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Efficient reading is essential for societal participation, so reading proficiency is a central educational
goal. Here, we use an individualized diagnostics and training framework to investigate processes in
visual word recognition and evaluate its usefulness for detecting training responders.We (i) motivated
a trainingprocedurebasedon theLexicalCategorizationModel (LCM) to introduce the framework. The
LCM describes pre-lexical orthographic processing implemented in the left-ventral occipital cortex
and is vital to reading. German language learners trained their lexical categorization abilities while we
monitored reading speed change. In three studies, most language learners increased their reading
skills. Next, we (ii) estimated, for each word, the LCM-based features and assessed each reader’s
lexical categorization capabilities. Finally, we (iii) explored machine learning procedures to find the
optimal feature selection and regression model to predict the benefit of the lexical categorization
training for each individual. The best-performing pipeline increased reading speed from 23% in the
unselected group to 43% in the machine-selected group. This selection process strongly depended
on parameters associated with the LCM. Thus, training in lexical categorization can increase reading
skills, and accurate computational descriptions of brain functions that allow themotivationof a training
procedure combined with machine learning can be powerful for individualized reading training
procedures.

Reading opens a portal to nearly unlimited sources of new knowledge for an
informed life. However, when one cannot read or is a slow reader, which is
frequent in people with dyslexia or migrant language learners, access to
written information is reduced. Such issuesmay lead to hampered language
processing1 and suboptimal everyday decisions, reducing socioeconomic
status (e.g., ref. 2). Thus, it is crucial to develop support programs to increase
reading skills in slow readers. Here, we outline and evaluate such a program
by studying non-native German speakers willing to learn German, a group
of readers typically well below the reading rates of native speakers (e.g.,
refs. 3,4). In this study, we motivate a training procedure from a neuro-
cognitive computational model, the lexical categorization model (LCM,5).
The LCM is capable of describing the activation in the left-ventral occipital
cortex that also holds the so-called visual word form area6,7 better than
multiple alternative cognitive and neurocognitive models based on the
assumption of the implementation of a lexical categorization process (see

ref. 5 for details). Moreover, in combination, we develop individualized
machine learning diagnostics bearing the potential to create an effective and
individualized training procedure for slow readers. Nonetheless, based on
feature importance metrics, the machine learning results allow the investi-
gation ofwhich processes are essential to predict training success accurately.

Fast visual word recognition is central to efficient reading. It describes
transforming visual information into meaning (e.g., refs. 8,9). The more
efficiently a reader implements visual word recognition, the better the
general reading performance. This association was shown (i) in typical
reading adults10,11, (ii) in dyslexic readers12–14, (iii) in language learners (L2;
refs. 15,16), and (iv) in beginning readers, after extensive training of letter-
to-sound associations17–19. Besides, in less proficient readers, visual word
recognition becomes more critical for text comprehension20,21. The present
study focuses on a trainingprocedure for betterword recognition to increase
reading speed (e.g., refs. 5,22).
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The development of remediation programs typically starts by moti-
vating a training procedure from a well-evaluated model. For example, the
phonics approach (e.g., see ref. 23 for a recent review) was developed to help
young dyslexic readers by training the relationship of graphemes to their
phonemes, i.e., a central process implemented in Dual-Route models8,24. A
meta-analysis25 found that the program yielded a small to medium effect
size, indicating that the research transfer, i.e., froma visualword recognition
model to a training program, was successful. Here, we implement a cascade
from model to training for the neuro-cognitive Lexical Categorization
Model (LCM) togather causal evidence for themodel (e.g., ref. 5),motivated
by the successful development of the Phonics training.

Brain imaging investigations try to establish the link between cognitive
processes described in classical models and brain functions (e.g., see ref. 26)
or motivate multiple new theories of how one implements reading in the
brain (e.g., refs. 7,26–29). Numerous studies could reliably show an acti-
vation of the so-called visual word form area, a region in the left occipito-
temporal cortex (lvOT, e.g., ref. 6), in response to visually presented words.
Furthermore, visual word form area activity is reduced in slow readers (e.g.,
ref. 30) or illiterates (e.g., ref. 31,32) when seeing words and electrical sti-
mulation in this part of the brain prevents patiens from reading (e.g., see
ref. 33). Thus, thesefindings strongly indicate that the visual word formarea
is essential for efficient word recognition and reading.

Theoretical proposals on which process is implemented in the visual
word form area were highly valuable in bringing forward neuro-cognitive
ideas of how we implement reading on a neuronal level (i.e., refs. 7,26–29).
All were verbally descriptive without explicit implementations (for excep-
tions, see refs. 5,34,35). In a recent study5, we, therefore, ran an explicit
comparison of the computational implementations of the cognitive Dual-
RouteModel (i.e., ref. 8) and the ad-hoc computational implementations of
the existing neuro-cognitive models (i.e., refs. 7,26–29). In addition, we
implemented a novel model that was motivated by behavioral findings
(ref. 36; Fig. 1A) andmore general principles of ventral stream organization
(e.g., ref. 37), the Lexical Categorization Model (LCM).

Extensive model comparisons identified the LCM as an adequate
model of the left-ventral occipito temporal cortex activation (Fig. 1B; ref. 5).
The primary assumption of the LCM is that the left-ventral occipito tem-
poral cortex implements a lexical categorization process. This process is
assumed to filter non-words from further consideration for lexical or

semantic processing (i.e., distinguishing pre-lexical and lexical processing
along the ventral visual stream; see refs. 38–40). The current model version
assumes that the categorization process identifies whether a letter string is
meaningful based on the word likeness of the letter string. Therefore, lexical
categorization is easy for word-like words (i.e., highly familiar words) and
word-un-like non-words (i.e., consonant strings) but difficult when word-
likeness distributions of words and non-words overlap (Fig. 1A). Note that
this pattern is not only reflected in the activation of the left-ventral occipito
temporal cortex but also in behavioral response patterns (ref. 36; Fig. 1A)
and that the word likeness estimation is based on a lexicon assumption that
includes all words of German (i.e., from the SUBTLEX database; ref. 41). In
other words, the lexical categorization uncertainty is low for high word-like
words (left part of Fig. 1A and green area in the lexical categorization
uncertainty curve in Fig. 1B) and low word-like non-words (right part in
Fig. 1A and red area in Fig. 1B), but in between, when word and nonword
distributions overlap, the lexical categorization uncertainty is high (purple
area in Fig. 1A and yellow area in Fig. 1B). So, when lexical categorization is
demanding and cannot be implemented only on word-likeness, we assume
that additional resources (e.g., spelling information) aid the process of sol-
ving the lexical categorization (i.e., differentiate between meaningless or
meaningful letter strings).

Critical for interpreting these results is that the LCM has no free
parameter. Hence, all simulations are highly transparent, which is typically
not the case for other model-based analyses of lvOT activation (e.g.,
refs. 42,43). The critical advantages of a transparent model for remediation
research is twofold: (i) One can directly motivate a training program from
the central cognitive processes represented by the model, and (ii) one can
build a prediction model (i.e., for individualized diagnostics) that achieves
high transparency by including meaningful features (e.g., that reflect pro-
cesses implemented in a well-evaluated model) and the application of
explainable machine learningmethods (i.e., feature importance metric; e.g.,
ref. 44). These advantages are beneficial as one can evaluate whether the
intervention targets the process assumed to be trained. From amore general
neuro-cognitive perspective, this deducing technique of transparent pre-
dictions is a way to investigate the causal relevance of proposed brain
functions for behavior45.

Thus, we aim to predict the outcome of a 3-day lexical categorization
training procedure (Fig. 2A, B; i.e., based on a lexical decision task with

Fig. 1 | The lexical categorization process and its implementation in the left-
ventral occipito temporal cortex. A A two-stage model for lexical decision tasks
from ref. 36 (Figure adaptation based on Fig. 1 from the original publication). One
word-likeness distribution represents words (light gray), and one distribution is for
non-words (dark gray). Critical here is that behavioral responses are typically fast
and accurate when the two distributions do not overlap, i.e., for highly word-like
words and highly word-unlike non-words. Only when the two distributions overlap
word recognition becomes slow and erroneous. B Schematic visualization of lexical
categorization processing in the left-ventral occipito-temporal cortex assumed in the
lexical categorization model from ref. 5 in the context of the left hemisphere of our
brain, including pre- (word-likeness estimation) and post-processes (lexical-
semantic processing). According to the lexical categorization model, the word-

likeness of a letter string is estimated in posterior brain regions of the left ventral
occipitotemporal cortex. In a more anterior region, near the so-called visual word
form area, the word-likeness estimation is used to categorize the letter string as
meaningful or not to prevent effortful processes of meaning extraction from non-
words in more anterior regions. When inspecting the black curve in the figure, one
can see that the lexical categorization uncertainty has a non-linear inverted U-shape
relationship with word likeness. Compared to the model presented inA, we see that
the uncertainty is low for word-like words and highly word-unlike non-words
(Green and red areas, respectively). Only, at intermediate word-likeness estimates,
uncertainty is high and categorization more difficult (yellow area). Thus, readers
strongly activate the visual word form area and show slow and erroneous word
recognition behavior at intermediate word-likeness levels.
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feedback). The training aims to increase lexical categorization capabilities,
i.e., the process likely implemented in the left-ventral occipito temporal
cortex. Our participants were German learners, of which most showed a
training effect on their reading speed (i.e., Experiment 3 in ref. 5). To
accurately predict the training outcome, we implemented a machine
learning pipeline based on the parameters of the LCM (e.g., lexical cate-
gorization uncertainty, word-likeness operationalized here as the Ortho-
graphic Levenshtein Distance 20; OLD2046; see Fig. 1B) and other
potentially relevant features (e.g., incoming reading speed) to define an
optimal prediction model. These features reflect if potential word recogni-
tion processes are operating for each reader. We measured this based on
data from the initial training session and parameters associated with the
cognitive processes by random effect estimates from linear mixedmodels47.
For example, we estimated each letter string’s lexical categorization uncer-
tainty based on the lexical categorizationmodel5. After that, we included the
parameter in a linear mixed model that predicted the lexical decision
response times in the initial training session. Crucially, we included lexical
categorization uncertainty not only as a fixed effect in the linear mixed
model but also as a random slope estimate on the random effect of parti-
cipants. The latter allowed us to extract the interindividual variability of the
effect of lexical categorization uncertainty and other parameters (e.g.,
OLD20, Lexicaliy). Estimating the lexical categorizationuncertainty effect as
a random slope for each participant allows the estimation of effect sizes for
each participant in the context of a larger regression model. Note that one
can implement this only in a linearmixedmodel including crossed-random
effects (in our case, we include participant and stimulus as random effects
simultaneously). The resulting features are the basis for the individualized
diagnostic based on machine learning and, therefore, can be investigated
based on feature importance metrics (e.g., ref. 44).

We added two alternative training approaches to contextualize the
Lexical Categorization training effects on reading performance. Experi-
ments 2 and3 implemented randomized controlled trials basedon tasks that
included the same stimuli as in the lexical categorization training (i.e., same
letter strings). Experiment 2 implemented phonics training based on a
letter-based phonological awareness task that was effective in helping dys-
lexic readers25,48. Here, we trained the grapheme-phoneme associations of
language learners. The central task of participants is to indicate if a gra-
pheme associated with a presented phoneme (i.e., letter sound) is included
in a letter string (i.e., word or nonword) presented simultaneously (e.g., is /s/
is present inhouse).Weare aware that our group is different fromthe typical
target group, as the readers have been fluent in their first language. None-
theless, we have yet to be aware of a study investigating whether Phonics
training helps language learners. Still, the phonics training might increase
reading performance if readers are unfamiliar with transparent grapheme-
phoneme associations of German.

In Experiment 3, we implement a variant of the Lexical Categorization
training that simultaneously trains the lexical categorization mechanism
and the formation of the underlying representation.We recently found that
readers implement prediction error representation (e.g., refs. 27,49,50) on
the visual level with orthographic properties (i.e., the orthographic predic-
tion error; refs. 34,51). The orthographic prediction error representation
results from the computationwe implemented on the level of pixels (i.e., the
smallest units of an image) that integrates the probability of a pixel being
informative, estimated based on all known words, with the presented word
at each trial. Thismeasure focuses on the pixel-level information that allows
letter distinction (e.g., dot on the i or the lower part of the g) and, at the same
time, ignores the visual information that is redundant across letters (e.g., the
vertical line on the left inM,N, B,D, F,H,K, L, P,U,R, E). The conceptionof

Fig. 2 | Training procedure and schematic description of the machine learning
pipeline for the individualized diagnostics. A Example of one trial from the lexical
categorization training. First, a fixation cross is presented, followed by a letter string
that is presented until a button press, but for a maximum of 10 s. After a response,
feedback is given. A red square indicates an incorrect response (either a word was
categorized as a nonword or vice versa), and a green square indicates a correct
response. Participants pressed the “f” key for a word categorization and the “j” key
for a nonword categorization. B The training design comprises three sessions and a
pre-post diagnostic based on a standardized reading speed test (adult version of the
Salzburger Lesescreening - SLS; ref. 71). The pre-test and the first session of the
lexical categorization training (dashed box) were used to predict the outcome

(dotted box). In Experiments 2 and 3, the same procedure was implemented for
control training procedures (Phonics and an adapted lexical categorization train-
ing). In Experiment 1, the post-test was conducted after the last training session on
day 3. C Analysis steps in the applied cross-validation for the training procedure
(upper row) and testing procedure (lower row). The grid on the left represents the
datasets. We used a consensus nested leave-one-out-cross-validation; thus, for
training, we used all but one dataset to generate features, select features, and train a
predictionmodel.We then applied the trained pipeline to the one left-out dataset for
testing. Note we used this cross-validation procedure to prevent extensive overfitting
(see methods and supplement for more details).
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this training procedure was to combine the effects of better lexical cate-
gorization and the formation of orthographic representations. This inte-
gration of the two mechanisms is reasonable, as conceptually, the visual-
orthographic representations could inform the categorization process, and
training both is expected to increase further the positive effects of the
training on reading performance. We trained the formation of visual-
orthographic representations by repeatedly changing the visual appearance
of the letter strings by changing the font (i.e., 50 blocks of 32 strings with the
same font). This procedure determines an adaptation process on the visual
level, as the new font could be in italics, so one needs to account for the tilt in
the letters (i.e., word vs.word). Consequently, we expected that training this
adaptation process and lexical categorization simultaneously increases the
effect on reading performance compared to the Lexical Categorization
training.

Thus, the present study presents the Lexical Categorization training
effects contextualized with the effects from control training procedures and
a machine learning-based diagnostic procedure that tries to predict the
Lexical Categorization training outcome. For the application of themachine
learning diagnostics procedure, we expect that the individual pre-training
performance in lexical categorization determines the success of the lexical
categorization training. In addition, we investigated the importance of the
individual features based on (i) the number of selections in all evaluated
pipelines and (ii) t values when investigating the best-performing solution.
Here, we expect the features related to the LCM to be essential.

Results
Training results
In ref. 5, we initially described the lexical categorization training effect and
found a significant improvement in the reading speed by 23% after three
training sessions. We also showed that the lexical categorization training

specifically reduced the lexical categorization difficulty effect. To measure
this reduction, we used lexical decision times from the training sessions and
estimated the interaction of the lexical categorization difficulty with the
training session. The significant association between the reading speed
increase and the individually estimated interaction of lexical categorization
difficulty and training session showeda positive correlation. The correlation
indicates that the lexical categorization training directly trained the lexical
categorization process, leading to increased reading speed. In the following,
we will first provide a more detailed investigation of the training effects
before we provide the results from the machine learning-based diagnostic
approach.

In contrast to the previous analysis, we here focus on the presentation
of the single experiments to show that the training effects are not specific
to a study but replicated across studies. In Fig. 3, we separately present the
effect of training on reading speed for the three training studies. In
addition, Table 1 shows that lexical categorization training effects are
significant, indicating high replicability of the effect. In detail, the response
times analysis of the training sessions consistently showed an increase
with categorizationuncertainty (see Fig. 3B; i.e., response times arehighest
when the categorization uncertainty is largest). Thus, in all three experi-
ments, we found a significant effect of the LCM estimated lexical cate-
gorization uncertainty (Fixed effect: FEExp.1/2/3 = 0.16/0.12/0.12; Standard
error: SEExp.1/2/3 = 0.01/0.01/0.01; t value: tExp.1/2/3 = 11.32/10.02/9.78)
and training session (FEExp.1/2/3 =−0.07/−0.04/-0.03; SEExp.1/2/3 = 0.00/
0.00/0.00; tExp.1/2/3 = 17.61/12.60/7.871). Note that only in Experiment 1
we could identify a signification reduction of the lexical categorization
uncertainty effect with a training session (FEExp.1/2/3 =−0.21/−0.00/
−0.01; SEExp.1/2/3 = 0.02/0.01/0.01; tExp.1/2/3 = 2.59/0.09/1.581).

Experiments 2 and 3 included two alternative training procedures (i.e.,
randomized controlled trials). In Experiment 2, we compared the lexical

Fig. 3 | Results from behavioral training study.
A Reaction times for three sessions of all three
experiments, including the phonics and font-change
control tasks, relative to the lexical categorization
model entropy parameter. We present the reaction
times corrected for the effects of other word char-
acteristics (Word frequency, lexicality, effect of
errors, and stimulus order effects) based on predic-
tions from the fitted linear mixed regression models
used for statistical analysis. The model-based reac-
tion times are aggregated across the session and
entropy bymean. The light gray area reflects the 95%
confidence interval. B Reading speed change in
percent relative to pre-training reading speed mea-
sured by SLS reading speed test (adult version of the
Salzburger Lesescreening; ref. 71). For all boxplots,
the horizontal lines represent the median, the boxes
represent data from the 25th to the 75th percentile,
and the whiskers extend up to 1.5 times the inter-
quartile range. Dots show participants with extream
values and violin plots show the distribution of the
training effects on the level of participants.
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categorization training against classical phonics training based on a letter-
based phonological awareness task25,48. The phonics training did not sig-
nificantly increase reading speed (see Fig. 3B and Table 1). Comparing
lexical categorization and phonics in Experiment 2, we found no significant
difference, as the phonics had a small but unreliable positive effect
(t(26) = 1.73, p = 0.096). Also, when comparing the lexical categorization
and phonics training reaction time, we found longer durations and no
lexical categorization effect in the phonics training (cp. Fig. 3A; Lexical
Categorization uncertainty effect: FE =−0.00, SE = 0.01, t =−0.40).
Nonetheless, the reaction times increased with decreasing word-likeness
(FE = 0.02, SE = 0.00, t = 6.01), indicating easier phoneme detection for
words. Also, we found a significant reduction in response times with
training sessions (FE =−0.09, SE = 0.00, t =−31.92).

In Experiment 3, the control training procedure was a variant of the
lexical categorization training: the lexical categorization font training. Here,
again, participants had to implement a lexical decision task with identical
word and nonword stimuli, but in this training, the font changed every 32
trials. This adaptation was motivated by the finding of an orthographic
prediction error34, indicating that readers adapt to the visual appearance of
words to form efficient orthographic representations while reading. The
lexical categorization font training also resulted in a significant reading
speed increase (see Table 1). However, the effect was not higher than for the
lexical categorization training (t(31) =−0.61, p = 0.54, see Table 1). Like in
the lexical categorization training, the response times showed a significant
lexical categorization uncertainty effect (FE = 0.12, SE = 0.01, t = 9.74),
session effect (FE =−0.03, SE = 0.01, t = 5.60), and interaction effect of
lexical categorization uncertainty and session (FE = 0.02, SE = 0.01, t = 3.97,
see Fig. 3A). In line with hypotheses and analysis plans from the pre-
registration, in lexical categorization font training, the lexical categorization
effect was trainable, while this improvement was modulated by word-
likeness (see Supplementary Table 2; for results of lexical categorization
training from all lexical categorization training data combined). Note that

the design difference likely determines the higher training effect of the first
study aswefinda significant effect of trainingweek showing a lower training
effect in the second week (Mean difference: 31%; t(31) =−2.93,
p = 0.00452). This difference was notmodulated by the reading speed of the
pre-assessment or the reaction times of the first training session (all ts < 1.3).

In three separate experiments, these findings show that the lexical
categorization process is trainable. Also, the lexical categorization training
has a beneficial effect on the overall reading speed of readers learning
German. Still, training benefits show substantial interindividual variability,
with about 30.26% of the current sample showing no improvement
(Training effect ≤0). For an efficient implementation of the lexical cate-
gorization training, identifying non-responders in advance would allow
focusing resources on responders. Thus, implementing a diagnostic pro-
cedure before training could benefit the training outcomes as resources can
focus on the slow-reading individuals who likely respond.

Prediction of lexical categorization training effects
We will use the correlation between predicted vs. observed training effect
(i.e., based on reading speed increase) to evaluate the variation in the
implemented machine learning pipelines. We established the prediction
model based on leave-one-out-cross-validation (see methods for detailed
description). The correlations from all tested machine learning pipelines
ranged from−0.10 to 0.69, with a mean of 0.42 and a mode just below 0.5
(Fig. 4A).Whenweaggregate thepredicted values fromall pipelines for each
participant (median across 720 predictions), the correlation between pre-
dicted vs. observed training effect was moderate (r = 0.58; t(73) = 6.02,
confidence interval: 0.40–0.71, p < 001). The variation of the correlation
(Fig. 4A) indicates that the quality of the prediction varied based on the
combination of feature extraction procedures (model structures and pre-
dictors of hierarchical regressions), feature selection procedures (extent of
interindividual consensus on the relevance of features), and prediction
models (linear regressions, support vector machine, random forest) but

Table 1 | Pre-to-post changes in the overall reading speed measured by the SLS in percent as shown in Fig. 3B, including
statistical comparison against zero (Significant effect sizes presented in bold numerals)

Experiment Condition M SD t DF p

1 Lexical categorization (LC) training 26.6 (20.5) 41.8 (34.6) 2.62 (2.37) 16 (15) .018 (.035)

2 LC training 20.4 (16.1) 40.2 (33.9) 2.65 (2.42) 26 (25) .014 (.023)

2 Phonics training 2.5 (0.5) 30.4 (28.1) 0.43 (0.01) 26 (25) .670 (.992)

3 LC training 22.4 (15.0) 54.9 (36.4) 2.31 (2.30) 31 (30) .028 (.029)

3 LC font training 33.2 (21.4) 79.0 (43.6) 2.38 (2.79) 31 (30) .024 (.009)

Also, in paratheses,we show the same results butwith an outlier correction that removes all participants ± 2 standard deviations as defined in the preregistrationof Study 3.Note all t-test comparisonshave
been two-sided, and the effect size was estimated based on percent change pre-post training.

Fig. 4 | Overall analysis of the correlation between
predicted and observed training effects, including
an analysis of feature importance. A Distribution
of predicted vs. observed correlations resulting from
leave-one-out-cross-validation across all variations
of the machine learning pipeline. B The most fre-
quently selected features among the 20 feature
extraction models and nine different feature selec-
tion procedures. As features are selected 75 times for
each participant due to the leave-one-out-cross-
validation, the maximal frequency is 13,500. Only
the top 20 features with the highest occurrences are
displayed here. The green color highlights the LCM-
related features.
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overall, independent of the procedure, we canpredict the reading speedwith
good accuracy (see Supplement for differential analyses). When inspecting
the feature importance (Fig. 4B), basedonhowoften the stepwise regression
selected a feature (for details, see Methods), we find that test week (Week;
i.e., from the randomization) and incoming reading speed (SLS), including
the interaction, were essential predictors that have been selected for all
pipelines.Note that themoreoftena feature is selected indicates that they are
vital for accurately predicting the lexical categorization training effect. After
these more general measures, the most selected word characteristic-based
feature was the lexical categorization uncertainty. We expected that the
predictive power of the lexical categorization uncertainty would be high as
participants trained lexical categorizations and that response times data
showed interactions of lexical categorization uncertainty with training (see
ref. 5 or above; all LCM-related features are highlighted in green in Fig. 4B).
Thus, this finding indicates the importance of the lexical categorization
uncertainty effect in the initial session for predicting later training success.

Best prediction model
The most often selected pipeline (based on consensus nested leave-one-out
cross-validation) included the multiple regression fitting procedure and a
feature selection criterion of 10, combined with the predictor composition
that estimated the change of the lexical categorization uncertainty and
OLD20 effects within the first session (i.e., three-way interaction of lexical
categorization uncertainty, OLD20, and sequence index). This pipeline
results in the best prediction results in 21 out of 75 cross-validation loops.
Especially, the predictor composition was consistently the best variant,
resulting in the most accurate predictions in 55 out of 75 cross-validation
loops. When applying these hyperparameters (i.e., multiple regression, the
cutoff value of 10, and predictor composition including 3-way interaction of
lexical categorization uncertainty x OLD20 x training across the session;
complete formula: log. response times ~ lexical categorization uncertainty *
OLD20 * log. sequence index+word frequency+ lexicality+ errors+
SLS+ training week+ (effect ∣ participant)) the final correlation of pre-
dicted vs. observed lexical categorization training effects resulted in 0.69

(t(73) = 8.16, confidence interval = [0.55–0.79], p < 0.001, see Fig. 5A),
explaining nearly 50% of the variance of the training effect (R2 = 0.476).

To investigate the feature relevance, we evaluated which features were
essential for predicting future reading speed improvement. The pipeline
selected and fitted 25 to 26 features for each reader. Note that the feature set
could differ for every participant (i.e., leave-one-out-cross-validation). To
visualize feature relevance, we aggregated the t values of the contributing
features included in the pipeline that resulted in the highest predicted vs.
observed correlation. This inspection is based on the median t value across
all 75 runs (see Fig. 5B). The stepwise regression feature extraction proce-
dure selected the individualized estimated lexical categorizationuncertainty,
lexicality (Word or nonword), and word-likeness effects (i.e., measured by
the Levenshtein distance; OLD2046);. Interestingly, these features are also
highly related to the theoretical concept of the lexical categorization com-
putation, as the word likeness is the basis for the lexical categorization that
results in a word-nonword decision (i.e., lexicality; see ref. 5 for details).

Further essential features have been the overall learningwithin the first
session, reflecting the reduced reaction times with trials, the number of
errors, and the interactionswith lexical categorization uncertainty andword
likeness. Note here that we can have an interaction effect that combines one
or multiple interaction features (i.e., extracted interaction effect from the
first level) with other features (e.g., in Fig. 5B, LCM:Index x LCM:OLD20,
indicates the interaction effectmarked by the “x” of two interaction features,
estimatedon thefirst level basedon linearmixedmodels, thatmarkedby the
“:”). In addition, training week and incoming reading level also moderated
the prediction of training benefits.

Categorization diagnostics
Here, we investigated the application of the regression model to categorize
individual readers as responders or non-responders. The leave-one-out-
cross-validation is optimal here as it simulates implementing an indivi-
dualized diagnostic procedure. An individuum is categorized based on the
above-described prediction model. The boundary for the training/no-
trainingdecision is optimizedon the trade-off of sensitivity and specificity to

Fig. 5 | Inspection of the best predictionmodel. ACorrelation of the predicted and
observed reading speed difference, pre/post training from the best predictionmodel.
The dashed line indicates the decision boundary (i.e., cases with >13.5% predicted
reading speed increase are considered responders, established based on a sensitivity
of 0.73 and specificity of 0.74; see Supplementary Fig. 2), and colors mark the true
positive (Correctly predicted responders), true negative (Correctly predicted non-
responders), false positive (Incorrectly predicted non-responders), and false nega-
tive cases (Incorrectly predicted responders). The black line indicates the overall
correlation, and the gray area reflects the 95% confidence interval. B Feature rele-
vance of all included features based on t values (i.e., signed median and standard
deviations across 75 cross-validation runs including significance markers, red

dashed line > 2 or <−2). LCM: lexical categorization model uncertainty effect, Lex:
lexicality effect, Index: sequence index effect, OLD20: word-likeness effect based on
the OLD20 measures46, Frequency: word frequency effect based on SUBTLEX-DE
measure41,Week: week of training effect (1 vs. 2), SLS: incoming reading speed effect
(i.e., adult version of Salzburger Lesescreening71), Errors: Correct vs. incorrect lexical
decisions in the training task, interaction sign “x'': interaction added at Level 2 during
the feature selection, interaction sign “:'': interaction fitted with the random effect
structure. C Applying the best-performing diagnostic model for categorization.
Benefits in reading speed when no diagnostics applied vs. when diagnostics applied
(i.e., if the training included only readers of which the model would predict learning
success).
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reduce miscategorization to a minimum. Here, we identified an optimal
criterion value at 13.5% or above. At this criterion, we found a sensitivity of
0.73, specificity of 0.74, accuracy of 0.73, and precision of 0.86 (see Sup-
plementary Fig. 6;N = 44out of 75 selected, truepositive: 38, false positive: 6,
true negative: 17, false negative: 14; see Fig. 5A color coding). Thus, 73% of
the selected readers did benefit from the lexical categorization training, and
74%of the not selected readers didnot benefit fromthe training (i.e., reading
speed changes are smaller or equal to 0). Therefore, the selection of
responders increased themean reading speed from23%to43%on thegroup
level (FE = 0.199, SE = 0.091, t = 2.188, see Fig. 5C).

Discussion
In this study, wemeasured the effect size of a training programmotivated by
a model of the activation in the left-ventral occipito-temporal cortex in
visual word recognition, i.e., the lexical categorization model (LCM; ref. 5).
In three studies (including one preregistered study), the training resulted in
better reading skills for most German language learners. In addition, we
found that response times during the training showed lexical categorization
uncertainty effects (i.e., higher reaction times for hard-to-categorize words
andnon-words) anda reduction in response timeswith training.Also, based
on an individualized diagnostic procedure using machine learning and
LCMparameters, we could predict the outcome of the lexical categorization
training with good precision and found that the LCM-related parameters
were essential for an accurate prediction. This application may allow
focusing training resources on responders only. Here, we provide and
evaluate a new framework for investigating visual word recognition pro-
cesses, including a possible way for practical applications. This framework
uses a transparent computational model to motivate a training procedure
fromwhich training effects can be analyzed, predicted, and optimized based
on explainable individualized machine learning diagnostics. Central to the
diagnostic procedure is that one canuse theprimarymodel parameters from
which the training originated to predict the training effects successfully.

The core assumption is that lexical categorization is a central cognitive
process underlying efficient reading5. The goal of the lexical categorization
process, as assumed by the model, is to filter out stimuli that are not
meaningful and to facilitate further linguistic processing, specifically for
known letter strings (see ref. 52 for similar conclusions). When a word is
known, one extracts the meaning8,24 and can start to read the upcoming
word and integrate words into the larger context of sentences or
paragraphs53–55. If the letter string is unknown, a good reader might be able
to infer the meaning of a word from the context, or one has to look up the
meaning of that word. The latter is quite common for language learners, as
integrating additional sources, like a lexicon, to learn themeaning of a word
is an essential part of language learning. Thus, visual word recognition will
be efficient when the categorization is fast and accurate, as the reader can
initiate the consequential processes more efficiently.

Multiple LCM evaluations with native readers of German showed that
LCM simulation outperforms assumptions from other models (e.g.,
refs. 7,26,27,29) thathavebeenproposed to explain the activationpatterns in
the in the left-ventral occipito-temporal cortex. To test the validity of this
core LCM assumption, we assumed that when reading is slow, the lexical
categorization performance could be low, so improving lexical categoriza-
tions should result in better reading5. In an initial investigation, we showed
that the training procedure resulted in a significant reading speed increase
correlated with increased lexical categorization performance5. The findings
of the present study (i.e., replicated lexical categorization training effects and
high feature importance of LCM parameters, i.e., lexical categorization
uncertainty, for predicting training success) are an additional indication of a
direct association between lexical categorization and efficient reading.

Lexical categorization training effects and control training. Here, we
provided a detailed description of the three lexical categorization training
experiments, including the effects of alternative training procedures. The
lexical categorization training increased the reading speed consistently. In
contrast, the phonics control training of Experiment 2 did not increase
reading skills and showed a different response time pattern. Still, we found a

strong learning effect on response times. This finding suggests that the
training task and not the stimuli (i.e., identical in both training procedures)
are responsible for the reading speed increase of the lexical categorization
training. A potential reason for the null effect of the phonics training could
be our participant group. The slow readers of the present study did not have
developmental deficits, only limited German language knowledge. Phonics
studies successfully trained readers with developmental reading problems
(e.g., Dyslexia; refs. 23,25).Nonetheless, there have been several readerswho
benefited from the training. With more data, one could implement an
individualized diagnostic procedure to identify specifically the phonics
responders of the group in advance.

We detected the strongest training effect for the adapted lexical cate-
gorization training procedure that included a font-change manipulation
(6–11% larger effects). Also, the response time pattern showed an effect of
lexical categorization uncertainty. Central here is considering a predictive
mechanismon the visual level34 that is trainedwhen fonts repeatedly change
during the lexical categorization training, and the process has to adapt to
each font. Thus, the higher increase in reading skills after training might
indicate that one can also train predictive processes on the visual level. Still,
this investigation needs to be replicated in the future. Overall, the lexical
categorization training procedures would extend the current training pro-
cedures, providing another opportunity for slow readers to increase their
reading skills.

Individualized diagnostic procedure for the lexical categorization
training. Similar to this study, training procedures have been motivated by
well-evaluated cognitive concepts (e.g., phonics; ref. 25). Besides, compu-
tational implementations of dual-route models have likewise been used to
extract individual-level estimates for individualized diagnostics56,57. Note, in
contrast to the machine learning approach here, the dual-route model
diagnostics have the benefit that the models can simulate visual word
recognition entirely, which is not the case for the neuro-cognitive approa-
ches currently available (e.g., see ref. 58 for an initial step in the direction of a
full neuro-cognitive visual word recognition model). We extended these
efforts by drawing inspiration from a neuro-cognitive model and explicitly
using model parameters to develop individualized diagnostics. The diag-
nostics use explainable machine learning techniques that integrate the
model with training procedures and personalized assessments. Thus, the
ultimate objective is to predict reading skill improvement accurately. Based
on this pipeline,we predicted the change in the reading speedof each reader,
pre-post training, with good accuracy. Also, when using the numeric esti-
mates of reading speed change to categorize readers into responders and
non-responders, we could increase the training effect on reading speed from
23% in the whole group (N = 75) to 43% (N = 44) in the selected group.

Using feature importance metrics, we identified that the LCM-related
features were the most often selected word characteristics besides obvious
candidates like incoming reading speed (the lower the incoming perfor-
mance, the higher the gain through the training) and training week (lower
training effects in the secondweek). This finding is reassuring, as onewould
expect that when one has difficulty implementing a lexical categorization,
i.e., reflected in the behavioral performance, one should be more likely to
respond to the lexical categorization training.An intriguingfindingwas that
word frequency, a highly relevant word recognition characteristic, was
selected less often41,59. Often, the lexical categorization uncertainty occurs in
interactionswith variables that are also relevant for implementing themodel
(e.g., with word-likeness; OLD2046). This finding indicates, in addition, that
the underlying cognitive processes are related to the word-likeness para-
meters, and the lexical categorization are likely interrelated. Thus, machine
learning diagnostics strongly rely on the overall LCM-based features,
especially when the prediction accuracy is high.

Central to the success of the individualized diagnostics is using features
based on slope estimates on the random effect of participants from linear
mixed models47 in combination with standard features like the overall
reading speed. Crucially, for the random slope estimation, we found that
more complex models had no advantage in the precision of the prediction,
as simplermodels were preferred.One reason for this is the implementation
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of shrinkage in linear mixed models that removes differences in random
effects estimateswhenmodels become increasingly complex60. Similarly, we
found that more straightforward procedures, like the multiple regression
method, led to the best prediction. Still, we only used a subset of methods
currently available for feature selection and prediction. Several other can-
didate machine learning procedures may lead to better results. Gradient
boosting or deep neuronal network models could be candidates in future
investigations. However, usingmore complexmachine learningmethods in
this context might need a more extensive dataset (ref. 61, a plateau at a
sample size larger than 100) or decrease the interpretability of the results
(e.g., see ref. 62).

Prospectively, multiple training procedures can be combined into one
framework. For example, one could fit the machine learning pipeline to the
datawe gathered from the control training procedures (e.g., phonics and the
lexical categorization training with font change), intending to find the
optimal training procedure for each slow reader. With the further devel-
opment of new transparent neuro-cognitive computationalmodels,wehave
the chance to add a new, potentially effective training program that needs to
be evaluated. The resulting training data can thenbe used to train amachine
learning model to predict the training outcome. By comparing the predic-
tions for multiple training procedures, one can find the training that most
likely has the highest increase in reading skills. Furthermore, during active
learning, one has several potential other training procedures that could be
usedwhen the actual trainingdoesnot result in further reading skill increase.
Over time, combining training procedures could lead to a fully functioning
individualized training framework, providing readers with the training they
benefit most.

A limitationof thepresent study is that it relies on cross-validation, but,
in addition, one would need an evaluation based on an independent sample
to fully outrule the over-fitting of our prediction models. Still, we used
consensus-nested cross-validation for feature selection and hyperparameter
tuning, which is generally assumed to control over-fitting sufficiently,
particularly in studies with limited sample sizes63,64. The only difference to
the consensus-nested cross-validation in its original implementation is that
the authors searched for features selected in all inner loops. Still, we are
searching for a hyperparameter combination selected by most inner loops.
We believe this method is justifiable for considering model stability and
accuracy. Besides this argumentation, we find a median correlation of 0.57
across all hyperparameters. This strengthens the assumption that we can
predict the training benefit with a medium to high correlation.

To increase the performance of the diagnostic procedure, we see two
major possibilities–first, the development of new parameters that accurately
describe the cognitive and neuro-cognitive processes underlying reading.
Here, using interpretable parameters to make sense of the feature impor-
tancemetrics is essential. Adding newly developed features related to visual
processing (e.g., ref. 51), orthographic processing (e.g., see refs. 65,66),
phonological (e.g., see ref. 65), lexical (e.g., see refs. 67,68), or even semantic
processing69 could be one way to increase the performance of the machine
learning-based diagnostic further. Second, in the current investigation that
used randomized controlled trials in two experiments, we found that the
training week was a significant predictor of performance, indicating that
participants might have been less motivated. Future training approaches
could implement new tools or gamification elements to increasemotivation
(e.g., ref. 70). An increase in motivation could positively influence the
estimation of feature weights, as higher task involvement could make esti-
mating the underlying processes reliable. Alternatively, participants might
have beenmore proficient in the reading speed assessment, i.e., our primary
outcome measure71. New investigations, thus, should use alternative
methods that measure reading skills (e.g., the computerized version of the
SLS; ref. 72) or even use the highly reliable eye-trackingmeasurewhile silent
sentence reading (ref. 3,12,73,74; but see also ref. 75 for a cautious note).

In sum, neuro-cognitive computational models open new possibilities
for implementing potentially effective training programs. Here, we showed
that lexical categorization is essential for efficient reading on the exemplar of
the lexical categorization training. The training repeatedly increased the

reading skills of learners of German, including a preregistered study. The
model parameters (i.e., extracted from the computational implementation)
have been a vital source of information for a machine learning-based
diagnostic procedure able to predict training success. Thus, a good and exact
understanding of the neuro-cognitive processes involved in reading that
allow a computational implementation can be the optimal origin of a suc-
cessful program to increase reading skills. This proof-of-concept study
showed that combining response time data, psychometric measures, and
computational methods can also produce valuable predictions on the level
of the individual reader. The predicted benefits of the lexical categorization
training, thus, allow the optimization of training resources. Therefore, as the
presented diagnostic procedure is efficient at a relatively low cost, we believe
that individualized andmodel-based diagnostic and training programs are a
valuable framework that one can extend to more training procedures (e.g.,
phonics) and, potentially, other groups of slow readers that show activation
alternations compared to typical readers in the left-ventral occipital cortex
while reading (e.g., dyslexics: ref. 30; illiterates: refs. 31,32).

Methods
Participants
Seventy-six adult non-native German language learners participated in the
three experiments (Exp. 1: 17; Exp. 2: 27; Exp. 3: 32; 17-74 years old,
M = 24.41, SD = 6.89). Note that we determined the number of participants
for Experiment 3 by a power analysis described in the preregistration
(https://osf.io/t58ku) based on the estimated effects of Experiments 1 and 2
(Cohens d = 0.62; Power of 92%). Participants hadnohistory of linguistic or
neurological diseases and came from 28 different language backgrounds
(Arabic, Azerbaijani, Bulgarian, Chinese, Dutch, English, Estonian, Farsi,
French, Georgian, Indonesian, Italian, Japanese, Korean, Mongolian, Nor-
wegian, Persian, Portuguese, Russian, Serbian, Serbo-Croatian, South-
Korean, Spanish, Turkish, Ukrainian, Hungarian, Urdu andUzbek). Ahead
of the analysis, we had to exclude eight participants who did not manage to
follow the procedures of the training study (e.g., did not participate in a
session), five participants who erroneously took part in two of the three
experiments, and one additional participant due to technical reasons (first
training session was not stored). In our final sample, 35 participants grad-
uated from high school, 38 from university/college, and two completed
elementary school. Besides the requirement of not being a native German
speaker in all Experiments, in Experiment 1, we further restricted the group
toparticipantswho shouldnotoutperform the 16thpercentile in the reading
speed test at the beginning of the experiment. In Experiment 2, we had no
further restrictions to test if the reading speed restriction could be a potential
reason for the training effect. In Experiment 3, we wanted to focus on the
group of language learners most like being the training target by selecting
only the participants whomust not have lived inGermany for longer than 2
years.We advertised the study at the Goethe University Frankfurt via social
media, e-mails, and flyers. Participants gave their written informed consent
and received student credits or financial compensation (10€/h) as an
incentive for participating in the experiment.

Procedure and material
The core of the lexical categorization training is a lexical decision task,
including feedback on whether the response was correct (see Fig. 2A).
Participants must evaluate a visually presented letter string as a real word in
a lexical decision task.We assume that executing lexical decisions trains the
categorization process implemented in the left-ventral occipito temporal
cortex as described by the LCM5. Experiment 1 was the first lexical cate-
gorization training pilot. Experiments 2 and 3 compared the lexical cate-
gorization training with other procedures in a randomized, controlled
fashion. Note that we focus on the lexical categorization training to
implement the diagnostic procedure; to date, the number of participants is
insufficient for the control training procedures. In Experiment 2, we
implemented a phonics task25,48. In Experiment 3, we tested the comparison
with a variant of the lexical categorization training (i.e., with changing fonts)
inspired by the finding that an orthographic prediction error representation
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is the basis of efficient visual word recognition34. To implement a within-
participant design, in experiments 2 and 3, readers trained their lexical
categorization capabilities in one of two randomly assigned training weeks.
Participants trained with the control procedure the other week and had to
wait at least 14 days between the 2 training weeks.

The successionwithin one trainingweekwas as follows: First, a reading
speed assessment, then three sessions of the training task (lexical decision,
phonics, or lexical decisions with changing fonts), including 1600 trials (see
Fig. 2B). After the final training session, we conducted a post-training
assessment to compare the reading speed before and after the training.
Critical here is that for predicting the outcome (i.e., the reading speed
change), we used only the pre-training reading speeddata and the data from
the first session of lexical decisions (i.e., dashed line frame marking in
Fig. 2B). Thus, we inferred the reading speed level after completing the
training procedure.

Pre- and post-diagnostics. We measured the reading speed with the
adult version of Salzburger Lesescreening (SLS; unpublished adult version
of ref. 71), a paper-and-pencil reading speed test with two available
versions. Notably, the assessmentmeasures reading on the sentence level,
a more complex and naturalistic process than typically implemented in
visual word recognition tasks. In this test, participants must evaluate the
semantic content of as many sentences as possible within a time limit as
semantically correct (e.g., “Schnee ist rot” - Snow is red or “In einemWald
stehen viele Bäume” - A forest is full of trees).

In Experiment 1, we randomized the order of both available SLS ver-
sions, i.e., one pre- and one post-training. Experiments 2 and 3 used four
shorter versions of the SLS.We split the versions since we needed twomore
for the randomized controlled trial design. We accompanied the item
reduction by reducing the time to process the test to 1min and 30 s from
3min of the original version. To compare the data from all three experi-
ments, we corrected the time limit differences by duplicating the number of
answers for the short version. Thepercentual increase in correctly processed
sentences within the time limit is the outcome measure from pre- to post-
training. The number of correctly answered items and errors in the SLS
served as features in predicting the effect of the training procedures. In
Experiment 1, we conducted the post-diagnostics on the third day imme-
diately after the last training session. In Experiments 2 and 3, we imple-
mented the final assessment on the fourth day, i.e., 1 day after the final
training session. We accounted for this change in the design by a variable
coding the design change for the predictive model.

Lexical categorization training. The lexical categorization training, as
well as the alternative training approaches, included 1600 five-letter sti-
muli, of which 800 were words selected from SUBTLEX-DE41, 400
pseudowords (i.e., pronounceable non-words; created by changing
vowels of the selected words with another vowel, for further details see
ref. 5), and 400 consonant strings (i.e., un-pronounceable non-words;
created by replacing vowels of the selected words with consonants, for
further details see ref. 5). We selected the word stimuli by drawing them
randomly from a lexicon41. The idea behind this procedure was that we
wanted a set of stimuli representing the naturally occurring variations in
word characteristics present in the lexicon implemented in our training
procedure. Thus, we increased the generalizability of our features (i.e.,
word-likeness, represented by OLD20 based on ref. 46; word frequency
based on ref. 41; the orthographic prediction error based on ref. 34; lexical
categorization uncertainty based on the LCM from ref. 5). We estimated
OLD20 based on all German five-letter uppercase words (n = 3,110;
extracted from N = 377,524 words of the complete SUBTLEX-DE data-
base) using the OLD20 function of the R package vwr76. As expected, the
averageOLD20 for pseudowords was higher than forwords and lower for
consonant strings.

The task was programmed in Experiment Builder software (SR-
Research,Ontario, Canada), usingmono-spacedCourier-New font, thefirst
letter in uppercase (convention forGermannouns), visual angle of ~0.3∘ per

letter. We presented the letter strings in random order (different for each
participant and each session) toprevent learning-based sequence effects (see
Fig. 2A for the structure of the presentation). The answer was interpreted as
incorrect if the participant did not respond within 10 s. Before every task
session, we presented 18 stimuli to familiarize participants with the task.
One session lasted about 45–60min.Wemeasured lexical decision response
times and accuracies as performance indicators for visual word recognition.

Phonics and lexical categorization font training. Both control training
procedures included precisely the same letter strings, except for one
consonant string in the phonics training that did not include either of the
used phonemes. The experimental setup was identical with minimal
changes: The difference in the phonics training was that participants
heard a phoneme (a, b, d, f, g, i, j, k, l, m, n, o, p, r, s, t, u, w) via headphones
at the onset of the visually presented letter string. After the presentation,
we asked participants to evaluate whether the phoneme was included in
the written string. In half of the trials, the phonemes corresponded to a
grapheme in the letter string. For the lexical categorization font training,
we presented 50 blocks of 32 strings with the same font, but between
blocks, we implemented a font change (i.e., each block had a different
font; see Supplementary Methods 1 fonts used). Note that all procedures
have been approved by the ethics committee of the psychology depart-
ment at the Goethe University Frankfurt (Nr.: 2019-65).

Analysis
We analyzed data with the R statistical software (please find all version
numbers of the libraries we used in Supplementary Methods 3). We
excluded response times below 300ms and above 4000ms. We needed to
account for several issues with the SLSmeasurement.We had to correct one
irregularity in the SLSmeasurement (one participant got 1:54min insteadof
1:30min for the SLS; the score was reduced by 25%). Further irregularities
need to be documented: two participants accidentally started with the sec-
ond page of the SLS test in one session; one participant had a postponed SLS
measurement by 3 days and one used a version twice butmore than 3weeks
apart. To test the relevance of single parameters on a group-based level, we
fitted the log-transformed response times with linear mixed models, con-
sidering the interindividual, inter-trial, and inter-font (specific for lexical
categorization font training) variance as random effects. The core of the
fixed effect structure was a three-way interaction of categorization uncer-
tainty (LCMparameter; ref. 5), word-likeness (OLD20; ref. 46), and training
across sessions. Furthermore, we included word frequency (SUBTLEX-DE;
ref. 41), lexicality, response accuracy (“0” represents correct, “1” represents
false), and whether participants conducted the procedure in the first or the
second week of training due to the randomized controlled trial. We
described this procedure in the preregistration of Experiment 3. Overall, we
tested the change in reading speed with training by a one-sample t-test
against zero.

Cross-validated diagnostic procedure
Cross-validation. To keep the over-fitting of our machine learning-based
diagnostic procedure to a minimum, we implemented cross-validation (see
Fig. 2C and Supplementary Fig. 1). Cross-validation means repeatedly
splitting a dataset into a test and a training set. Then, we use the training set
to fit the machine learning pipeline. The test set is left out for this process.
After training the machine learning models, we can use the test set for
validation as it was unseen to the trainedmodels. In other words, we can use
left-out unseen data to evaluate the prediction performance of the trained
model.With this procedure, we ensured that the predictionwas as unbiased
as possible by the data itself (prediction models were trained and tested on
two separate datasets).

Here, we implemented a leave-one-out-cross-validation procedure
while using consensus-nested leave-one-out cross-validation to tune win-
ning hyperparameters. In principle, the leave-one-out-cross-validation
procedure trains all participants of a dataset except one. The one left out is
then used as a test set (see Fig. 2C). We repeat this procedure to evaluate a
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prediction for each participant (i.e., in our case, 76x fitting of the machine
learning model to predict the training outcome of one participant). This
procedure allows us to rely on relatively large training sets because we only
left one dataset out for the test set (each training set trained on n-1 parti-
cipants). For a subset of model variations, we implemented an additional
inner cross-validation loop to prevent over-fitting, as much as possible, on
the level ofhyperparameter tuning (e.g.,which featureshavebeen selectedor
which machine learning method is used) aiming at finding the winning
model. This inner loop is auxiliary to the leave-one-out-cross-validation (see
Supplementary Fig. 1) and again implements a leave-one-out-cross-vali-
dation based on the dataset that already left out one participant (i.e., in total,
the training set is N-2 and the test set is again 1). This additional loop allows
us to evaluate which hyperparameters are stable across the validation loops
(i.e., select the hyperparameters that have been selected most often in the
inner loop; i.e., the consensusoverall loops) and apply thewinning variant to
left-out data (see refs. 63,64 and the Supplemental Methods 2 for further
information). Thus, with this procedure, we keep over-fitting to aminimum
by relying on left-out test data for the model evaluation and, in addition,
selecting hyperparameters only based on a consensus from an inner cross-
validation loop (for more details, see Supplementary Methods 2 and Sup-
plementary Fig. 1).

Prediction procedure. The diagnostic procedure included three levels (see
Fig. 2C): feature extraction, feature selection, and fitting procedure. In the
first level, we focus on feature extraction (i.e., generating informative
parameters that capture individual differences well). Besides the extraction
features that reflect cognitive processes underlying reading (e.g., lexical
categorization, orthographic, or lexical processing), from the first training
session’s response time and accuracy measures, we also included features
reflecting metadata (i.e., training week) and test scores (i.e., incoming
reading speed). The key to the feature extraction from reaction times was to
use linear mixed models, including random slope estimates on the random
effect of participants. Linear mixed models allow for explicitly fitting the
hierarchical data structure of random effects. Thus, one can consider the
interindividual variance of the individual slopes from fitted parameters as
estimates for individual differences related to the cognitive processes asso-
ciated with the included predictors (i.e., lexical categorization ability is
associated with the individual slope estimate for the lexical categorization
uncertainty effect; see also refs. 5,75; formore details, including the variation
of the model structure and predictor compositions, see Supplementary
Methods 2).

In the second level, we focused on selecting the relevant features (i.e.,
the features that lead to accurate predictions). We applied a stepwise
regression procedure to filter irrelevant features (i.e., unrelated features to
reduce noise and select one of several highly correlated predictors to reduce
redundancy). Note that multicollinearity is not problematic for machine
learning as we do not draw statistical inferences from themodelweights but
focus on accurately predicting an outcome variable. We chose this method
as it allows feature selection of not only the generated features from the first
level but also the inclusion of newly generated interaction features. Thus, in
the second step, we not only reduce the number of features to those relevant
but also create new features based on interactions of the included from the
first-level features that will be added to the selection process (for more
details, see Supplementary Methods 2).

In the third level, we used the selected features to predict the
reading speed increase of the lexical categorization training based on
the following model types: (i) multiple regression, (ii) support vector
machine with a linear, and (iii) a radial kernel, and (iv) random
forest algorithm. Notably, the models were used as regression algo-
rithms, predicting outcomes on a continuous scale. Here, we are
interested in how helpful the training is. We consider the correlation,
t value, and the mean square error of the comparison between the
predicted and observed value indicators of the model fit. Multiple
regression represents the most straightforward way of fitting data
linearly based on the minimization of the residuals between the

dependent variable and the sum of weighted variables. Support vector
machine fits a line in a multidimensional space, minimizing the
distance between the fitted line and the observed data points. The
linear kernel restricts the line to be linear. For the radial kernel, the
line can be curved or, in other words, non-linear. The random forest
algorithm is based on combining randomly drawn decision trees (for
more details, see Supplementary Methods 2).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data for all studies are available at https://osf.io/3hydt/(https://doi.org/
10.17605/OSF.IO/3HYDT).

Code availability
The analysis scripts used for all studies are available at https://osf.io/3hydt/
(https://doi.org/10.17605/OSF.IO/3HYDT).
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