arising from parameter uncertainty.
Our analysis indicates that there are six possible paths to

produce PG (Fig. S5) and four possible paths to produce PG-G
(Fig. S6) for all evaluated substrate concentration combinations.
However, not all paths exhibit significant reaction flux during
catalysis across all the concentrations. This occurs because paths
in which binding of a species to the allosteric site precedes
binding to the catalytic site are kinetically disfavored in CORM. As
shown in Fig. 1c, d, three paths dominate PG production and two
paths dominate PG-G production. The dominant PG-producing
paths (Fig. 1c) include those with one or two intermediates, and
the allosteric site empty or occupied by AA or 2-AG. Our results
show that the dominant path is highly dependent on the
substrate input concentrations. The presence of AA and 2-AG in
the allosteric site enhances the production of PG.18 The dominant
PG-G-producing paths include one or two intermediates (Fig. 1d)
with the allosteric site empty or occupied by AA. The presence of
AA in this site reduces the rate of PG-G production.18 Similar to PG
production, we also found that the flux through each dominant
path for PG-G production is dependent on substrate concentra-
tion (Fig. 2).
In the absence of 2-AG and at low (0.5 μM) AA, PG is produced

without allosteric modulation (Fig. 2a, purple; purple-labeled path
in Fig. 1c, top); as the concentration of AA increases, the
proportion of PG produced with AA as an allosteric modulator
also increases (Fig. 2a, green). When 2-AG is added to the system,
PG production shifts to using 2-AG as an allosteric modulator
(Fig. 2a, red), with this path favored to a greater extent as the
concentration of 2-AG increases (Fig. 2a, lower plots). Even in the
absence of 2-AG, about 20% of PG is produced by AA-modulated
COX-2, and once even a small amount of 2-AG (0.5 μM) is added to
the system, more than half of PG production occurs via a 2-AG or
AA allosterically modulated path. In the presence of high
concentrations of either modulator, as much as 90% of PG is
produced via an allosterically modulated path.
Because 2-AG and COX-2 display substrate-dependent inhibi-

tion,18 the production of PG-G occurs via fewer paths than are
available to PG. In the absence of AA, all PG-G produced is

generated in the absence of an allosteric modulator (Fig. 2b, blue),
because the intermediate with 2-AG bound in both catalytic and
allosteric sites is not turned over. As AA is added to the system,
the proportion of PG-G produced by the AA-modulated pathway
(Fig. 2b, redyellow) increases. Thus, in the range of tested
substrate concentrations, the dominant mechanism of PG-G
production depends entirely on the amount of AA present in
the system. Compared to PG, a smaller proportion of PG-G
produced by the system results from an allosterically regulated
pathway because PG-G is only created via the AA-modulated
species or the allosterically unbound species. Nevertheless, at high
concentrations of AA, again as much as 90% of PG-G is produced
by AA-modulated COX-2. For paths containing a species bound in
the allosteric site, binding at the catalytic site followed by binding
at the allosteric site is the favored mechanism.
We note that at any given substrate concentration, the

uncertainty arising from the calibrated kinetic parameter distribu-
tions never exceeds a 20% change in the percentage of product
produced by a given path (Figs. S7–S11). We find that changes in
substrate levels and their relative ratios have a much larger effect
on the dominant reaction paths than changes in kinetic rates
within the calibrated CORM parameter distributions. Overall, these
findings suggest that variation of substrate concentrations in
physiologically-relevant ranges has a significant impact on COX-2’s
mechanism of catalysis.

Pathway entropy is dynamic across input concentrations
Calculating the flux through each path allows us to obtain
information about the preferred sequences of reactions that the
system executes while processing AA and 2-AG. However, these
measurements do not provide an estimate of how chemical traffic
(i.e. the flow of chemical signals in the network) is distributed
throughout the network. To explore the distribution of biochem-
ical network traffic, we introduce the pathway entropy to quantify
the degree to which COX-2 utilizes multiple paths at different
concentrations of substrates. Our definition of entropy, originally
introduced by Claude Shannon30 provides a measure of the
uncertainty in a probability distribution across states as follows:

H ¼ �
Xn

x¼1

PðxiÞ log2 PðxiÞ (1)

where H is entropy and P (xi) is the probability of any state xi. This
quantity is conventionally measured in bits, the number of binary
outcomes between which the system can discriminate. To
determine the degree of uncertainty associated with product
production (the pathway entropy), we considered each pathway
as a state and use the fraction of flux that a given pathway
contributes to the product as a measure for the probability of that
state. This analysis yields a measure of how evenly distributed
production is across possible paths. In general, evenly distributed
fluxes across paths in a network would maximize pathway entropy
for a multi-path system, while concentration of flux in a single
path would minimize pathway entropy.
Since the dominant paths vary with substrate concentration

(Fig. 2), we would expect that pathway entropy would also vary. In
Fig. 3 we present the pathway entropy dependence on input
concentration for PG (Fig. 3a) and PG-G (Fig. 3b). The pathway
entropy for PG production is highest at intermediate levels of AA
and low levels of 2-AG, while the pathway entropy is highest for
PG-G production at intermediate levels of AA and any level of 2-
AG. These maxima correspond to states where the reaction flux is
most spread across the possible paths from reactant to product
(see Fig. 2a, top plot, center, and Fig. 2b, top plot, center). In
contrast, in the lowest entropy states—low AA and high 2-AG for
PG (Fig. 2a, bottom plot, far left) and low AA across the entire 2-AG
spectrum for PG-G (Fig. 2b, bottom row), flux is concentrated in a
single or a few paths. Reaction flow is thus highly distributed in
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some conditions yet highly concentrated in one path in other
conditions. This finding suggests that MIMO networks utilize
multiple execution modes across input concentrations. It also
suggests that approaches to modulate or inhibit network activity,
which focus on disrupting one or more of these paths, may need
to be tailored to specific conditions. These behaviors could have
physiological relevance. For example, high-entropy conditions
with highly redundant path fluxes may require multiple targets for
inhibition compared to a condition with low entropy.

Input output behavior in CORM
The above findings on pathway entropy suggest a complex
relationship between input concentrations, reaction intermediates,

and product concentration in CORM. To understand these
relationships, we next considered concentration-dependence
curves derived from simulations using a fixed set of CORM kinetic
parameters in which PG was calculated at increasing AA
concentrations in the presence of random quantities of 2-AG
(Fig. 4a) or PG-G was calculated at increasing 2-AG concentrations
in the presence of random quantities of AA (Fig. 4b). Each data
point was taken at steady-state (10 s) for consistency with
experiments and previous work. Note that the presence of both
substrates results in competitive inhibition with suppression of
product formation from either one. Thus, the highest levels of
output in each case occur when the concentration of the opposing
substrate is low. These levels are similar for PG and PG-G because
COX-2 utilizes the two substrates with similar catalytic efficiencies

Fig. 2 Concentration-dependent PG and PG-G production paths. a Dominant Reaction paths for PG Production Vary with AA and 2-AG
Concentration. Each individual plot depicts the amount of flux through each path in Fig. 1c for a given concentration of 2-AG across varying
concentrations of AA. Colors correspond to labeled paths in Fig. 1c. The error bars in each plot indicates the flux variation resulting from
inferred kinetic rates. b Dominant Mechanisms of PG-G Production Vary with AA Concentration. Each individual plot is at a given
concentration of 2-AG. In all plots AA increases from left to right at concentrations of 0.5, 1, 2, 4, 8, and 16 μM in (a) and 0, 0.5, 1, 2, 4, 8, and
16 μM in (b). Colors correspond to labeled paths in Fig. 1d. The error bars in each plot indicates the flux variation from inferred kinetic rates
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when they are present individually. As the concentration of the
opposing substrate increases, competitive inhibition is partially
balanced by positive allosteric modulation in the case of the
conversion of AA to PG, but exacerbated by negative allosteric
modulation in the case of the conversion of 2-AG to PG-G.
Therefore, the suppression of PG-G formation is greater than that
of AA formation as seen in the lower plateau level achieved in
(Fig. 4b). In addition, the range of inputs over which the output
varies depends significantly on which input/output pair is chosen
(note the difference in that range in Fig. 4a, b). Clearly, variation of
both inputs (e.g. changing AA in addition to changing 2-AG in Fig.
4a), results in significant variation in the outputs. Thus, while our
simulations are deterministic (i.e., do not include chemical reaction
noise), introducing uncertainty in the AA concentration generates
a type of “extrinsic noise” in the relationship between 2-AG and
PG-G (Fig. 4b), and vice versa for the impact of 2-AG on the
relationship between AA and PG, Fig. 4a). This noise arises from
the different effects of the competing substrate and allosteric
modulator on the network at various input concentrations. Both
the noise induced in an output by variation of the other substrate,
and the different saturation ranges for each output, contribute to
the imperfect information transfer observed in CORM.

Channel capacity from substrates to products
To better understand how this output variation, combined with
the shape of the concentration-dependence curves, influences the
COX-2 reaction network, we applied an additional concept from

information theory to measure dependence between inputs and
outputs, namely the Mutual Information:

IðX; YÞ ¼
X

X

X

Y

Pðx; yÞ log2
Pðx; yÞ
PðxÞPðyÞ (2)

where X represents a given signal and Y the response to that
signal.30 Mutual information quantifies the degree to which one
variable provides information about a second variable. Equiva-
lently, it is a measure of how knowledge about one variable
decreases uncertainty in the value of a second variable. For
biological systems, quantifying mutual information is challenging
because the input distribution is generally unknown. Previous
work32–34 has focused on estimating the “channel capacity,” which
is the maximum information attainable across all possible input
distributions:

C ¼ suppxðxÞIðX : YÞ (3)

Note that any practical calculation provides a lower bound
estimate for the channel capacity C, since only a finite set of input
distributions is used to estimate I.34 We calculated channel
capacities using the approach and software published in Suder-
man et al.,34 which is similar to that used in Cheong et al.32

We applied this estimate to two different sets of simulations. In
the first set of simulations, we considered a case where AA and 2-

Fig. 3 Pathway entropy within CORM. a Pathway entropy for
production of PG. The intensity indicates the pathway entropy in
units of bits. b Pathway entropy for production of PG-G. Units are
the same as in (a)
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AG are perfectly correlated with each other; to do this, we
sampled the AA concentration from a uniform distribution on [0,
16 μM] and set the 2-AG concentration to be exactly the same. In
the second set, we independently sampled the input AA and 2-AG
substrate concentrations from a uniform distribution on the
interval [0, 16 μM]. In each case, we sampled a total of 500 distinct
input conditions and ran CORM simulations to 10 s to agree with
experiments and previous work.18 The channel capacity was then
estimated between the two different inputs (either AA or 2-AG)
and every possible intermediate and product. The maximum
theoretical channel capacity, log2(500) ≈ 9 bits, would be obtained
if each of the 500 inputs yielded a distinct response. We repeated
the channel capacity calculation for the top 5000 most probable
parameter vectors from the calibrated parameter ensemble. This
then allowed us to quantify the effect of kinetic parameter
variation on channel capacities in the system. In total the analysis
required ~1.5 M CPU hours. An example of input data used for
calculating channel capacities from AA to PG and 2-AG to PG-G for
a single parameter set is shown in Fig. 4. Greater detail is provided
in the Supplementary Data.

COX-2 Integrates Information from Both AA and 2-AG
For ease of visualization, we estimated kernel densities of channel
capacities given variation in calibrated kinetic parameters as
shown in the violin plots in Fig. 5. In these plots, the data are
represented by a central box plot that provides the mean,
interquartile range and 95% credible interval, and the surrounding
shape depicts the probability distribution, with wider regions
indicating a higher probability. Because the input-output relation-
ship in these simulations is deterministic, deviations from the
theoretical maximum (≈9 bits) arise from the two phenomena
described above: either changes in the input do not really lead to
significant changes in the output (i.e., the “flat” part of the
concentration-dependence curves in Fig. 4) or the independent
variation in one of the substrates generates variation in the output
that is not due to the input being considered (i.e., the apparent
noise in Fig. 4).
From Fig. 5, it is clear that the combination of these effects

significantly reduces the observed channel capacities from the
theoretical maximum. The highest observed value for any of the
input/output pairs (AA to PG, 2-AG to PG-G, etc.) is at most half of
the theoretical maximum (less than 4.5 bits). When input values
are perfectly correlated ([AA]= [2-AG]), Fig. 5a, the channel
capacity between the (correlated) inputs and the outputs is
between 3 and 4.5 bits (depending on the parameters), indicating
that, while not perfect, the concentration-dependence curves
allow for high levels of information flow between inputs and
outputs. It is interesting to note that the uncertainty in the kinetic
parameters leads to some variation in the calculated channel
capacities; since the inputs here are correlated, this variation is
due to changes in the shape of the concentration-dependence
curves between data sets. Many channel capacities in the
correlated case are bimodal, suggesting that two specific
concentration-dependent curve shapes are most likely.
When the inputs are varied independently, channel capacity

values decrease even further (Fig. 5b, c). The channel capacity
between AA and PG or PG-G is generally <2 bits, and the channel
capacity between 2-AG and those outputs is generally less than
1.5 bits. This could occur for two reasons. First, a lack of correlation
could result in less entropy in the response (i.e., less uncertainty in
the value of the product). Since the mutual information is limited
by the response entropy (Eq. (2),30,32,34), this would cause a
decrease in the mutual information. However, if the response
entropy remains constant when there is no correlation between
inputs, then mutual information can only decrease if information
transfer through the network is less efficient. As shown in Fig. S12,
the response entropy does not differ between the independent

and correlated cases, indicating that independent variation in one
of the inputs while the other input is known has a large effect on
the output. In other words, COX-2 is truly an integrator of these
signals, since accurate determination of the substrate
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concentrations given the output is considerably more difficult if
the two substrates are independently varied.
Since perfect correlation and complete independence represent

only the two extremes of the relationship between AA and 2-AG
concentration, we also investigated the behavior of the system
when the inputs exhibit moderate correlation (Pearson correlation
coefficient= 0.5), and when the inputs are consistently present in
a 2:1 AA:2-AG ratio (Figs. S13 and S14). The behavior when input
ratios were fixed was similar to that for the correlated values
(when the input levels were fixed equal to each other); channel
capacities were again higher than in the independent case and
the effect of kinetic parameter variation on channel capacity was
higher. When the inputs are moderately correlated, the system is
still able to obtain high channel capacities for some kinetic
parameter sets, although the overall distribution of channel
capacities shifts to lower values compared to when input
correlation is perfect, further confirming COX-2 input integration.

Information flow is dictated by substrate concentration
We next tested whether the channel capacity between substrates
and products varies with substrate level. We binned the input data
into four quadrants (high or low values of either substrate) and
calculated the channel capacity between inputs and outputs
independently for each quadrant; input ranges were otherwise
identical to those used for the calculations described above. Low
substrate values spanned 0–8 μM and high substrate values
8–16 μM.
Both independently varied inputs (Fig. 6a) and correlated inputs

(Fig. 6b) yielded estimated channel capacities that were sig-
nificantly different between the different regions of input space. In
addition to differences in PG and PG-G channel capacity, we found
that the distribution of information that passed through different
intermediates changed with substrate concentration (Figs. S15
and S16); certain paths to product had greater information
transfer capacity at particular levels of substrates. This echoes
findings from our pathway analysis (Figs. 2 and 3), indicating that
changes in substrate concentration result in significant changes in
how the enzyme executes its catalytic mechanism. Interestingly,
we found no detectable correlation between the flux through a
pathway and the mutual information between an input and an
intermediate in that path (Figs. S17 and S18). We leave further
investigation of the relationship between information transfer and
actual physical reaction fluxes for future work.
Splitting the input space into different quadrants also revealed

significant variation between different parameter sets, with most
distributions showing significant bimodality across parameters
(Fig. 6). This suggests that both the shape of the concentration-
dependence curves, and the impact of “extrinsic noise” due to
variation of one substrate independent of another, varies across
parameter sets. Since all of these parameter sets are equally
consistent with experimental data,18 this suggests that multiple

modes of information flow are available to the COX-2 reaction
network without significant changes to the core functionality of
the enzyme.

DISCUSSION
In vivo, COX-2, AA, and 2-AG concentrations vary across cells in
different tissues.26–28 In most tissues, AA processed by COX-2 is
released from membrane phospholipids, predominantly through
the action of cytosolic phospholipase A2.35 In some tissues,
(particularly the brain) a major source of AA is hydrolysis of 2-
AG.36,37 In turn, 2-AG is also sourced from membrane phospho-
lipids; through the sequential action of phospholipase C, which
forms diacylglycerol (DAG), followed by conversion of DAG to
2-AG by DAG lipase.38 Both DAG lipase and cytosolic phospho-
lipase A2 are stimulated by increases in intracellular Ca2+.35,39

Thus, many stimuli (such as zymosan phagocytosis by

Fig. 5 Estimated channel capacities from substrates to intermediates
or products in CORM. a Estimated channel capacities from input to
intermediates and final products within CORM when levels of AA and
2-AG are strongly correlated (Pearson correlation coefficient= 1).
Distributions in the channel capacities arise from uncertainty in the
kinetic parameter values after model calibration. b Estimated
Channel Capacities from AA to intermediates and final products
within CORM when AA and 2-AG are varied independently.
Distributions in the channel capacities arise from uncertainty in the
kinetic parameter values after model calibration. c Estimated channel
capacities from 2-AG to intermediates and final products within
CORM when AA and 2-AG are varied independently. Distributions in
the channel capacities arise from uncertainty in the kinetic parameter
values after model calibration
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Fig. 6 Effect of substrate level on estimated channel capacities
between substrates and products in CORM. a Total Estimated
Channel Capacity from AA and 2-AG combined to products across
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arise from uncertainty in the kinetic parameter values after model
calibration. b Estimated Channel Capacities from input to products
when levels of AA and 2-AG are perfectly correlated across regions
of substrate space. Distributions in the channel capacities arise from
uncertainty in the kinetic parameter values after model calibration
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macrophages40) promote the release of AA and 2-AG simulta-
neously, with concentrations of AA typically higher than those of
2-AG. Considering the precursor-product relationship between 2-
AG and AA, however, it is conceivable that in some cells, the levels
of the two substrates may change inversely to one another, or that
the level of one may change while the other remains constant.
These considerations suggest that the system features we find
that vary with AA and 2-AG level (pathway entropy and
information transfer capacity) are states accessible by the true
biological system with the attendant repercussions for information
transfer within that system. In addition, the postulated link
between diet and the substrates available for COX-2 turnover41

suggests that the information transfer properties of the system
could be modulated by fatty acid intake.
COX-2 has significant regulatory flexibility: it is an allosteric

protein, with multiple substrates and multiple allosteric regulators,
all of which can influence how COX-2 operates on its substrates
in vivo. The pathway analysis (Fig. 1c, d) suggests that COX-2 is
statistically more likely to bind a substrate first at the catalytic site,
followed by binding of an allosteric regulator. Allostery can be
viewed as a shift in the conformational free-energy landscape
sampled by COX-2 through preferential binding of the allosteric
regulator to particular conformations.42,43 From this perspective,
modulating the concentrations of allosteric regulators in the COX-
2 system shifts the conformational ensemble towards conforma-
tions favored by particular regulators. In the case of PG, these
conformations are more easily turned over to product than the
unmodulated enzyme, while for PG-G, the allosteric influence
makes catalysis less energetically favorable (shifts the ensemble
towards conformations that are less active). This allows COX-2 to
manage the balance between PG and PG-G production in a more
complex (and potentially farther-reaching) fashion than that
provided by simple competition between substrates. This added
complexity suggests a physiological reason why the COX-2 system
would integrate information from multiple inputs: by adding a
second competitive input, the system can access different
responses than with a single input. Furthermore, the response
dynamics of COX-2 gain even greater complexity because its
inputs act as allosteric modulators in addition to substrates. The
situation in vivo is likely far more complicated (and flexible) than
considered here, as COX-2 has potential substrates in addition to
AA and 2-AG,44 and some nonsubstrate fatty acids that act as
allosteric regulators.13,14,20,21,45 In addition, many of the non-
steroidal anti-inflammatory drugs that target COX-2 also may bind
at either the catalytic or allosteric site.
One advantage of this complexity may be the significant

robustness of this system to variation in the kinetic parameters.
The 5000 parameter sets we considered here all fit experimental
data on PG and PG-G production equally well, despite variation of
over three orders of magnitude in some of the parameter values.18

Our results for both pathway flux (Fig. 2) and information flow
(Fig. 5) indicate that different parameter sets favor different
distributions of paths from substrate to product, and transfer
information through the network in different ways. Yet the overall
function of the enzyme is the same despite all of this variation. In
vivo, a change in the kinetic rates could correspond to a mutation
or a change in the level of molecular crowding for the reaction.
The availability of multiple “modes of execution” in this complex
enzyme thus allow the system to be highly robust to such
changes. This complex architecture could also allow the system to
be highly evolveable through a mechanism of facilitated
variation.46 We expect that future work on parameter variation
will reveal major insights into the evolution of robustness in
enzymes like COX-2.
In this work we applied a systems biochemistry framework to

understand chemical reaction flux, pathway entropy, and informa-
tion flow in the COX-2 system and investigate how these adjust to
dynamic input concentrations and correlations. The methods and

approach utilized here could be applied to further probe the COX-
2 system by including more inputs (its other substrates, allosteric
regulators, and inhibitors), or transferred to a larger, more
complex network. Given the complexity present in even the
simple network considered here, we predict that a systems
biochemistry approach to larger networks would provide non-
intuitive insights into the dynamics of the system as a whole.

METHODS
Model building
CORM was encoded as a PySB31 model containing 13 distinct biochemical
species and 29 chemical reactions. Some model parameters were fixed
based on experimental measurements. Initial conditions were set to match
experimental conditions.

Model calibration
CORM was calibrated to experimental data consisting of PG and PG-G
concentrations at steady state across a range of substrate concentra-
tions.18,29 In addition, constraints imposed by thermodynamic cycles
within the model were also used to restrict likely parameter values.

Calculating path fluxes
Pathway fluxes were calculated using the integrated total flux through
each reaction node at a particular time point in combination with the
possible paths from reactions to products within the model. The method
for determining paths of production and the total flux through a path is
described in detail in the Supplementary Notes and Fig. S4.

Calculating channel capacities
Channel capacities were calculated using the method from ref. 32 and the
software of ref. 34 All channel capacity calculations were performed over
different calibrated parameter values in order to assess the impact of
calibration uncertainty on the estimates. Extended detail is available in the
Supplement.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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