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Visual perceptual learning of feature
conjunctions leverages non-linear mixed
selectivity
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Visual objects are often defined bymultiple features. Therefore, learning novel objects entails learning
feature conjunctions. Visual cortex is organized into distinct anatomical compartments, each of which
is devoted to processing a single feature. A prime example are neurons purely selective to color and
orientation, respectively. However, neurons that jointly encode multiple features (mixed selectivity)
also exist across the brain and play critical roles in amultitude of tasks. Here, we sought to uncover the
optimal policy that our brain adapts to achieve conjunction learning using these available resources.
59 human subjects practiced orientation-color conjunction learning in four psychophysical
experiments designed to nudge the visual system towards using one or the other resource. We find
that conjunction learning is possible by linear mixing of pure color and orientation information, but that
more and faster learning takes place when both pure and mixed selectivity representations are
involved. We also find that learning with mixed selectivity confers advantages in performing an
untrained “exclusive or” (XOR) task several months after learning the original conjunction task. This
study sheds light on possible mechanisms underlying conjunction learning and highlights the
importance of learning by mixed selectivity.

Visual objects are often defined by conjunctions of multiple features. This
means that learning to discriminate visual objects requires faithful learning
of these conjunctions. For example, to become a bird expert who success-
fully differentiates among subspecies of finches, it is necessary to be highly
sensitive to the color and angle of the beak together. Todate, studies in visual
perceptual learning have almost exclusively focused on single feature
learning and therefore, a plausible framework to explain conjunction
learning is still lacking.

Decades of research in neurophysiology of the visual system have
established that cortical representations of visual features diverge from
very early stages of visual processing onwards. Particularly well known
is the divergence of color and orientation, which are represented in
separate anatomical compartments and processed in parallel processing
streams1–11. However, more recent work has pointed out that this seg-
regation is not absolute, but that neurons which code jointly for
orientation and color exist along the entire visual ventral stream (albeit,
perhaps, in low numbers)12–17. Taken together, these studies point to the
existence of three groups of neurons: purely orientation selective, purely

color selective, and neurons with mixed selectivity between color and
orientation.

How can conjunction learning be achieved bymeans of these neuronal
resources (Fig. 1a)? One strategy, and perhaps the simplest one, is to
improve processing of each constituent feature of a conjunction separately,
and to linearly combine them at the output level. This strategy is completely
sufficient for linearly separable tasks (i.e., each target choice is separable
fromtheothers by ahypothetical linearhyperplane in the feature space, see18

for more details) and makes optimal use of pure selectivity neurons (which
are seemingly larger in number), while disregarding mixed selectivity
neurons. Another plausible strategy would be to rely only on mixed selec-
tivityneurons.Although fewer innumber, theseneuronshave the advantage
that they explicitly convey task-relevant information on the conjunction
level. Furthermore, recent research has pointed out computational advan-
tages of using (nonlinear) mixed selectivity representations in a variety of
contexts19. Under these two strategies, only a set of highly sensitive neurons
that provides the most relevant information for the task is read out, com-
monly referred to as “precision pooling” (Fig. 1a, top panels)20,21. An
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alternative, third strategy is “global pooling” which posits that all active
sensory neurons contribute to the decision regardless of their sensitivity22–24.
It is only within this framework that both pure and mixed selectivity neu-
rons would be jointly engaged in learning (Fig. 1a, bottom panel).

To appraise these strategies, we conducted a set of experiments in
which participantswere trained for several days to discriminate orientation-
color conjunctions. In our main experiments, we used a linearly separable
task, where all the above strategies could be reasonably employed. To nudge
the visual system towards one or the other strategy, we experimentally
manipulated the feedback that subjects received (Fig. 1b): this was either
informative on the conjunction level, i.e., subjects had to be correct in both
dimensions (global feedback); or on the feature level, i.e., subjects received
separate feedback for either dimension (feature-specific feedback). We
reasoned that only global feedbackwould enable the incorporation ofmixed
selectivity representations in learning, while feature-specific feedbackwould
mostly target pure selectivity representations. This is because credit
assignment, i.e., up/downweighting relevant connections following correct/
error feedback, to mixed selectivity representations is ambiguous under
feature-specific, but not global, feedback (see Fig. 1b). This might prevent
mixed selectivity to come on par with pure selectivity in its contribution to
learning.

We found that conjunction learning is possible under both feedback
conditions. Intriguingly, however, global feedback resulted in more and
faster learning than feature-specific feedback both for single features and for
conjunctions. This was accompanied by non-linear integration of color and
orientation information and better transfer to a non-linear “exclusive or”
(XOR) task in the global feedback condition. This can be explained by

favorable integrationofnon-linearmixed selectivity representations into the
learning process under global feedback. This interpretation was further
supported by Reinforcement Learning (RL)models that best fitted subjects’
choice behavior when trained with mixed rather than separate channels.
However, additional tasks also revealed that pure selectivity representations,
in addition to mixed selectivity, contributed to learning under global feed-
back, most consistent with global pooling.

Overall, our findings suggest that when learning conjunctions, the
brain makes use of all its computational resources instead of selectively
reading out specific neurons. This capacity can be unlocked by providing
global feedback, which may seem less informative than feature-specific
feedback at first sight but favors the incorporation of non-linearly mixed
selectivity representations and unlocks their computational benefits even
when this is not strictly necessary for the task at hand.

Results
Conjunction learning (Experiments 1 and 2)
To uncover the optimal strategy to learn feature conjunctions, we designed
two experiments in which we trained subjects for four days on an
orientation-color conjunction discrimination task, a 4AFC task in which
subjects had to report both the orientation and the color of a stimuluswith a
single response. Color and orientation difficulty levels were individually
determined per subject in a pre-measurement (Fig. 2a–d, also seeMethods).
While the conjunction task was identical in the two experiments, we pro-
vided different choice feedback to the subjects in the different experiments,
building upon the idea that feedback information can regulate which
representations are engaged in learning (Fig. 1b): in Experiment 1 (n = 19),

Fig. 1 | Precision vs. global pooling and credit assignment. a Precision pooling: in
precision pooling, only a subset of neurons of a population is read out. For con-
junction learning, one option is to read out only neurons purely tuned to color and to
orientation, respectively. Their output can be summed to give rise to conjunction
information (top left panel). Alternatively, only neurons with mixed selectivity for
color and orientation can be read out. These neurons provide information about
conjunctions directly and explicitly (top-right panel). Global pooling: In global
pooling, all neurons are read out regardless of their tuning properties. Hence,
neurons purely tuned to color and to orientation, as well as neurons with mixed
selectivity for both features, contribute to conjunction learning. bCredit assignment
regimes in conjunction learning with global or feature-specific feedback. When
feedback is global (on the conjunction level), the three relevant resources, pure

orientation, pure color, and mixed selectivity, are up-/down-weighted together.
However, when feature-specific feedback is provided, credit is only consistently
assigned to pure selectivity neurons: when one feature is correct and the other
incorrect, credit cannot be unambiguously assigned to neurons with mixed selec-
tivity (signified by black lines on up and down-weighting arrows in the middle
column). Hence, their weights are updated less frequently (or consistently) than
those of pure selectivity neurons, i.e., only when the response is correct or incorrect
on both features. Green and red colors in the “feedback” column represent correct
and error feedback, respectively. Green upward and red downward arrows indicate
up/down weighting of relevant resources following correct and error feedback,
respectively.
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choice feedback was informative on the conjunction level (global feedback),
i.e., correct feedback followed a response only if it was correct on both
dimensions (color andorientation).Otherwise, error feedbackwasprovided
at the end of the trial (irrespective of which feature was incorrect). In
Experiment 2 (n = 18), we provided choice feedback regarding the accuracy
on each dimension separately (i.e., whether color or orientation were cor-
rect, respectively). Here, when one feature is correct and the other incorrect,
credit cannot be unambiguously assigned to neurons withmixed selectivity.
We hypothesized that if conjunction learning is a result of linear mixing of
pure orientation and color selectivity neurons, it should not be affected by
our feedbackmanipulation. On the other hand, if mixed selectivity neurons
(which explicitly encode conjunctions) play a role, learning should suffer
from excluding or impeding the contribution of these neurons.

To evaluate these hypotheses, we computed the Learning Index (LI),
which quantifies learning relative to baseline performance (seeMethods). A
mixed non-parametric ANOVA showed that participants in both experi-
ments learned to discriminate conjunctions, as evidenced by significant
block-by-block improvements in LI (Experiment 1: F(6,126) = 32.855,
p < 10−15, η2 = 0.61, Experiment 2: F(6,119) = 27.397, p < 10−15, η2 = 0.58).
Interestingly, global feedback quickly led to significantly faster and overall
more learning than feature-specific feedback (Fig. 3a), as shown by a

significant experiment-by-block interaction (Experiment: F(1,35) = 3.0793,
p = 0.08, η2 = 0.0809, Block: F(6,210) = 197.4323, p < 10−15, η2 = 0.8495,
Experiment×Block: F(6,210) = 4.5752, p = 0.0002, η2 = 0.1156). Comparing
LIs per time point relative to baseline between experiments, we found that
from block 2 onwards, global feedback outperformed feature specific
feedback (Experiment 1 vs. Experiment 2, Baseline - block1: z =−10.4591,
d =−0.2614, p = 0.5833, block2: z =−59.26, d =−1.48, p = 0.0021, block3:
z =−70.3246, d =−1.7578, p = 0.0003, block4: z =−64.383, d =−1.6093,
p = 0.0008, block5: z =−67.1111,d =−1.6775,p = 0.0005, test: z =−52.576,
d =−1.3142, p = 0.0062).

We also performed similar comparisons on the level of individual
features, separately assessing accuracy for color and orientation on the
conjunction task (Fig. 3b, c). Here, we found that the advantage of global
over feature-specific feedback also held, and was especially pronounced for
orientation (Orientation, Experiment: F(1,35) = 9.7644, p = 0.0036,
η2 = 0.2181, Block: F(6,210) = 178.9749, p < 10−15, η2 = 0.8363, Experi-
ment×Block: F(6,210) = 8.7148, p < 10−7, η2 = 0.1994; Color, Experiment:
F(1,35) = 3.8318, p = 0.0582, η2 = 0.0987, Block: F(6,210) = 114.9568,
p < 10−15, η2 = 0.7672, Experiment×Block: F(6,210) = 3.9228, p = 0.001,
η2 = 0.1008). Moreover, contrasting LIs between experiments block-by-
block yielded similar results as we had observed for conjunctions

Fig. 2 | Stimuli and experimental design. a Pre/post training orientation and color
discrimination tasks (top and bottom rows, respectively). In separate runs, a 500 ms
fixation period was followed by a 200 ms presentation of a grating or colored disc,
respectively. Response targets were presented on the left/right or top/bottom of the
fixation cross for orientation and color task, respectively. Subjects responded by
directing their gaze to the target. In all experimental groups, these tasks were con-
ducted before training to determine individual difficulty levels, and repeated after
training course to establish learning effects on individual features. b Colors were
uniformly sampled from the red-purple spectrum of the LAB color space (black dots
signify color levels). c Subjects had to determine whether a grating was tilted
clockwise or anti-clockwise with reference to the diagonal (45°) in the orientation
discrimination tasks. d Six individual difficulty levels for color and orientation
discrimination, respectively, were determined from the psychometric curves of the
two tasks. e In the main experiments, a 500 ms fixation period was followed by a
200 ms presentation of the stimuli (as in the pre/post measurements). The stimuli

were chromatic gratings with individually determined orientation/color difficulty
levels. In Experiments 1 and 2, subjects were trained on orientation-color con-
junction discrimination. In Experiment 1, we provided global feedback on each trial,
i.e., feedback informed about accuracy on the conjunction level (feedback was
provided by changing the color of the chosen target; green signifies correct and red
incorrect responses). In Experiment 2, we provided feature-specific feedback (e.g.,
orientation incorrect, color correct). In Experiment 3, subjects were exposed to the
same stimuli as in Experiments 1 and 2, but were post-cued to respond only to one
feature in a given trial to encourage separate feature learning. The location of the
targets (top/bottom or left/right) indicated which feature to respond to. The order of
features was pseudo-randomized. Feedback was provided for the given response. In
Experiment 4, subjects were trained on a discriminating a single feature, orientation.
Color varied from trial to trial but had to be ignored. Color difficulty levels were not
individually determined but chosen to maximize between-level distances in the
sampled LAB space to ensure high saliency in the color dimension.
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(Orientation: Experiment 1 vs. Experiment 2, Baseline - block1: z =−32.43,
d =−0.7386, p = 0.1138, block2: z =−59.26, d =−1.48, p < 10−6, block3:
z =−115.25, d =−2.6247, p < 10−7, block4: z =−96.23, d =−2.1916,
p < 10−5, block5: z =−93.14, d =−2.1212, p < 10−5, test: z =−85.39,
d =−1.9448, p < 10−4; Color: Baseline - block1: z =−53.32, d =−1.3414,
p = 0.0043, block2: z =−67.02, d =−1.686, p = 0.0004, block3: z =−76.12,
d =−1.9149, p = 0.0001, block4: z =−72.13, d =−1.8145, p = 0.0001,
block5: z =−65.64, d =−1.6513, p = 0.0005, test: z =−54.36, d =−1.3675,
p = 0.0037). Because LI is computed relative to baseline performance, these
results cannot bedue tobaselinedifferencebetween the two learning groups.

If conjunction learning relied on purely color and orientation selective
neurons, respectively, one may intuitively assume that feature-specific
feedback should lead to better or at least equal performance as global
feedback, especially on the level of individual features. Yet, our results point
to the opposite conclusion. What could be behind this seemingly counter-
intuitive finding? We hypothesized that an involvement of neurons with
non-linearmixed selectivity between features might account for our results.
Non-linear mixed selectivity is thought to increase coding reliability and
efficiency not only on the level of conjunctions but also on the level of
constituent features19.

To probe if and to what extent non-linear mixing accounted for the
observed effect, we quantified the degree of non-linearity in the com-
bination of color and orientation in our data. To this end, we applied a
generalized linear mixed effects (GLME) model to predict discrimina-
tion accuracy using linear and non-linear mixed learning parameters.
We defined linear and non-linear mixing (LM and NM, respectively) as
the sum and the product of orientation and color strength, respectively,
on each trial. Then wemultiplied these two terms by the training blocks
(1, 2,…) to derive the linear and nonlinear mixed learning parameters
to be used in the GLME model. To statistically compare the two terms
between experiments, we pooled their data and factored in experiment
as a categorical moderator of ourmain learning predictors, NM and LM
(see Methods for details). The non-linear learning term (NM×Block)
significantly differed between experiments (NM × Block × Exp:
β = 0.0244, p < 10−8), while the linear learning term did not
(LM×Block×Exp: β =−0.0061, p = 0.2558). Importantly, this difference

in NM favored Experiment 1 (reflected by a positive β value), pointing
to themore effective contribution of the nonlinear term in Experiment 1
vs. 2, while LM did not differ between the two experiments (non-sig-
nificant, small β).

Together, these results suggest that favorable effects of incorporating
mixed selectivity into the learning process were enabled by global feedback
inExperiment 1.Global feedbackmay allowmixed selectivity channels to be
updated consistently, and hence contribute to performance, while feature-
specific feedbackmay update pure selectivity channels (Fig. 1b). To directly
address the role of feedback in conjunction learning, which was the core of
our experimental manipulation, we turn to RL models. These models are
best suited for this purpose since they learn through reward prediction error
based on choice feedback.

We designed two reinforcement learning models (see Methods for
details) to take perceptual decisions akin to the participants in Experiment 1
and 2, respectively. The models were trained by updating a Decision
Variable (DV) with regard to the trial-by-trial reward prediction error over
the period of training (block 1 to 5). This error was computed as the dif-
ference between the trial’s Expected Value (EVt) of reward, and its actual
reward value (0 or 1). In one model, the Separate channel RL model (SRL),
the EVt was computed separately for either of the features, i.e. orientation
and color (EVot andEVct), and hence the twoDVswere updated separately.
Here, the model learns through independent pure selectivity channels. In
the other model, the Mixed channel RL model (MRL), the EVt was com-
puted as the product of the corresponding EVts for orientation and color
(EVt=EVot · EVct). Then, the rewardprediction errorwasderivedbasedon
this combined EVt and the DV was updated accordingly. This model
represents learning by a mixed selectivity channel as the update takes place
with regard to the conjunctive output (Fig. 4a).We fitted the SRL andMRL
models independently to the trial-based choices over the training period in
both experiments.We thenmeasured the respectivemodel’s performance to
determine which one better explained the participants’ choices on the Test
day. For Experiment 1, we find that MRL fitted the subjects’ performance
well at both individual feature level and conjunction level (Fig. 4b, c;
Orientation, z =−0.2817, d = 0.0070, p = 0.7782, Color, z = 1.9316,
d =−0.3267, p = 0.0534, Conjunction, z = 1.1670, d =−0.2002, p = 0.2432),

Fig. 3 | Learning indices (LI) for conjunction learning with global and feature-
specific feedback (Experiments 1 and 2). a Conjunction LIs across training blocks.
The initial 144 trials of the learning phase were taken as baseline (Base). Thick lines
are average LIs across subjects, light thin lines are individual subjects’ LIs. Global
feedback (CLGF) in Experiment 1 resulted in more learning than feature-specific
feedback (CLFF) in Experiment 2 (Experiment×Block F(6,210) = 4.5752, p = 0.0002,
η2 = 0.1156) bOrientation LIs. These values were computed based on the accuracy in
the orientation dimension during conjunction learning. Global feedback (CLGF) in

Experiment 1 resulted in more learning than feature-specific feedback (CLFF) in
Experiment 2 (Experiment×Block F(6,210) = 8.7148, p < 10−7, η2 = 0.1994) c Color
LIs. These values were computed based on the accuracy in the color dimension
during conjunction learning. Global feedback (CLGF) in Experiment 1 resulted in
more learning than feature-specific feedback (CLFF) in Experiment 2 (Experi-
ment × Block F(6,210) = 3.9228, p = 0.001, η2 = 0.1008). Error bars represent the
standard error of the mean.
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whereas SRL did not (Orientation z =−3.7828, d = 1.7428, p = 0.0002,
Color, z =−3.8230, d = 1.0708, p = 0.0001, Conjunction, z =−3.8230,
d = 1.5640, p = 0.0001), andMRL significantly outperformed SRL (deviance
from subjects’ performancesMRL vs. SRL, Fig. 4d; z =−3.6620, d = 2.0030,
p = 0.0003). Conversely, in Experiment 2, the SRL model provided a better
fit (Fig. 4c, MRL vs. Subjects: Orientation, z = 2.0251,d =−0.5360,
p = 0.0429, Color, z =−2.5912, d = 0.4248, p = 0.0096, Conjunction,
z = 0.8928, d =−0.1062, p = 0.3720; SRL vs. Subjects: Orientation,
z =−0.5879, d = 0.0277, p = 0.5566, Color, z = 1.0670, d =−0.0480,
p = 0.2860, Conjunction, z = 0.1524, d = 0.0010,p = 0.8789), marked by
smaller deviance from human subjects (Fig. 4d, MRL vs. SRL: z = 2.8961,
d =−0.9100, p = 0.0038). These findings indicate that 1) although it might
seem counterintuitive, RL by mixed selectivity is advantageous over RL by
pure selectivity for conjunctions and individual features, and 2) the favor-
able learning we observed in Experiment 1 can be explained by RL using a
mixed selectivity channel.

Overall, these results suggest that the improved conjunction
learning in Experiment 1 relative to Experiment 2 may be credited to a
non-linear combination of color and orientation information which
could be provided by nonlinear mixed selectivity neurons incorporated
by global feedback.

Separate feature leaning (Experiment 3)
If two features need to be updated in parallel in Experiment 2, this
could hypothetically incur higher cognitive load and thus noisier credit
assignment than a single, global update in Experiment 1. E.g., orien-
tation tuned neurons could mistakenly be down-weighted even if
feedback only indicated a wrong color choice. To address this alter-
native hypothesis, we conducted another experiment (n = 12) using the
same stimuli, but a slightly modified task design. Specifically, subjects
saw colored gratings as in Experiment 1 and 2, but were post-cued to
respond only to color or orientation on a given trial (Fig. 2e). This way,

Fig. 4 | Reinforcement Learning models design and results. aMixed channel vs.
Separate channel Reinforcement Learning models (MRL vs. SRL). In MRL, decision
variables, DVot and DVct, are updated based on the reward prediction error com-
puted over a joint Expected Value of the trial (EVt), while in SRL, the two channels
are updated independently from each other based on their corresponding EVs (EVot
or EVct). b, cMRL and SRL models’ performance compared with subjects’ perfor-
mance on the test day of Experiment 1 and 2, respectively. dModels’ deviances from

subjects’ choices on the Test day. MRL had smaller deviance as compared to SRL in
Experiment 1 and vice versa in Experiment 2 (signed-rank test, MRL vs. SRL,
Experiment 1: p = 0.0003, d = 2.0030, Experiment 2: p = 0.0038, d =−0.9100). MRL
Mixed channel Reinforcement Learning, SRL Separate channel Reinforcement
Learning, Sb: human subjects. * denotes p < 0.05, ** denotes p < 0.01, *** denotes
p < 0.001, n.s. denotes non-significant. Error bars represent the standard error of
the mean.
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only one feature update was required on each trial, mitigating the
potential difference in load between Experiment 1 and 2. Subjects
showed significant learning, as evidenced by block-by-block
improvements in LI (orientation: F(6,66) = 45.54, p < 10−15,
η2 = 0.8054; color: F(6,66) = 40.235, p < 10−15, η2 = 0.7853). If
orientation-color conjunction learning was the result of summing
color and orientation channels, separate training in Experiment 3
should now yield the same results as Experiment 1 when tested on the
conjunction task as it operates on the same resources, i.e., only pure
selectivity representations. We thus tested participants after training
with post-cueing on the orientation-color conjunction discrimination
task (identical to Experiments 1 and 2). Half of the participants were
briefly (180 trials) exposed to conjunction training of Experiment 1 just
before this test, while the remaining half did not receive additional
training. We found a statistically significant difference between
Experiments 1 and 3 (Wilcoxon rank-sum test, Z = 2.0892, p = 0.0367,
d =−0.7277), but not between Experiments 2 and 3 (Z = 1.4608,
p = 0.1441, d =−0.5767) in the conjunction test (Fig. 5a). Brief addi-
tional training on the conjunction task had no statistically significant
effect (Fig. 4a, p = 1, d = 0.1997). This relieves the potential concern
that any differencemight stem from the novelty of the conjunction task
for this group of subjects. Together, these results suggest that the
benefit in conjunction learning that we found with global feedback in
Experiment 1 relative to feature-specific feedback in Experiment 2 is
not due to inefficient credit assignment in the latter experiment.

We also compared the degree of nonlinear mixing between experi-
ments.We built a GLMEmodel similar to the ones we had used to establish
NM effects in Experiment 1, but this time constrained the model to include
only the NM term and the experiment factor predicting conjunction dis-
crimination accuracy in the test session. We find a significantly larger NM
coefficient in Experiment 1 compared to the other two experiments
(NM×Exp2: β =−0.072, p = 0.0001, NM× Exp3: β =−0.08, p < 10−4).

Hence, nonlinear mixing of features can account for the improved con-
junction learning in Experiment 1 with global feedback, relative to feature-
specific feedback in Experiments 2 and 3, even for conjunctions of features
thought to be as separated as orientation and color.

Single feature learning (Experiment 4)
So far, we explored orientation learning in a context where color was
task-relevant and therefore, equally attended as orientation. Moreover,
the learning differences among experiments we presented so far were
more strongly expressed in orientation than in color, the seeminglymore
challenging feature to learn. We now sought to establish a baseline for
single feature orientation learning while color was task-irrelevant and
should thus be ignored (n = 10). Similar to the other experiments, we
drew six color levels from red to purple spectrum; however, theywere not
derived from individually determined psychometric functions but were
set to the values with the largest distance from each other in the color
space. This was done to render color as salient, and therefore distracting,
as possible. We find that orientation learning in the presence of task
irrelevant color was smaller in Experiment 4 than in Experiments 1
(Experiment: F(1,27) = 8.2049, p = 0.008, η2 = 0.2331, Block:
F(6,162) = 123.5437, p < 10−15, η2 = 0.8353, Experiment × Block:
F(6,162) = 6.2979, p < 10−5 , η2 = 0.1891) and Experiment 3 (Experiment:
F(1,20) = 3.6287, p = 0.0713, η2 = 0.1536, Block: F(6,120) = 63.6286,
p < 10−15, η2 = 0.7610, Experiment×Block: F(6,120) = 4.2144, p = 0.0007,
η2 = 0.174), but not Experiment 2 (Experiment: F(1,26) = 0.4251,
p = 0.5201, η2 = 0.0161, Block: F(6,156) = 90.1576, p < 10−15, η2 = 0.7928,
Experiment×Block: F(6,156) = 1.0451, p = 0.3983, η2 = 0.0386; Fig. 5b).
This suggests that orientation learning is highly efficient when learned in
conjunctionwith color under global feedback conditions (Experiment 1),
and when attentional resources are explicitly devoted to orientation
(Experiment 3), but not when highly salient color varies randomly from
trial to trial and acts as a distractor25.

Fig. 5 | Comparing learning across experiments. a Conjunction discrimination
performance is significantly better after conjunction learning with global feedback
(Experiment 1) than separate feature learning (Experiment 3) (p = 0.0367,
d =−0.7277; left bars). In contrast, there is no statistically significant difference in
conjunction discrimination performance after training with feature-specific feed-
back (Experiment 2) versus separate feature training (p = 0.1441, d =−0.5767). Brief
conjunction discrimination training (identical to Experiment 1) does not sig-
nificantly affect conjunction discrimination performance after separate feature

learning (p = 1, d = 0.1997; right bars, CT: Conjunction training, ST: Separate feature
training). * denotes p < 0.05, n.s. denotes non-significant. b Orientation LIs.
Orientation is learned faster and better when trained in conjunction with color
(experiment 1) than in the presence of task irrelevant color (experiment 4;
F(1,27) = 8.2049, p = 0.008, η2 = 0.2331). CLGF Conjunction Learning with Global
Feedback, CLFF Conjunction Learning with Feature-specific Feedback, SFL Sepa-
rate Feature Learning, OL Orientation Learning. Error bars represent the standard
error of the mean.
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Location transfer
So far,wehave appraisedvarious learning strategies for conjunction learning
and elaborated on possible neural resources recruited to serve this purpose.
Now, we take another approach to specify the neural resources conducive to
conjunction learning by investigating the underlying spatial receptive field
(RF) properties. To this end, we test all subjects at new spatial locations after
their initial training in a location transfer session. If the RFs of the trained
neurons overlapwith the new location, we should observe full transfer of the
learning effects to this new location. In contrast, if RFs are limited in size and
donot overlapwith the new location,we should see full or at least partial loss
of the training effects when the location is changed. Building further on this
logic, we can dissociate whether conjunction learning is carried by a single
population of mixed selectivity neurons, or whether pure orientation and
color tuned neurons, respectively, are (also) involved. This is because color
coding neurons have larger RFs than orientation coding neurons in early
visual cortex of monkeys5,26 and humans27–29. Hence, equal spatial transfer

results for orientation and color would suggest an involvement of a single
populationofmixed selectivity neurons (with equally sizedRFs for color and
orientation), while differential transfer for color and orientation would
suggest an involvement of color and orientation tuned neurons (with dif-
ferent RF sizes for the two features). To capture potential differences in RF
size, we tested transfer to a near (3 dva) and a far (6 dva) transfer location (at
iso-eccentricity, Fig. 6a) in Experiment 1 and 2; in Experiments 3 and 4, we
only tested the far transfer condition. We quantified transfer using a
Transfer Index (TI), comparing performances between transfer and test
sessions (seeMethods for details). ATI of 0 indicates no transfer of learning,
while a TI of 1 indicates full transfer to the new location.

For conjunctions, we found partial transfer (Experiment 1, near TI:
n = 10, mean = 0.7744, SD = 0.1935, p vs. 0 < 10−6, far TI: n = 9, mean =
0.7903, SD = 0.1102, p vs. 0 < 10−7; Experiment 2, near TI: n = 9, mean =
0.8347, SD = 0.0921, p vs. 0 < 10−8; far TI: n = 9, mean = 0.7385, SD =
0.1016, p vs. 0 < 10−7). TI did not significantly vary across transfer locations

Fig. 6 | Location transfer results. a Schematic illustration of the two transfer
locations, near and far (3 and 6 dva, respectively, from the training location).
b Differential receptive field (RF) sizes of pure orientation and color selectivity
neurons would lead to different transfer results for the two features: larger color RFs
entail larger overlap between trained and transfer locations (areamarked in orange),
and hence larger TIs compared to orientation. In contrast, mixed selectivity neurons
have identical RFs for color and orientation. This predicts no difference in Tis
between the two features. Red circles: trained location RFs, yellow circles: transfer
locations RFs. cTransfer Indices (TIs) for conjunction discrimination. There was no
significant difference between locations (near and far) and experiments (Location:

F(1,33) = 1.6076, p = 0.2137, η2 = 0.0465; Experiment: F(1,33) = 0.1302, p = 0.7206,
η2 = 0.0039; Location × Experiment: F(1,33) = 1.2071, p = 0.2798, η2 = 0.0353). d TIs
for single features. Orientation and color TIs are significantly different from each
other (Experiment 1, near TIs: p = 0.002, d = 1.1, far TIs: p = 0.1641, d = 0.73;
Experiment 2, near TIs: p = 0.0547, d = 1.13, far TIs: p = 0.0273, d = 1.1232,
Experiment 3, p = 0.0195, d = 1.0731). Dashed black lines in panels b and c show full
transfer (TI = 1). CLGF Conjunction Learning with Global Feedback, CLFF Con-
junction Learning with Feature-specific Feedback, SFL Separate Feature Learning,
OL Orientation Learning. Error bars represent standard deviation. ** denotes
p < 0.01, * denotes p < 0.05, n.s. denotes non-significant.
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(near vs. far) and experiments (two-way ANOVA; Location:
F(1,33) = 1.6076, p = 0.2137, η2 = 0.0465, Experiment: F(1,33) = 0.1302,
p = 0.7206, η2 = 0.0039, Location×Experiment: F(1,33) = 1.2071, p = 0.2798,
η2 = 0.0353; Fig. 6c). Orientation TIs followed a similar pattern (Fig. 6d),
with partial transfer across locations but no difference between them
(Experiment 1, near TI: n = 10, mean = 0.7129, SD = 0.2717, p vs. 0 < 10−4,
far TI: n = 9, mean = 0.7722, SD = 0.1256, p vs. 0 < 10−7; Experiment2, near
TI: n = 9, mean=0.7932, SD = 0.1407, p vs. 0 < 10−6, far TI: n = 9,
mean=0.7057, SD = 0.1407, p vs. 0 < 10−7). Moreover, there was no sys-
tematic difference in TIs for orientation between Experiment 1 and 2 across
locations (Location: F(1,33) = 0.4298, p = 0.5166, η2 = 0.0128, Experiment:
F(1,33) = 0.0904, p = 0.7656, η2 = 0.0027, Location×Experiment:
F(1,33) = 0.4959, p = 0.4862, η2 = 0.0148), and across all four experiments at
the far transfer location (one-way ANOVA; F(3,34) = 0.9548, p = 0.4252,
η2 = 0.0777). For color, however, a different pattern emerged. Here, we
found practically full transfer in the near (Experiment1, mean = 0.9462,
SD = 0.1273, p vs. 1 = 0.2145; Experiment 2, mean = 0.9195, SD = 0.0721, p
vs. 1 = 0.01), but not the far location (Experiment 1: mean = 0.8731, SD =
0.1499, p vs. 1 = 0.0347; Experiment 2: mean = 0.8351, SD = 0.0822, p vs.
1 = 0.0003). Consequently, color and orientation TIs were significantly
different especially at the near transfer location, with color having larger TIs
than orientation (two-sided sign-rank test, Experiment 1, near TIs: n = 10,
p = 0.002, d = 1.1, farTIs:n = 9, p = 0.1641, d = 0.73 ; Experiment 2, nearTIs:
n = 9, p = 0.0547, d = 1.13, far TIs: n = 9, p = 0.0273, d = 1.1232; Fig. 6d). The
sameheld true forExperiment 3 (n = 10, p = 0.0195, d = 1.0731). This can be
attributed to larger RFs for color than orientation (Fig. 6b). These results
suggest that pure selectivity neurons (with different RFs for color and
orientation, respectively) also partake in conjunction learning. Together
with our earlier results on non-linearmixing in conjunction learning, this is
most in line with a global pooling strategy in which pure color, pure
orientation, and mixed selectivity neurons are combined to give rise to
choice information.

Learning effects on constituent features (pre-post training
comparison)
In the preceding sections, we have shown that global feedback (Experiment
1) favors nonlinear integration of color and orientation during conjunction

learning, speaking to an involvement of non-linearly mixed selectivity
neurons in this learning process. Moreover, we have shown on the basis of
differential location transfer results for color and orientation that purely
color and orientation coding neurons also contribute to conjunction
learning. We now sought to compare learning effects on pure selectivity
neurons among all experiments (1 to 4). To this end, we repeated the
orientation and color discrimination task we used to determine perceptual
difficulty levels on the first day (pre) after completion of test and transfer
tasks on the final day (post). Unlike in the main experiments, in which
stimuliwere definedbyboth features, orientation andcolor, onlyone feature
was present in each task for the pre and post measurements. Therefore,
performance on the pre/post tasks is diagnostic in determining the plasticity
of pure selectivity neurons.

We found statistically significant learning effects across all
experimental groups for orientation (two-sided sign-rank test,
Experiment 1, n = 19, z = 3.7429, p = 0.0002, d = 1.9544; Experiment 2,
n = 18, z = 3.071, p = 0.0021, d = 1.119; Experiment 3, n = 10, p = 0.002,
d = 2.0685; Experiment 4, n = 10, p = 0.002, d = 2.3461; Fig. 7a). Simi-
larly, we found improvements for color in Experiments 1, 2 and 3
(Experiment 1, z = 2.2337, p = 0.0255, d = 0.7; Experiment 2,
z = 3.1953, p = 0.0014, d = 1.2995; Experiment 3, p = 0.0195,
d = 1.2632) but not Experiment 4 (p = 0.4258, d = 0.4684; Fig. 7b),
where color was irrelevant and should be suppressed30. These
improvements did not differ significantly between experiments (mixed
repeated measure ANOVA; Orientation, Timepoint:
F(1,53) = 132.1539, p < 10−15, η2 = 0.7286, Experiment:
F(3,53) = 0.2227, p = 0.8802, η2 = 0.0124, Timepoint × Experiment:
F(3,53) = 1.7039, p = 0.1774, η2 = 0.088, Color, Timepoint:
F(1,53) = 24.9849, p < 10−5, η2 = 0.3417, Experiment: F(3,53) = 0.9902,
p = 0.4046, η2 = 0.0531, Timepoint × Experiment: F(3,53) = 1.3723,
p = 0.2613, η2 = 0.0721).

This result provides another piece of evidence that pure selectivity
neurons were also involved in training in all experiments. However, their
involvement did not differ between experimental manipulations. This
implies that significantly better learning in Experiment 1 compared to the
others is due to non-linearmixing of color and orientation, and not learning
effects on color and orientation by themselves.

Fig. 7 | Learning effects on constituent features, pre-post comparison.
a Orientation discrimination performance significantly improved after training in
all experiments (Experiment 1, p = 0.0002, d = 1.9544; Experiment 2, p = 0.0021,
d = 1.119; Experiment 3, p = 0.002, d = 2.0685; Experiment 4, p = 0.002, d = 2.3461).
b Likewise, color discrimination performance improved in all experiments where
color was task-relevant (Experiment 1, p = 0.0255, d = 0.7; Experiment 2, p = 0.0014,

d = 1.2995; Experiment 3, p = 0.0195, d = 1.2632), but not in Experiment 4 where
only orientation was trained (p = 0.4258, d = 0.4684). CLGF Conjunction Learning
with Global Feedback, CLFF Conjunction Learning with Feature-specific Feedback,
SFL Separate Feature Learning, OL Orientation Learning. Error bars represent the
standard error of the mean. *** denotes p < 0.001, ** denotes p < 0.01, * denotes
p < 0.05, n.s. denotes non-significant.
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Transfer to XOR task
If non-linear mixed selectivity neurons emerge as a result of training with
global feedback in Experiment 1 but not in Experiment 2, this leads to
another prediction: namely, that subjects trained with global feedback
should be at an advantage in solving a non-linearly separable task based on
color and orientation compared to subjects trained with feature-specific
feedback, because the former have already developed representations that
could support task performance in this case.

We tested this prediction by assessing how well subjects previously
trained with global or feature-specific feedback in Experiments 1 and 2,
respectively, could transfer learning effects to an exclusive or (XOR) task. In
this 2AFC task, subjects had to respond to red-clockwise or purple-
anticlockwise with a response to the right target and purple-clockwise or
red-anticlockwise with a response to the left target (Fig. 8a). As in the
original conjunction learning task that we used in Experiments 1 and 2, our
XOR task required discrimination of conjunctions but, unlike in the origi-
nal, linearly separable task, it required non-linear mixing of color and
orientation for successful task performance.

Six subjects from Experiment 1 and 2, respectively, we re-invited to
perform the XOR task approximately nine months after they had finalized
training. Both groups had retainedmore than 80% of the performance level
they had attained on the original conjunction task (Timepoint TIs (Con-
junction test vs. Reminder); Exp1: mean=0.8716, SD = 0.0641, Exp2: mean
= 0.818, SD = 0.1889, Experiment 1 vs. 2 rank-sum test: p = 0.3939,
d =−0.38). We then analyzed differences in accuracy between the original
conjunction test and the XOR task using TIs between tasks (which accounts
for the differences in chance levels of the two tasks). We found that both
groups performed almost equally well on the XOR task in terms of accuracy
(Task TIs (Conjunction test vs. XOR), Exp1: mean = 0.55, SD = 0.0647,
Exp2: mean = 0.4623, SD = 0.1258, Experiment 1 vs. Experiment 2 rank-
sum test: p = 0.132, d =−0.8753).However, the degree of non-linearmixing
(NM, as assessed using a GLME model akin to the one used to compare
Experiments 1 and 3, see Methods) was significantly larger for the group
trained with global feedback than the group trained with feature-specific
feedback (Experiment 1 as a reference; NM: β = 0.2332, p < 10−23, Experi-
ment: β =−0.24, p = 0.2033; NM × Experiment: β = -0.1035, p = 0.0003).
We then considered reaction times (RTs) differences on the Conjunction

and XOR task. This is because it is well known that accuracy by itself does
not necessarily differentiate performance in linearly from performance in
non-linearly separable tasks31. However, RTs can provide additional insight
whether subjects perform non-linear tasks by solving them for two features
sequentially. We compared RTs between groups for each color-orientation
difficulty level combination (36 RT values per subject; Fig. 8b). We found
significant differences in how quickly subjects with different training his-
tories could execute the conjunction and XOR tasks, respectively (Experi-
ment: F(1,10) = 0.0072, p = 0.934, η2 = 0.0007, Task: F(1,850) = 763.4,
p < 10−15, η2 = 0.4732, Experiment × Task: F(1,850) = 26.72, p < 10−6,
η2 = 0.0305). To further probe the RT differences between the two groups,
we computed a RT bias index for the full RT profiles. This bias index was
defined as the distance from equality where RT for Conjunction equals RT
for XOR (see Methods). This revealed that subjects trained with feature-
specific feedback were slower in the XOR task (relative to the conjunction
task) than subjects trained with global feedback (Fig. 8c;
z =−4.6177, p < 10−5).

Together, these results suggests that subjects originally trained with
global feedback were able to use non-linear mixing of color and orientation
information to solve the XOR task, whereas subjects trained with feature-
specific feedback relied on a different, slower strategy not involving non-
linearly mixed selectivity.

Discussion
Conjunction learning is indisputably an important aspect of perceptual
learning, particularly in realistic situations in which learning one feature,
among many that define objects, would not lead to success. Nevertheless,
most studies to date have primarily focused on single feature learning or
attentional selection of feature conjunctions in the context of visual
search32–35. In the present study, we evaluated possible mechanisms for
conjunction learningwhichdiffer in the populationsof neurons theyrely on.
We found that conjunction learning can be accounted for by an improve-
ment of global read out processes across neurons that code for constituent
features and neurons with mixed selectivity for feature combinations.
Removing or reducing the contribution of the latter population by using
feature-specific instead of global feedback still enabled learning conjunc-
tions, but resulted in less efficient learning. Simple summing of color and

Fig. 8 | Response time (RT) comparison betweenXORand conjunction tasks. a In
the XOR transfer task, subjects had to respond with an eye movement to the left for
red-anticlockwise and purple-clockwise stimuli, and to the right for red-clockwise
and purple-anticlockwise stimuli. Colors and orientations in the XOR task were
identical to the ones used in the conjunction task (and are only displayed for illus-
tration purposes here). bResponse times (RT) in the XOR task were generally slower
than in the conjunction task (RT bias toward XOR), but this effect was larger in
Experiment 2 than in Experiment 1 (mixed repeatedmeasure ANOVA; Experiment:

F(1,10) = 0.0072, p = 0.934, η2 = 0.0007, Task: F(1,850) = 763.4, p < 10−15,
η2 = 0.4732, Experiment×Task: F(1,850) = 26.72, p < 10−6, η2 = 0.0305). Dashed blue
line signifies RT equality (XOR = conjunction). Histograms of RT biases (distance
from RT equality XOR=conjunction) are shown in the top right corner (black:
Experiment 1, red: Experiment 2). c Biases from the equality line where RT in
XOR = RT in conjunction (bias=0, signified by dashed blue line). The bias towards
XOR is significantly larger in Experiment 2 than in Experiment 1 (p < 10−5). Error
bars represent standard deviation. *** denotes p < 0.001.
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orientation information could not account for our results, as evidenced, e.g.,
by thefinding that learning effects on separate featuresdidnot transfer to the
conjunction task. Together, these findings highlight the role of mixed
selectivity in conjunction learning.

Mixed selectivity neurons explicitly provide task-relevant information
in conjunction learning tasks. They have been described in a number of
brain areas across species, including in visual cortex36–44. Mixed selectivity
neurons are thought to improve decoding of information in downstream
areas by increasing the dimensionality of the representational space, thus
enabling additional hyperplanes for linear decoders operating in population
space that can aid difficult and even non-linear discrimination
problems45–47. Furthermore,mixed selectivitymassively reduces the number
of decoding errors relative to pure selectivity19. These benefits may explain
why learning in Experiment 1, in which global feedback favored the
incorporation ofmixed selectivity neurons (Fig. 1a), exceeded learning in all
other experiments. Learning was however also possible when feedback did
not favor the incorporation of non-linear mixed selectivity. Theoretical
studies have shown that pure selectivity neurons are sufficient to encode all
individual task-relevant features under certain conditions46. Hence, mixed
selectivity neurons are not strictly required to solve conjunction tasks, but
may provide important benefits for learning, evenon the single feature level.

In fact, all task-relevant information could in theory be read out from
non-linearly mixed selectivity neurons in the absence of neurons coding
purely for the constituent features46. Hence, a readout strategy that would
rely exclusively onmixed selectivity neurons to solve the conjunction task is
feasible and would at the same time minimize the number of neurons or
weights that need to undergo plasticity during learning. This would be in
accordance with precision pooling theories that suggest that the brain only
reads out the most diagnostic neurons for a task at hand21,48,49. Yet, we did
notfindstrong evidence that conjunction learning relied exclusively onnon-
linear, conjunction encoding representations. Instead, several lines of evi-
dence suggest that pure selectivity neurons are also involved in our task.Our
findings seem thus more in line with readout theories that suggest that all
active neurons are read out22–24. One reason for this may lie in the strong
separation of color and orientation coding stimuli in early visual cortex.
Color and orientation are long thought to be represented by distinct
populations of neurons1. More recent studies have shown that this
separation is not absolute and that color-orientation conjunction coding
neurons exist, albeit in very limited numbers (~10% of the population)12.
This creates a trade-off: reading out information from a larger pool that
contains a majority of neurons that do not explicitly code conjunctions, or
from a small pool of highly informative neurons. Selective readout of highly
informative neurons assures a high signal-to-noise ratio in principle but
may be prone to noise if the readout pool is small. Furthermore, this readout
strategy requires switching the population from which information is read
out on a trial-by-trial basis. Uniform readout of all neurons, in contrast,may
not always reach the same level of precision since suboptimally tuned
neurons are also read out. However, it does not require switching the
readout pool when variable stimuli are dealt with, and may be less prone to
noise because of the large number of neurons involved. Moreover, different
neural resources located at different stages of hierarchy could differ in
information they provide. For example, neurons in V4 might be more
informative for color while V1 neurons are more sensitive in representing
orientation. Global pooling may also have the advantage of recruiting all
available resources across the visual hierarchy rather than relying on a
particular region where a task-relevant feature is not optimally encoded in.
Our results suggest that the brain favors a more global readout policy,
relying on a larger pool of neurons, at least in the case of discriminating
orientation-color conjunctions.

Our results also suggest that global feedback is particularly effective in
driving conjunction learning. This relates to the question of credit assign-
ment. Credit assignment determines which units (pure/mixed) are selected
for plasticity as much as the degree of plasticity that these units undergo.
Theoretical models often consider credit assignment and associated
synaptic weight updates as a local rather than a global process: the most

informative units, and not all available units, are subject to plasticity. E.g., in
Attention Gated Reinforcement Learning50, which is a biologically plausible
model of learning that has been extended to multi-feature learning51, input
units which are highlighted by attention receive the largest weight updates.
Yet, we know that plasticity in the brain is governed by neuromodulators
which tend to take effect on a broad scale. A recent theoretical study has
proposed a learning rule based on global credit assignment, in which one
error vector is computed in the output layer and then globally broadcasted
back to the hidden and input layers to update weights52. This architecture is
on par with other state-of-the-art learning algorithms that rely on local
weight updates. Together, this suggests that learning by global credit
assignment is computationally feasible and biologically plausible.

Single feature learning, in particular of orientation, also benefited from
global feedback during conjunction training. However, highly effective
single feature learning was not unique to the global feedback condition
during conjunction training (Experiment 1), but also occurred in Experi-
ment 3, when subjects were post-cued to attend either color or orientation.
However, Experiment 4, in which only orientation was task-relevant, and
which had double the number of trials than Experiment 3, showed less
improvements in orientationdiscrimination thanExperiments 1 and3.This
may be because variability in a highly salient yet unattended feature may
block or at least insert noise to credit assignments and thus impair learning.
This would be consistent with the finding that top-down attention can be
insufficient in suppressing highly salient color distractors53. More spec-
ulatively, the diminished learning effects in Experiment 4 might also indi-
cate that mixed orientation-color representing neurons exist in larger
numbers and/or play a more critical role than previously thought. In this
case, task-irrelevant color information would be more difficult to filter out
from the readout pool andmay thus have had an excess effect on orientation
learning.

Another interesting finding in this study is steeper learning curves in
conjunction learning with global feedback (Experiment 1) compared to the
other experimental conditions (Fig. 5b), whichwe observed during the early
training phase (days 1 and 2). Can non-linearmixed selectivity also account
for this effect? In principle, if decoding accuracy for a single feature is p,
decodingaccuracyof two independent features coming frompure selectivity
sources decays as p2, while decoding accuracy ofmixed selectivity would not
decay by the same extent, resulting in higher learning rates. Previous evi-
dence on whethermixed selectivity, compared to pure selectivity, speeds up
or slows down learning, however, is somewhat mixed. A theoretical study
has shown that the larger the number of mixed selectivity neurons in a
network, thehigher the achievable learning rates45. Yet, it has beenarguedon
empirical grounds that single feature learning by pure selectivity is faster
than conjunction learning by mixed selectivity, because the former can
entail more frequent weight updates54. This study explored unsupervised
learningwithhigh-dimensional stimuli andwith a variable reward schedule.
The authors show, in this particular environment, that subjects started
learning stimulus-reward associations by attributing reward probabilities to
single features even if conjunctions were more informative of the reward.
Subjects then slowly converged onto conjunction associations as they
explored the stimulus space in the course of training. Our study differs from
this previous study in several respects, in particular because we used a fixed
reward schedule, supervised learning, and low-dimensional conjunctions.
Future studies explicitly geared to these parameters will be needed to
determine if and when mixed selectivity expedites unsupervised conjunc-
tion learning.

It is worth reemphasizing that the benefits of global feedback that we
attribute to the incorporation of mixed selectivity neurons in conjunction
learning occurred for a linearly separable task. This concurswith the finding
that mixed selectivity exists in the brain even when it is not strictly beha-
viorally relevant19. However, we also found evidence that subjects trained
with global feedback had an advantage over subjects trained with feature-
specific feedback in transferring learning effects to a non-linear XOR task,
even several months after the initial training. XOR tasks are a canonical
example of non-linear separability47,55. The reason is that a linear decoder
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can immediately read out XOR information from non-linear mixed selec-
tivity units. A recent empirical study has shown that mixed-selectivity
neurons in early visual, retrosplenial, and posterior parietal cortex of mice
indeed predict accuracy on discrimination tasks on a trial-by-trial basis,
underlining the biological validity of this concept37. While non-linear
mixing of color and orientation information predicted subjects’ accuracy
during the XOR task in the group previously trained with global feedback,
we did not observe differences in accuracy on theXOR task between the two
training histories on average. However, it has been argued that when non-
linear tasks such as the XOR task are verbalizable, they can be decomposed
into two separate feature tasks and solved sequentially56. E.g., in our task,
subjects could first determine color and then respond to orientation. In this
case,XOR tasks canbe solvedusingonlypure selectivity neuronsbut require
prolonged deliberation time. Indeed, we observed that subjects trained with
global feedback were faster in executing the XOR task than subjects trained
with feature-specific feedback. This suggests that the emergence of mixed-
selectivity neurons in conjunction learning with global feedback enables
incorporating these units into new, non-linear tasks.

In summary, using several experimental manipulations and a com-
prehensive analysis, bolstered by sufficiently large sample sizes, we have
evaluated several scenarios that could possibly account for conjunction
learning.Among those, conjunction learning on the basis of bothmixedand
pure selectivity neurons under a global pooling strategy most comprehen-
sively explained our results. Additionally, global pooling strategy also con-
fers the advantage of readout from and across all levels of visual hierarchy.
Thus, mixed and pure selectivity resources engaged in conjunction learning
could, and possibly would, reside in different stages of visual stream.

There is an ongoing debate whether perceptual learning is the result of
changes in the encodingof features57, or changes in the readoutof features by
downstream areas58.While we have used the term “readout” to interpret our
results, we acknowledge that we cannot solve this critical question in the
present behavioral study. However, the finding that non-linear mixed
selectivity is involved in conjunction learning does not depend upon whe-
ther learning happens by improved readout from non-linearly mixed
representations or improved encoding of such representations. We leave
this question for future physiological investigations.

An alternativemechanism thatmay explain non-linearmixing of color
and orientation information is differential scaling of pure selectivity chan-
nels using feature-based attention instead of involving non-linear mixed
selectivity. However, this interpretation is at odds with our experimental
design as well as several of our results: (i) by design, color and orientation
were equally important in the conjunction task and stimulus difficulty was
individually matched during pre-learning measurements; hence, it is unli-
kely that attention was allocated differentially to the features to result in a
non-linear combination; (ii) our task was linearly separable, hence, if
attention is themain driver of feature combinations, it should lead to linear,
rather than non-linear,mixing.We find the opposite trend in ourGLMand
RL model results; (iii) when we quantified correlations between stimulus
difficulty and error rates across learning days, we found that the values for
orientation and color converged as the learning proceeded in Experiment 1,
unlike in the other experiments (Supplementary Fig. 2). This implies that
orientation and color information became unified during learning. This
finding, in addition to the fact that MRL outperformed SRL in Experiment
1 suggests that errors stem from identical/overlapping sourcesafter learning;
finally, (iv) the transfer to the XOR task, which strictly tests non-linearity,
strongly implicates an involvement of non-linearly mixed channels in the
learning process.

Future physiological studies are required to further probe the neural
underpinnings of conjunction learning and to explore the mechanistic role
as well as the locus ofmixed selectivity neurons in this context. In particular,
while several physiological studies have found neurons co-tuned for color
and orientation in visual cortex12–17, it is also possible that mixed repre-
sentations only or additionally arise in higher areas, e.g., parietal59 or frontal
regions38,39,42,43, which read out visual cortex. Settling this question will
require direct evidence from physiology. Furthermore, it remains to be

determined how conjunction learning affects decision making processes. A
recent study investigating decision making for feature conjunctions repor-
ted that features are processed in parallel but integrated serially into one
decision60. How learning affects these processes remains a question for
future studies.

Methods
Participants
Participants aged18 to 45withnoprevioushistory of neurologic/psychiatric
disorders with normal or corrected to normal vision were invited for the
experiment. This invitation sent via an online recruitment system of the
European Neuroscience Institute Göttingen (ORSEE61) and hence, most of
them were students or university employees. A brief D15 color vision test62

was performed to exclude subjects with impaired color vision. In total 63
participants volunteered for the experiments. Of those, 4 failed to improve
throughout training and were thus excluded from the analysis, leaving 59
participants in total (39 female, 3 left-handed,mean age 26 yrs, SD 4.16 yrs).
19 participated in Experiment 1 (13 female, 1 left-handed, mean age
24.84 yrs, SD 4.25 yrs), 18 in Experiment 2 (12 female, 1 left-handed, mean
age 27.7 yrs, SD 4.82 yrs), 12 in Experiment 3 (7 female, 0 left-handed,mean
age 25.8 yrs, SD 3.19 yrs), and 10 in Experiment 4 (7 female, 1 left-handed,
mean age 25.2 yrs, SD 3.08 yrs). No sample size estimation was performed
but sample sizes were larger or at least equal to previous perceptual learning
studies. All participants were paid 8 €/hour. Tomaintain motivation across
whole sessions, theywere additionally paidby2€/hour for any improvement
from their last score. Participants were fully instructed for the experiment
and gave a written informed consent before participation. All procedures
were in accordance with the Declaration of Helsinki and approved by the
Ethics Committee of the University Medical Center Göttingen (protocol
number 29/8/17).

Stimuli and procedure
Participant in all experiments were trained on orientation and/or color
discrimination tasks (detailed below). The experiments took place over 3 to
5 consecutive dayswith one training session per day. Thus, training sessions
were separated by one night of sleep. Stimuli were presented on an LCD
monitor (ViewPixx EEG, refresh rate 120Hz, resolution 1920 × 1080 pixel,
viewing distance 65 cm) in a darkened, sound-attenuating booth (Desone
Modular Acoustics). Stimulus delivery and response collection were con-
trolled using Psychtoolbox (Brainard, 1997) running in Matlab (The
Mathworks, Inc.) onWindows 10.During all experiments, we continuously
acquired pupil and gazemeasurements using a high-speed, video-based eye
tracker (SR Research Eyelink 1000+). Participants had to report their
choices with a saccade aimed at defined circular target positions on the
screen. For a valid response, they had to hold their fixation for 500ms until
they heard a click sound informing them that the response was accepted.
The trials with shorter fixation duration or saccades during the fixation
period were aborted and repeated at the end of the block.

Experimental design
Pre and post training orientation/color discrimination task. These
tasks were designed to identify individual difficulty levels in orientation
and color discrimination. To this end, 15 color and 15 orientation levels
were displayed in a formof solid disc or square-wave gratings in theColor
and Orientation Discrimination tasks, respectively (CD and OD). In the
CD task, color levels were iso-luminant chromaticities sampled from the
red-purple spectrum of Lab space (L = 25, a = (96: 54), b= (−4: −46),
luminance = 15.74 cd/m2; black dots in Fig. 2b). The orientation levels in
OD task were gray unipolar squared-wave gratings with polar angles
ranging from 36–54° (45° and 45°±Δ=[0.7°, 1.5°, 2.5°, 3.5°,5°, 7°, 9°]).
Other parameters were fixed between gratings (spatial frequency = 2 cpd,
luminance 15.85 cd/m2, gray intensity = 0.4). The phase of the gratings
randomly took one of four values (144°,168°, 192°, 216°) on each trial. All
stimuli, whether colored discs or gray gratings, spanned 3° of the visual
field and was presented on the southeast diagonal at 6° eccentricity
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(distance from bothmeridians = 4.24°) against a black background. Each
stimulus condition repeated 13 times in the pre and 10 times in the post
training sessions (described below). Responses to the first presentation of
stimuli in the pre training sessions were excluded from analysis due to the
probable novelty bias.

Each trial started with a fixation phase (500ms). Then, the stimulus
was presented for 200ms, immediately followed by two circular targets
which appeared either on the bottom and top side of the central cross (color
task, CD), or on the right and left side of the cross (orientation task, OD) as
shown in Fig. 2a. Participants were instructed to respond by a saccade
directed toward either of those targets with the following codes: In the CD
task, top target coded reddish and bottom target coded purplish colors.
Correspondingly in theOD task, right and left targets represented clockwise
or anti-clockwise tilt from the diagonal axis (45°), respectively (Fig. 2c).
Participants were asked to respond as accurately and quickly as possible but
without a time limit. The reference grating (45°) was presented before the
initiation of the OD task for a duration controlled by the participant (to
proceed to the task, they had to press a button on keyboard). The trials were
separated by an inter-trial-interval (ITI) of 500ms. Participants were free to
take a break whenever they want between the trials. However, short breaks
(at least 30 s) were inserted every 90–140 consecutive responses to avoid
oculomotor fatigue.

Psychometric curves were obtained using aWeibull fit to the response
probabilities of the chromaticity and orientation levels (Fig. 2d). Based on
these curves, the points in stimulus space (LAB values or polar angles) that
correspond to 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 response probabilities were specified.
This procedure resulted in 36 chromatic gratings which varied in both
orientation and color dimensions (6 orientations × 6 colors = 36). These
values were later used to shape individualized stimulus spaces for the main
course of training.

BothOD andCD tasks were repeated on thefinal day after completion
of training phase to provide a measure of how orientation and color dis-
crimination was affected by each experiment.

Experiment 1, conjunction learning with global feedback
Training phase. In Experiment 1, participants had to combine orientation
and color to come up with a single response. A chromatic grating was
presented at 6° eccentricity while subjects were fixating on the central
fixation cross. Stimulus size and location were identical to the preceding
OD/CD tasks. After stimulus offset, participants faced 4 disc-shaped gray
targets on the diagonals of the screen (9° away from center). They had to
report the orientation-color conjunction by looking at one of those, com-
bining the assignments of the previously performed pre-training OD/CD
task: reddish top, purplishbottom, clockwise right, anti-clockwise left. E.g., if
subjects perceived a reddish clockwise tilted grating, they had to direct their
gaze to the top right target. Each choice was followed by audiovisual feed-
back informing of response correctness on the conjunction level. After
correct choices, the targets color changed from gray to green accompanied
with a click sound, and after error choices, the target became red accom-
panied by an error sound (Fig. 2e).

Training continued for four days. The first day contained 576, the
second and third day 1080, and the last day 216 trials. Every ~500 trials were
consideredone trainingblock in analyses as an indicator of trainingprogress
in time.Thisway, thefirst day consistedof one, and the secondand thirdday
of 2 blocks each. Training on the last day served as a reminder and not
considered for the analysis. Presentation order of stimuli was randomized
across trials.

Test phase. Following a brief training session on the final day, participants
were tested on their performance on the task they had been trained for. The
test session was identical to the training sessions but with no choice feed-
back. This session consisted of 432 trials.

Transfer phase. The transfer phase was similar to the test phase, but we
systematically changed the location of the stimuli. Stimuli were presented in

two different locations on the screen (location transfer). In the near transfer
condition, stimuli were moved 3° upward. In the far transfer condition,
stimuli were moved 6° in the opposite direction (Fig. 6a). Eccentricity and
stimulus size were identical to the test and training sessions. Not all parti-
cipants performed both transfer tasks to prevent interference effects, yet,
they were randomly assigned either to the near or the far transfer groups
(n = 10 in the near, and n = 9 in the far transfer group).

Experiment 2, conjunction learning with feature-specific feedback.
Subjects performed the same task as in Experiment 1., but different
feedback that was provided on each trial: instead of global feedback
(conjunction level), subjects were provided with feature-specific feed-
back. Following saccades to the response target, the circular disc shape of
the target was changed into a half-grating half-disc shape. The left half-
grating’s color, which was vertical parallel lines, carried orientation
feedback and the right half-disc’s color carried color feedback (Fig. 2e).
Akin to Experiment 1, and all other experiments, green represented
correct and red represented error choices.

This design aimed to enable parallel feature learning. Due to the pos-
sible higher cognitive load of dual feedback and hence incremented pro-
cessing time, the minimum ITI, that is the minimum time subjects should
hold on before initiating the next trial, was increased from 200ms to
1000ms. Thiswas done to ensure that subjects had sufficient time toprocess
the feedback before continuing to the next trial. Post hoc analyses show that
the difference in ITIs did not affect learning outcomes. In particular, there
were no statistically significant correlations between subjects’ ITI and
Learning Indices in the last block, i.e., block 5 (Supplementary Fig. 1,
Pearson correlation between subjects’ ITI and LI; Experiment 1: Orienta-
tion, r =−0.1636, p = 0.5032, Color, r =−0.0191, p = 0.9382, Conjunction,
r = 0.08, p = 0.7447; Experiment 2: Orientation, r = 0.1536, p = 0.5429,
Color, r = 0.1605, p = 0.5245, Conjunction, r = 0.2204, p = 0.3795; com-
paring correlations between experiments:Orientation, Fisher’s z =−0.8902,
p = 0.3734, Color, z =−0.5037, p = 0.6145, Conjunction, z =−0.4003,
p = 0.6889).

Test and transfer phases were similar in design to Experiment 1.

Experiment 3, separate feature training. Stimuli were identical to
Experiments 1 and 2. However, instead of training conjunction dis-
crimination, participants were trained on single feature (orientation/
color) discriminations. Orientation and color trials were half-split and
randomly intermixed across the training sessions, so that it was impos-
sible to anticipate the next trial (orientation or color). This means that
each trial’s task (orientation or color) was only known after the stimulus
offset depending on the post-cue target positions. If the two response
targets appeared on the bottom-top sides of the screen, color had to be
responded to, and otherwise, if the targets appeared on the right-left sides,
subjects had to report orientation (Fig. 2e). We reasoned that this would
make participants attend to, and hence process, both features during
stimulus presentation, but only respond to and receive feedback on one of
them. This design aimed to relieve higher cognitive load of Experiment 2
due to dual feedback structure while preserving similar input to the
involved neurons in the learning process. Feedback was provided for the
respective post-cued feature.

On the final day, participants were split into two groups. One group
continued separate feature training (n = 6), while the other group received
conjunction training as in Experiment 1 (n = 6). This last training session
entailed 216 trials in both groups.

Test phase. Participants underwent two types of tests, Separate Test (ST),
and Conjunction Test (CT), without feedback. The paradigm in the former
was similar to training sessions (separate feature training) while the para-
digm in the latter changed to the format implemented in Experiment 1,
conjunction discrimination. Due to the longer duration of last day that
consisted of several tasks, 3 participants performed all tasks on the 4th day,
while the rest of the subjects preferred to return for a 5th day. It should be
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highlighted that in the participants who opted for 5 days and were in the
conjunction training group, this training was carried out on the 5th instead
of the 4thdaywhile on the 4thday they continuedwith their usual paradigm
(separate feature training). Only the far location transfer was tested in this
experiment.

Experiment 4, single feature training. This experiment was about
orientation training in the presence of task irrelevant variable color.
Hence, only orientation had to be reported, ignoring the color dimension
(Fig. 2e). Compared to the stimulus preparation of the other experiments,
one major change was applied here: instead of taking the 6 color levels
from the individually determined difficulty levels (OD task), they were
equally sampled from the whole red-purple spectrum, keeping the largest
possible inter-level distances. This was done to increase color saliency
maximizing its distracting effect.

Test phase. As in the other experiments, the tasks in the test sessions were
identical to the training session but no feedback was provided. As for
Experiment 3, only the far transfer condition was tested.

Exclusive Or (XOR) transfer. 6 participants from Experiment 1 (4
female, 1 left-handed, mean age 27.33 yrs, SD 5.95 yrs), and 6 from
Experiment 2 (4 female, 0 left-handed,mean age 26 yrs, SD 2.83 yrs) were
invited to perform a single-session XOR task. This was done several
months after they had finished their training (~11 months after
Experiment 1 and ~6months after Experiment 2). Prior to the XOR task,
they were reminded of what they have learned by doing ~500 trials of the
original conjunction task (with feedback). The XOR task, akin to the
conjunction task, requires conjunction discrimination but with a dif-
ferent underlying rule. Subjects had to determine if the presented sti-
mulus was Red-Clockwise or Purple Anticlockwise by looking at the right
target, or conversely, or whether it was Purple-Clockwise or Red-
Anticlockwise by a saccade aimed at the left target (Fig. 8a). Hence, this
task, unlike the conjunction discrimination tasks of Experiment 1 and 2,
could not be done by a linear combination of the two features.

Statistical Analysis
Learning Index. Learning was measured and tracked using a baseline
normalized performance index63. For this, we first defined baseline as
performance on the first 108 trials of the first training day. Then, a
Learning Index (LI) was defined using Eq. (1):

LI ¼ Block Performance� Baseline
Baseline

ð1Þ

Within and between comparisons were then performed on these
indices, computed separately for each block and each participant. To
compare LIs between experiments,mixed repeatedmeasureANOVAswere
performed on Aligned Ranked Transformed (ART)64 LIs. To scrutinize
difference between the two conjunction learning experiments (Experiment
1 and 2), contrast tests65 were performed to compare baseline to each of
timepoint’s LI (Blocks) across the two experiments (Baseline –Block1,2,… |
Experiment 1 vs Baseline – Block1,2,… | Experiment 2).

GLM analysis. We used generalized linear mixed models (GLME) to
determine the effect of non-linear and linear mixing on the learning
curves. To define these two terms, we first defined Orientation Strength
(OS) and Color Strength (CS) as a relative distance of a given feature level
from chance level. Using this metric, the perceptual levels of 0.2, 0.3, 0.4,
0.6, 0.7, 0.8 yielded in relative strength values of 3, 2, 1, 1, 2, 3, respectively.
Non-linearMixing (NM) and LinearMixing terms (LM)was dot product
and sum of OS and CS values of a given stimulus in a given trial,
respectively (NM =OS×CS, LM =OS+ CS).

Todetermine learning effect on these two terms,wemultiplied themby
training blockwhichwas an integer from1 to 6, giving rise to non-linear and

linear learning terms (LNM=NM×Block, and, LLM= LM×Block). These
predictors were then fed to a GLMEmodel to predict conjunction response
probability of each trial using Eq. (2):

logit Pij
� � ¼ β0þ β1LNMijþ β2LLMijþ bi ð2Þ

Where Pij was probability being correct (0 or 1) of subject i in trial j, LNMij
and LLMij were non-linear and linear learning terms of subject i in trial j,
and bi was the random-effects intercept for participant i that accounts for
subject-specific variation.

To study the effect of experiment on either of the terms, it was factored
in the model as described in the Eq. (3):

logit Pij
� � ¼ β0þ β1LNMijþ β2LNMij× experiment þ β3LLMij

þβ4LLMij× experiment þ bi
ð3Þ

where experiment was categorical moderator in the model. Experiment
1 served as reference. Hence, a negative coefficient means declining from
Experiment 1 to 2.

To compare non-linear mixing between the conjunction test sessions
of Experiment 1 to 3, we used the following model provided in the Eq. (4):

logit Pij
� � ¼ β0þ β1experiment þ β2NMijþ β3NMij× experiment þ bi

ð4Þ
Again, Experiment 1 served as reference and experiment labels 1 to 3

were categorical moderators.
Finally, non-linear mixing on the XOR tasks for subjects trained in

Experiment 1 and 2were comparedusing themodel provided in the Eq. (5):

logit Pij
� � ¼ β0þ β1experiment þ β2NMijþ β3NMij× experiment þ bi

ð5Þ

Here Pij was probability correct in the XOR task of participant i, trial j.
Experiment 1 and 2 were the two categorical moderators and Experiment 1
was the reference for comparison.

Reinforcement Learning Models fitting procedure. To design the
Reinforcement Learning (RL) models, we followed the procedure
introduced in66 and67 in which in each trial, a Decision Variable (DV) is
computed based on the stimulus value (x) and a perceptual weight (W),
and then updated with a reward prediction error δwith a learning rate α.
In our design, each trial’sDV for orientation and color features (DVot and
DVct) is computed by multiplication of corresponding stimulus strength
to their weights (DVot =OSt · Wt, DVct = CSt · Wt, where OS and CS
being the Orientation Strength and Color Strength respectively). The
model’s choice is then computed by Eq. (6):

P ¼ 1
1þ e�β�ðDV�cÞ ð6Þ

where P is the probability of clockwise/purple, DV is DVot or DVct
(orientation/color), and β and c are the slope and the bias terms of the
Weibull function respectively. Then theExpectedValue (EV) of the trialwas
computed based on absolute values of DV using Eq. (7):

EV ¼ 1
1þ e�β� DV�cj jð Þ ð7Þ

From here on, the two RL models, Mixed channel RL (MRL) and
Separate channel RL (SRL), diverge: in the MRL model, the two EVs that
were computed for orientation and color (EVot and EVct) were multiplied
to give the trial’s joint EV (EVt= EVot · EVct). In SRL, the two EVs (EVot
and EVct) were kept separate from each other throughout learning (EVt =
EVot or EVct).
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Then, the rewardprediction error (δt)was computedby comparing the
reward EV of the trial with the actual reward (rt = 0 or 1, δt = rt – EVt).
Finally, the stimulus weight was updated according to the prediction error
(δt) with a learning rate, α, in the following way provided by the Eq. (8):

Wtþ1 ¼ Wt þ δt�α ð8Þ

Prior to the RL process, initial values of model parametersW(t=1), β, c
were found by fitting P (given by equation X) to the subject’s choices in the
baseline (the first 180 trials) using the fmincon function of MATLAB. The
following constrains were applied to ensure a reasonable fit:

0:8<β<1:2;�0:5<c<0:5; 0<Wðt¼1Þ<2:

The median β value of 1 comes from the fact that we used linear
perceptual levels 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 for each feature (slope = 1) for
construction of conjunction stimuli in themain experiments. Less stringent
constrains on β yield similar results.

We fitted the model to each subject’s trial-by-trial choices using the
predefined values of parameters,W(t = 1), β, c, to find the optimal α and the
final perceptual weight,W, while avoiding overfitting.Wedid this oncewith
MRL and another timewith SRL in both experiments. After training the RL
models, and finding the optimal values of parameters W, β, c, α, we com-
puted their performances both at feature and conjunction-level. We then
compared their performances with each other and with the actual subjects’
performances on the Test session.

To estimate whichmodel explains the observed behavioral data better,
wemeasured the deviance by subtractingTest day performance frommodel
performance for each subject for features and conjunctions. Then, we
computed the Deviance Index (DI) for each subject j by averaging the
absolute deviances using Eq. (9):

DIj ¼ 1
N

×
XN

i¼1

jModel Pij� Subject Pijj ð9Þ

Where i denotes feature (orientation, color, conjunction) and P is accuracy.
MRL and SRL DIs were compared using two-sided Wilcoxon signed
rank tests.

Transfer Index. As in ref. 68, the Transfer Index was computed using Eq.
(10):

TI ¼ Transfer Performance� Chance
Test Performance� Chance

ð10Þ

We computed TI for three transfer situations: to compare perfor-
mances in the trained and untrained locations (location TI), to measure the
amount of learning subjects retained after a long interval before execution of
the XOR task (timepoint TI), and finally to assess the performance differ-
ences between conjunctionandXORtasks (taskTI).Chance levelswere 0.25
in the case of conjunction task (4AFC) and 0.5 in the other cases (XOR,
single features, etc.).

Response Time Bias. To compare the degree of change in RT in the
XOR task relative to the main Conjunction task, we defined an RT bias
index in Conjunction-XOR RT space. The x-axis in this space was RT in
the conjunction test, and correspondingly, the y-axis was RT in XOR task
(Fig. 8b). Each point in this space represents RT to each stimulus varia-
tion in each subject in the conjunction test (x coordinate) vs. the XOR
task (y coordinate). Consequently, bias index for each point in this space
was defined as its distance from the diagonal which is the equity line
(conjunction RT = XOR RT, Fig. 8c). Negative values signify slower
conjunction response than XOR, and conversely, positive values indicate
slower response to XOR.

Data Analysis. Unless otherwise mentioned, statistical comparisons
were performed usingWilcoxon rank-sum tests to compare between two
independent groups and signed-rank tests for one sample comparisons
or the difference between paired samples. Before fitting ANOVAs, data
were aligned and rank-transformed64,69 using the ARTool package (ver-
sion 0.11.1)70 in R (version 3.6.1, R Core Team, https://www.R-project.
org) to satisfy distributional assumptions. Contrast tests with ART were
performed following the method described in ref. 65. Correlations
between two independent group of experiments were compared using
the cocor R package71. Reported effect sizes are Cohen’s d or partial η2. Z-
statistics are provided for large samples or approximations for com-
puting p-values in non-parametric tests. All analyses and model fitting
were done using custom code written in MATLAB (version R2019B,
MathWorks, Inc., Natick, MA) and R. The LAB color wheel displayed in
Fig. 2b was produced using the Computational Color Science Toolbox in
MATLAB72.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are openly available in the
figshare repository, https://doi.org/10.6084/m9.figshare.2126850973.

Code availability
Custom code that was used to analyze the data in this study is openly
available in the figshare repository, https://doi.org/10.6084/m9.figshare.
21268509.

Received: 12 June 2023; Accepted: 16 February 2024;

References
1. Livingstone, M. & Hubel, D. Segregation of form, color, movement,

and depth: anatomy, physiology, and perception. Science 240,
740–749 (1988).

2. Shipp, S. & Zeki, S. The functional organization of area V2, I:
Specialization across stripes and layers. Vis. Neurosci. 19,
187–210 (2002).

3. Landisman, C. E. & Ts’O, D. Y. Color processing in Macaque Striate
Cortex: Electrophysiological properties. J. Neurophysiol. 87,
3138–3151 (2002).

4. Roe, A. W. & Ts’o, D. Y. Visual topography in primate V2: multiple
representation across functional stripes. J. Neurosci. 15,
3689–3715 (1995).

5. Livingstone, M. S. & Hubel, D. H. Anatomy and physiology of a
color system in the primate visual cortex. J. Neurosci. 4,
309–356 (1984).

6. DeYoe, E. A. & Van Essen, D. C. Segregation of efferent connections
and receptive field properties in visual area V2 of themacaque.Nature
317, 58–61 (1985).

7. Ts’o, D. Y. & Gilbert, C. D. The organization of chromatic and spatial
interactions in the primate striate cortex. J. Neurosci. 8,
1712–1727 (1988).

8. Roe, A. W. & Ts’o, D. Y. Specificity of color connectivity between
primate V1 and V2. J. Neurophysiol. 82, 2719–2730 (1999).

9. Peterhans, E. & vonderHeydt,R. Functional organizationofAreaV2 in
the alert Macaque. Eur. J. Neurosci. 5, 509–524 (1993).

10. Gegenfurtner, K. R., Kiper, D. C. & Fenstemaker, S. B. Processing of
color, form, and motion in macaque area V2. Vis. Neurosci. 13,
161–172 (1996).

11. Levitt, J. B., Yoshioka, T. & Lund, J. S. Intrinsic cortical connections in
macaque visual area V2: Evidence for interaction between different
functional streams. J. Comp. Neurol. 342, 551–570 (1994).

https://doi.org/10.1038/s41539-024-00226-w Article

npj Science of Learning |            (2024) 9:13 14

https://www.R-project.org
https://www.R-project.org
https://doi.org/10.6084/m9.figshare.21268509
https://doi.org/10.6084/m9.figshare.21268509
https://doi.org/10.6084/m9.figshare.21268509


12. Garg, A. K., Li, P., Rashid, M. S. & Callaway, E. M. Color and
orientationare jointly codedandspatially organized inprimateprimary
visual cortex. Science 364, 1275–1279 (2019).

13. Liu, Y. et al. Hierarchical representation for chromatic processing
across Macaque V1, V2, and V4. Neuron 108, 538–550.e5 (2020).

14. Ghose, G. M. & Ts’o, D. Y. Integration of color, orientation, and size
functional domains in the ventral pathway. Neurophotonics 4,
031216 (2017).

15. Tanigawa, H., Lu, H. D. & Roe, A. W. Functional organization for color
and orientation in macaque V4. Nat. Neurosci. 13, 1542–1548 (2010).

16. Lu, H. D. & Roe, A. W. Functional organization of color domains in V1
and V2 of Macaque monkey revealed by optical imaging. Cereb.
Cortex 18, 516–533 (2008).

17. Dow, B. M. Orientation and color columns in monkey visual cortex.
Cereb. Cortex 12, 1005–1015 (2002).

18. Arguin, M. & Saumier, D. Conjunction and linear non-separability
effects in visual shape encoding. Vision Res. 40, 3099–3115 (2000).

19. Johnston, W. J., Palmer, S. E. & Freedman, D. J. Nonlinear mixed
selectivity supports reliable neural computation. PLOS Comput. Biol.
16, e1007544 (2020).

20. Nadler, J. W. & DeAngelis, G. C. Precision pooling predicts primate
perceptual performance. Nat. Neurosci. 8, 12–13 (2005).

21. Purushothaman, G. & Bradley, D. C. Neural population code for fine
perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

22. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A
computational analysis of the relationship between neuronal and
behavioral responses to visual motion. J. Neurosci. 16,
1486–1510 (1996).

23. Salzman, C. D. & Newsome, W. T. Neural mechanisms for forming a
perceptual decision. Science 264, 231–237 (1994).

24. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The
analysis of visual motion: a comparison of neuronal and
psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

25. Raviv, L., Lupyan, G. & Green, S. C. How variability shapes learning
and generalization. Trends Cogn. Sci. 26, 462–483 (2022).

26. Li, Z. & Atick, J. J. Toward a theory of the striate cortex. Neural
Comput. 6, 127–146 (1994).

27. Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates
in human visual cortex. NeuroImage 39, 647–660 (2008).

28. Welbourne, L. E., Morland, A. B. & Wade, A. R. Population receptive
field (pRF) measurements of chromatic responses in human visual
cortex using fMRI. NeuroImage 167, 84–94 (2018).

29. Freeman, J. & Simoncelli, E. P. Metamers of the ventral stream. Nat.
Neurosci. 14, 1195–1201 (2011).

30. Tsushima, Y., Seitz, A. R. & Watanabe, T. Task-irrelevant learning
occurs only when the irrelevant feature is weak. Curr. Biol. 18,
R516–R517 (2008).

31. Medin, D. L. & Schwanenflugel, P. J. Linear separability in
classification learning. J. Exp. Psychol. [Hum. Learn.] 7,
355–368 (1981).

32. Sireteanu, R. &Rettenbach, R. Perceptual learning in visual search:
Fast, enduring, but non-specific. Vision Res. 35,
2037–2043 (1995).

33. Sireteanu, R. & Rettenbach, R. Perceptual learning in visual search
generalizes over tasks, locations, and eyes. Vision Res. 40,
2925–2949 (2000).

34. Erez, J., Cusack, R., Kendall, W. & Barense,M. D. Conjunctive coding
of complex object features. Cereb. Cortex 26, 2271–2282 (2016).

35. Reavis, E. A., Frank, S. M. & Tse, P. U. Learning efficient visual search
for stimuli containing diagnostic spatial configurations and color-
shape conjunctions. Atten. Percept. Psychophys. 80,
1110–1126 (2018).

36. Taylor, J. & Xu, Y. Representation of color, form, and their conjunction
across the human ventral visual pathway. NeuroImage 251,
118941 (2022).

37. Kira, S., Safaai, H., Morcos, A. S., Panzeri, S. & Harvey, C. D. A
distributed and efficient population code of mixed selectivity
neurons for flexible navigation decisions. Nat. Commun. 14,
2121 (2023).

38. Parthasarathy, A. et al. Mixed selectivity morphs population codes in
prefrontal cortex. Nat. Neurosci. 20, 1770–1779 (2017).

39. Grunfeld, I. S. & Likhtik, E. Mixed selectivity encoding and action
selection in the prefrontal cortex during threat assessment. Curr.
Opin. Neurobiol. 49, 108–115 (2018).

40. Diomedi, S., Vaccari, F. E., Filippini, M., Fattori, P. & Galletti, C. Mixed
selectivity in macaque medial parietal cortex during eye-hand
reaching. iScience 23, 101616 (2020).

41. Ledergerber, D. et al. Task-dependent mixed selectivity in the
subiculum. Cell Rep. 35, 109175 (2021).

42. Dang, W., Jaffe, R. J., Qi, X.-L. & Constantinidis, C. Emergence of
nonlinear mixed selectivity in prefrontal cortex after training. J.
Neurosci. 41, 7420–7434 (2021).

43. Dang, W., Li, S., Pu, S., Qi, X.-L. & Constantinidis, C. More prominent
nonlinearmixed selectivity in the dorsolateral prefrontal than posterior
parietal cortex. eNeuro 9, 1–13 (2022).

44. Yadav,N. et al. Prefrontal feature representationsdrivememory recall.
Nature 608, 153–160 (2022).

45. Rigotti, M., Ben Dayan Rubin, D., Wang, X.-J. & Fusi, S. Internal
representation of task rules by recurrent dynamics: the importance of
the diversity of neural responses. Front. Comput. Neurosci. 4,
1–29 (2010).

46. Rigotti, M. et al. The importance of mixed selectivity in complex
cognitive tasks. Nature 497, 585–590 (2013).

47. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high
dimensionality for higher cognition. Curr. Opin. Neurobiol. 37,
66–74 (2016).

48. Jacobs, R. A. Adaptive precision pooling of model neuron activities
predicts the efficiency of human visual learning. J. Vis. 9,
22.1–15 (2009).

49. Parker, A. J. A micro-pool model for decision-related signals in visual
cortical areas. Front. Comput. Neurosci. 7, 115 (2013).

50. Roelfsema, P. R., van Ooyen, A. & Watanabe, T. Perceptual learning
rules based on reinforcers and attention. Trends Cogn. Sci. 14,
64–71 (2010).

51. Rombouts, J. O., van Ooyen, A., Roelfsema, P. R. & Bohte, S. M.
Biologically Plausible Multi-dimensional Reinforcement Learning in
Neural Networks. InArtificial Neural Networks andMachine Learning –
ICANN 2012 (eds. Villa, A. E. P., Duch, W., Érdi, P., Masulli, F. & Palm,
G.) 443–450 (Springer, Berlin, Heidelberg, 2012).

52. Clark, D., Abbott, L. F. & Chung, S. Credit Assignment Through
Broadcasting aGlobal Error Vector. InAdvances inNeural Information
Processing Systems vol. 34 10053–10066 (Curran Associates,
Inc., 2021).

53. Theeuwes, J. Top-down search strategies cannot override attentional
capture. Psychon. Bull. Rev. 11, 65–70 (2004).

54. Farashahi, S. & Soltani, A. Computational mechanisms of distributed
value representations and mixed learning strategies. Nat. Commun.
12, 7191 (2021).

55. Minsky,M.&Papert, S. A.Perceptrons,Reissueof the1988Expanded
Edition with a New Foreword by Léon Bottou: An Introduction to
Computational Geometry. (MIT Press, 2017).

56. Ashby, F. G. & Maddox, W. T. Human category learning. Annu. Rev.
Psychol. 56, 149–178 (2005).

57. Fahle, M. Perceptual learning: a case for early selection. J. Vis. 4,
879–890 (2004).

58. Dosher, B. A., Jeter, P., Liu, J. & Lu, Z.-L. An integrated reweighting
theory of perceptual learning. Proc. Natl. Acad. Sci. 110,
13678–13683 (2013).

59. Freedman, D. J. & Assad, J. A. Experience-dependent representation
of visual categories in parietal cortex. Nature 443, 85–88 (2006).

https://doi.org/10.1038/s41539-024-00226-w Article

npj Science of Learning |            (2024) 9:13 15



60. Kang, Y. H. et al. Multiple decisions about one object involve parallel
sensory acquisition but time-multiplexed evidence incorporation.
eLife 10, e63721 (2021).

61. Greiner, B. Subject pool recruitment procedures: organizing
experiments with ORSEE. J. Econ. Sci. Assoc. 1, 114–125 (2015).

62. Farnsworth, D. Farnsworth Dichotomous Test for Color Blindness:
Panel D-15. (Psychological Corporation, 1947).

63. Fine, I. & Jacobs, R. A. Comparing perceptual learning across tasks: A
review. J. Vis. 2, 5 (2002).

64. Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned
rank transform for nonparametric factorial analyses using only anova
procedures. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems 143–146 (Association for Computing
Machinery, New York, NY, USA, 2011). https://doi.org/10.1145/
1978942.1978963.

65. Elkin, L. A., Kay, M., Higgins, J. J. &Wobbrock, J. O. An Aligned Rank
Transform Procedure for Multifactor Contrast Tests. In The 34th
Annual ACMSymposium on User Interface Software and Technology
754–768 (Association for ComputingMachinery, NewYork, NY, USA,
2021) https://doi.org/10.1145/3472749.3474784.

66. Law, C.-T. & Gold, J. I. Reinforcement learning can account for
associative and perceptual learning on a visual-decision task. Nat.
Neurosci. 12, 655–663 (2009).

67. Kahnt, T., Grueschow, M., Speck, O. & Haynes, J.-D. Perceptual
learning and decision-making in humanmedial frontal cortex.Neuron
70, 549–559 (2011).

68. Rosedahl, L. A., Eckstein, M. P. & Ashby, F. G. Retinal-specific
category learning. Nat. Hum. Behav. 2, 500–506 (2018).

69. Higgins, J. J. & Tashtoush, S. An aligned rank transform test for
interaction. Nonlinear World 1, 201–211 (1994).

70. Kay, M., Elkin, L. A., Higgins, J. J. & Wobbrock, J. O. ARTool: Aligned
Rank Transform. (2021).

71. Diedenhofen, B. & Musch, J. cocor: A comprehensive solution for the
statistical comparison of correlations. PLOS ONE 10,
e0121945 (2015).

72. Computational Colour Science using MATLAB 2e. https://www.
mathworks.com/matlabcentral/fileexchange/40640-computational-
colour-science-using-matlab-2e.

73. Visual Perceptual Learning of Feature Conjunctions Leverages Non-
linear Mixed Selectivity. figshare https://doi.org/10.6084/m9.
figshare.21268509.v1 (2024).

Acknowledgements
Wewould like to thank Stefano Fusi for helpful discussions, Thorsten Kahnt
for adviceon the reinforcementmodels, andArezooPooresmaeili and Jorge
Jaramillo for their instructive feedback on this manuscript. This project has
received funding from the European Research Council (ERC) under the
EuropeanUnion’sHorizon 2020 research and innovation programme (Grant

agreement No. 802482, to CMS). CMS is supported by the German
Research Foundation Emmy Noether Program (SCHW1683/2-1). We
acknowledge support by the Open Access Publication Funds/
transformative agreements of the Göttingen University. The funders had no
role instudydesign,datacollectionand interpretation,decision topublish, or
preparation of the manuscript.

Author contributions
B.K., Conceptualization, Methodology, Investigation, Formal Analysis,
Visualization, Data curation, Writing – original draft preparation; C.M.S.,
Conceptualization, Methodology, Writing – original draft preparation,
Supervision, Project administration, Funding acquisition. Both authors
approved the final version of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41539-024-00226-w.

Correspondence and requests for materials should be addressed to
Caspar M. Schwiedrzik.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41539-024-00226-w Article

npj Science of Learning |            (2024) 9:13 16

https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1145/3472749.3474784
https://doi.org/10.1145/3472749.3474784
https://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-science-using-matlab-2e
https://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-science-using-matlab-2e
https://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-science-using-matlab-2e
https://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-science-using-matlab-2e
https://doi.org/10.6084/m9.figshare.21268509.v1
https://doi.org/10.6084/m9.figshare.21268509.v1
https://doi.org/10.6084/m9.figshare.21268509.v1
https://doi.org/10.1038/s41539-024-00226-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Visual perceptual learning of feature conjunctions leverages non-linear mixed selectivity
	Results
	Conjunction learning (Experiments 1�and 2)
	Separate feature leaning (Experiment�3)
	Single feature learning (Experiment�4)
	Location transfer
	Learning effects on constituent features (pre-post training comparison)
	Transfer to XOR�task

	Discussion
	Methods
	Participants
	Stimuli and procedure
	Experimental�design
	Pre and post training orientation/color discrimination�task
	Experiment 1, conjunction learning with global feedback
	Training�phase
	Test�phase
	Transfer�phase
	Experiment 2, conjunction learning with feature-specific feedback
	Experiment 3, separate feature training
	Test�phase
	Experiment 4, single feature training
	Test�phase
	Exclusive Or (XOR) transfer
	Statistical Analysis
	Learning�Index
	GLM analysis
	Reinforcement Learning Models fitting procedure
	Transfer�Index
	Response Time�Bias
	Data Analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




