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Disentangling the contribution of individual and social
learning processes in human advice-taking behavior
Maayan Pereg 1,2,3,4✉, Uri Hertz 5,6, Ido Ben-Artzi 1,2,3 and Nitzan Shahar1,2

The study of social learning examines how individuals learn from others by means of observation, imitation, or compliance with
advice. However, it still remains largely unknown whether social learning processes have a distinct contribution to behavior,
independent from non-social trial-and-error learning that often occurs simultaneously. 153 participants completed a reinforcement
learning task, where they were asked to make choices to gain rewards. Advice from an artificial teacher was presented in 60% of the
trials, allowing us to compare choice behavior with and without advice. Results showed a strong and reliable tendency to follow
advice (test-retest reliability ~0.73). Computational modeling suggested a unique contribution of three distinct learning strategies:
(a) individual learning (i.e., learning the value of actions, independent of advice), (b) informed advice-taking (i.e., learning the value
of following advice), and (c) non-informed advice-taking (i.e., a constant bias to follow advice regardless of outcome history).
Comparing artificial and empirical data provided specific behavioral regression signatures to both informed and non-informed
advice taking processes. We discuss the theoretical implications of integrating internal and external information during the learning
process.
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INTRODUCTION
Two forms of learning are predominant in the process of
understanding our environment. The first is an unguided trial-
and-error learning process, whereby individuals learn from
personal experience (henceforth individual learning)1. The other
form of learning falls under the broad definition of social learning,
in which we learn by observing and imitating others, or the main
focus of this study - by following explicit advice or instructions2–4

(see Lind et al.5 for a short discussion on the terminology and
diversity concerning social learning). Social learning is considered
one of the primary ways by which we learn, especially in humans
but also in animals6. Despite the distinction between these two
forms of learning, it is not simple to decipher and disentangle the
unique contribution of each of these processes in explaining
human choice behavior. For example, imagine that a friend
suggests that you order a particular dish at a restaurant. You
might order the advised dish but, from an observer’s perspective,
it is impossible to know whether this behavior was due to (a) your
own personal prior experience with that type of cuisine
irrespective of the advice, (b) the value you assigned to your
friend’s advice because her advice panned out before due to her
culinary knowledge, or (c) your tendency to comply with advice
received from others, regardless of the specific context. Thus, to
better understand human choice behavior in following advice, it is
critical that we disentangle and estimate the influence of both
social and non-social learning processes.
The literature on social learning strategies has dealt extensively

with the influence of a single piece of advice on human choice
behavior7,8. For example, Biele et al.9 demonstrated that
participants have a general tendency to behave in accordance
with a single piece of advice provided to them just one time. In
their study, participants were shown to be more likely to choose a
card from an advised deck of cards relative to a card deck with a

similar positive value but for which they did not receive advice.
Biele et al.9,10 suggested that individuals have a positive bias when
evaluating the outcomes of recommended options relative to
options that are not specifically recommended. Several studies
support this assumption, having demonstrated that, remarkably,
even a single piece of advice or instruction can influence and bias
human choice behavior9–14. However, it is important to note that
most natural environments consist of repeating socially trans-
mitted information, where advice is given more than once, and
often by the same individual.
Indeed, previous studies have suggested that individuals tend

to keep track of and assess the value of repeating socially
transmitted information. For example, one adaptive social learning
strategy involves copying the choices of successful individuals, as
the knowledge they hold is assumed to be more valuable than
that of others15,16.
Furthermore, Behrens et al.17 found that the associative neural

mechanisms that are responsible for processing social information
are similar to those at play during individual learning and are
subject to updating and learning. Taken together, these studies
suggest that agents engage not only in learning the value of their
own choices, but also in learning the value of social information.
However, it is not clear how these two processes interact and how
one might influence the other. For example, Bonawitz et al.11

demonstrated that pedagogical teaching (e.g., instructing about
the specific use of a toy) limits children’s own exploration when
the teacher is assumed to be knowledgeable. However, the same
study also showed that children still engaged in exploration when
they believed there was more to learn about the toy.
In a related line of research, researchers have explored the

specific computational process that underlies individuals’
responses to repeated social advice. For example, Najar et al.4

demonstrated that individuals perceive the choices of a
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demonstrator in a similar manner to how they perceive a positive
reward. Hence supposedly, the advice acts as a driving force for
behavior. In addition, they showed that only demonstrators who
have proven to be knowledgeable are imitated, further supporting
the idea that individuals consistently engage in a process of
evaluating the information presented to them. Other works were
able to demonstrate that the same reward circuits that are
activated during individual learning are also activated when
receiving advice in a decision-making situation18. Moreover,
Diaconescu et al.19 suggested that people deliberate between
social and individual information, while also accounting for the
level of certainty or uncertainty they have in the information
source. Finally, Rybicki et al.20 exhibited support for the
assumption that social and individual learning processes rely on
similar neurochemical mechanisms (while also indicating the
importance of the temporal primacy of the social information21).
However, these studies used designs that make it difficult to
disentangle the influence of different facets of social learning and
individual learning on decision-making.
These studies improve our understanding of the processes by

which individuals utilize one-time or repeated socially transmitted
information when making choices. However, to the best of our
knowledge, no study to date has examined whether a bias to
follow advice (such as the one that was observed in one-time
advice-giving paradigms) remains present in an environment in
which advice is repeating. In the current study, we assumed that in
a repeating advice-giving environment, wherein individuals are
learning the values of different actions (e.g., whether they lead to
a positive or a negative outcome), participants will behave in
accordance with the advice given for one of three reasons. The

first is due to individual learning, which reflects an internal value
that was learned in a non-social manner, regardless of whether
advice was provided or not. A second option is informed social
learning, whereby the individual assigns value to an advised
option due to a previous positive experience with the advisor. The
third and final option is non-informed social learning, whereby the
individual assigns value to complying with advice in general.
Whereas individual learning and informed advice-taking often
result from trial-and-error learning, non-informed social learning
may be due to social norms, such as reciprocity or respect13,22–24,
or epistemic trust in “advisors”/”teachers”, people who are
assumed to have relevant knowledge on which to base their
advice25.
In the current study, we aimed to disentangle, in a single

reinforcement learning task, the influence of advice-taking from
individual value-based learning. To do so, we employ a prediction-
error-based modeling approach, which was shown to predict and
describe human and animal choice behavior across different
domains26. For example, reinforcement learning has been found
to explain algorithmic processes in computational science27,
simulate and predict human decision-making and learning28–30,
and shed light on animal behavior31. Moreover, the correlation
between prediction errors and activity in the human striatum32, a
key region in the brain’s reward and reinforcement system,
underscores the neurobiological relevance of PE-based models in
understanding the neural underpinnings of behavior.
We introduced a novel experimental paradigm in which we

randomly interleaved trials with and without advice to allow us to
disentangle individual learning from social advice. We estimated
individuals’ bias towards following advice in a reinforcement
learning task in which advice was either revealed to or concealed
from participants. Specifically, participants had to choose between
two cards (from a deck of four) that were offered (i.e., a multi-
armed bandit task; see Fig. 1). Cards led to monetary rewards ($0
or $1) probabilistically, and participants were asked to make
choices to maximize their return. On some of the trials, an artificial
teacher gave advice regarding which card should be chosen.
Regression analyses demonstrated an influence of the teacher’s
advice on participants’ choice behavior, such that participants
were more likely to choose the card offered by the teacher when
the advice was presented on screen. Furthermore, the tendency to
follow advice showed good test-retest reliability, suggesting
robustness across two time points. Of main interest in this work,
we conducted formal computational models that mimicked the
hypothesized cognitive mechanism and tested its fit to the
observed data. We found evidence to suggest that participants’
behavior reflect a combination of non-informed social learning,
informed social learning, and non-social individual learning. We
then conducted analyses that compare simulated with empirical
data to identify unique signatures for these processes using
dedicated regression analyses. We conclude that individuals have
a predominant bias to follow advice when advice from a social
agent is repeated and when individual learning occurs. We discuss
the theoretical implications of integrating information learned
from personal experience with external advice.

RESULTS
Analyses overview
We examined the contribution of informed and non-informed
advice-taking to participants’ choice behavior in a sequential
reinforcement learning task (Fig. 1). In this section, we start by
establishing a ‘reveal effect’ describing the causal influence of
revealing the teacher’s advice to the participant on choice
behavior (Fig. 2). This effect uniquely disentangles the influence
of advice-taking from trial-by-trial independent learning, which
was explored both at the group level and at an individual level

Fig. 1 Trial sequence in the student-teacher paradigm. Partici-
pants completed a reinforcement learning task, in which two cards
were randomly selected and offered to participants on each trial.
The cards led to a reward according to a reward probability,
unknown to the participant. On each trial, the teacher’s advice was
generated by the computer with differing degrees of accuracy. In
the revealed advice conditions, the advice was displayed to the
participant by presenting the teacher’s avatar next to the advised
card (left box in the offer stage). Note that in the revealed advice
trials, a red X was presented next to the unadvised card to
perceptually balance the cards with a flanking stimulus. Teachers’
choices were also generated during the concealed advice trials, as in
the revealed advice trials, but were not presented to the
participants. This approach allowed us to examine whether
participants’ choices were the same as the teachers’ when the
advice was revealed vs. when it was concealed, based on learning
and prior experience.
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(i.e., between sessions test-retest estimates). We then continue to
describe the mathematical processes underlying individuals’
choice behavior. Specifically, we used computational modeling
to estimate the contribution of three internal latent processes to
participants’ choice behavior: (1) individual learning (i.e., learning
from experience with the cards, independent of any advice), (2)
informed advice-taking (i.e., trial-by-trial learning of the value of
following the teacher’s advice), and (3) non-informed advice-
taking (i.e., a fixed internal bias to follow advice regardless of
choice and outcome history). Finally, we will show further support
for the necessity of the two advice-taking processes. We used
participants’ estimated computational parameters to simulate
data. We independently discouraged participants’ informed or
non-informed advice-taking tendencies and demonstrated unique
regression signatures for these processes. Overall, we found
strong and compelling evidence suggesting a causal effect of
advice on participants’ choice behavior, both via informed and
non-informed advice-taking processes.

Theory-independent analysis examining the influence of
receiving advice on compliance
We first assessed whether participants demonstrated a bias
towards advice-taking across trials and sessions. For this aim, we
first calculated a coherence rate as the dependent variable to
reflect whether participants chose the same card as the teacher

(coded 0/1 when teacher and student selected two different/same
cards, respectively), both when the teacher’s choice was revealed
and when it was concealed. The coherence rate in the concealed
condition served as a baseline, as it reflects the contribution of an
individual learning process to the likelihood of agreement with
the teacher’s choice, i.e., the likelihood of the participant reaching
the same choice as the teacher independently. This is plausible
when the participant has learned to identify the more valuable
offer, which was often aligned with the choice of the teacher
(concealed or revealed). This approach enabled us to examine the
unique contribution of the teacher’s advice by comparing
coherence rates across the revealed advice and concealed advice
conditions, which we termed the reveal effect.
We therefore performed a hierarchical Bayesian logistic regres-

sion analysis, predicting participants’ coherence rates as a function
of advice presentation (concealed/revealed). We found that
coherence rates in the revealed advice condition were higher
than the baseline rates in the concealed advice condition,
suggesting a causal influence of advice on compliance. Specifi-
cally, participants were more likely to choose the card advised by
the teacher when the teacher’s advice was revealed (66%
coherence rate) compared to when the advice was concealed
(48% coherence rate; posterior median estimation for the
difference in the population was 0.29, HDI89%= 0.25 to 0.33
probability of direction (pd) ~100% suggesting all of the
distribution was positive; Fig. 2a/b].

Fig. 2 Reveal effect indicating a causal influence of presenting teacher advice on participants’ behavior. We calculated participants’
coherence rates and participants’ tendency to choose the same card as the teacher on trials in which the advice was revealed vs. trials in
which the teacher’s choice was concealed. Coherence rates during concealed trials reflect the contribution of individual learning processes to
choose the same (high value) card as the one that the teacher recommended. Comparing coherence rates between revealed and concealed
trials therefore results in the reveal effect – i.e., the influence of advice on participants choice behavior, above and beyond individual learning
processes. a Coherence rates as a function of revealing/concealing advice (yellow dots represent the empirical mean coherence levels, black
dots represent the mean posterior predictions, and gray ovals represent HDI89%). Evidence shows that revealing advice dramatically increased
participants’ tendency to choose the same option as the teacher. Thus, advice seems to have a causal effect on participants’ choices, above
and beyond any teacher-participant choice alignment. b The posterior distribution for presenting the teacher’s advice on the probability to
choose the same card as the teacher (gray line indicates HDI89%). c Test–retest reliability of the reveal effect across two sessions, performed
across two adjacent days (posterior median= 0.73). Scatter plot indicates standardized scores for the reveal effect for each session. Gray lines
reflect posterior predictive correlations across the whole posterior distribution. d Posterior distribution for the test-retest Pearson correlation
coefficient.
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To further substantiate the estimation of the causal influence of
advice on participants’ choice behavior, we examined the test-
retest reliability of the tendency to follow advice. Participants
performed the task in two separate experimental sessions across
two adjacent days (visual stimuli of cards and artificial teachers
were changed across blocks and sessions). We performed a
hierarchical Bayesian regression analysis and found good test-
retest reliability (posterior median = 0.73, HDI89%= 0.64 to 0.81;
Fig. 2c/d). Overall, these results demonstrate a strong and reliable
causal influence of receiving advice on individuals’ choice
behavior in a reinforcement learning task during which advice
was given repeatedly. However, these analyses did not allow us to
disentangle the effects of informed from non-informed advice-
taking. For this purpose, we turned to computational analyses that
can explicitly model the contribution of different learning and
decision-making processes.

Computational modeling
We hypothesized that participants’ choice behavior integrates
three sources of information: individual learning, informed advice-
taking and non-informed advice-taking. We formulated a satu-
rated model that included all three types of information and
tested it against three nested models. Specifically, in these models
we predicted the agents’ choices based on reward history and
experimental conditions. For each trial, we updated the subjective
values of the cards (Q-values) based on the prediction error
signal32. Prediction error is an internal signal by which the agent
refines its prediction during the learning and decision-making
process. It refers to the discrepancy between the predicted
outcome (value or action) and the actual outcome that occurs
during the learning process. It plays a crucial role in reinforcement
learning as it guides the agent’s learning by indicating how well its
predictions align with reality32–34. For clarity, we will describe the
models we computed. The first model is a baseline model which
only had an individual learning component (Model 1). We then
added non-informed advice-taking (Model 2) and informed
advice-taking (Models 3 and 4) to the models, and lastly, we
computed a full model with all three components (Model 5).

Model 1 (null model)
This model assumes that participants learned the cards’ values
from their own experience without considering the presented
advice:

δchosen card ¼ ðreward-Qchosen cardÞ (1)

Qchosen card ¼ Qchosen card þ α � δchosen card (2)

where α is a learning-rate (free-parameter) and δchosen_card
represents the prediction error for the card selected by the agent
(this equation is used in all models). Thus, this model ignores any
advice revealed to the participant. In order to choose between the
cards, we used a softmax policy:

p choiceð Þ ¼ exp β � Qchosen cardð Þ
Σ exp β � Qið Þ (3)

where β is an inverse noise parameter (free parameter), and Qi

denotes the Q-values of each card offered in a current trial. Thus,
this model had two population-level free parameters (αchosen_card,
β).

Model 2 (fixed non-informed advice-taking)
This model is similar to the baseline model only with an additional
fixed bias in favor of teacher advice, when it was presented. When
the teacher’s advice was presented, action values were calculated

according to:

Qnetadvised card ¼ Qadvised card þ φ (4)

Qnetunadvised card ¼ Qunadvised card (5)

where φ is a free parameter (unrestricted and could be positive or
negative) describing the individual tendency to follow advice
regardless of any choice-outcome history during the task.
These Qnet values were then entered into the softmax:

pðchoiceÞ ¼ expðβ � Qnetchosen�cardÞ
Σ expðβ � QnetiÞ (6)

Overall, this model has three population-level free parameters
(αchosen_card, β, φ).
An additional model (Model 2b) tested dynamic non-informed

advice taking, where the bias is moderated by choice difficulty.
See Supplementary information for a full report of this model.

Model 3 (informed advice-taking)
This model assumes that instead of having a general preference
for the advised card, participants evaluated the advice during the
experimental block via Q-learning. The two options, to follow or
not to follow the advice, were updated via Q-learning using a
prediction error and learning rate (the same free parameter α from
the other models), as shown below (Eqs. (7) and (8)):

δfollow advice ¼ ðreward� Qfollow adviceÞ (7)

Qfollow advice ¼ Qfollow advice þ α � δfollow advice (8)

Next, we calculated Qnet, which incorporated the Q-values of
the cards and of following (or not following) advice, and weighted
them using ω:

Qnetadvised card ¼ ω � Qadvised card þ ð1� ωÞ � Qfollow advice (9)

We note that the Q-values of the cards were updated using Eqs.
(1) and (2), and that the softmax decision function in this model is
the same as in Model 2 (Eq. (6)). This model involves 3 free
parameters: learning rate for the cards and for following advice
(α), inverse noise parameter (β), and weighing between the
Q-values of the cards and of following advice (ω).

Model 4 (moderated informed advice-taking)
In the previous model, participants were assumed to update the
value of following advice based on the observed outcome.
However, the outcome (reward vs. unrewarded) is not only a
function of how accurate the teacher was, but also depends on
the expected value of the selected card. Participants might thus
moderate their value update for the teacher’s advice based on
their current expectation for a reward given a specific chosen card.
We therefore included a model that also includes a moderation of
the Q-values for following advice as a function of the prediction
error for the chosen card (see Eq. (1)). According to this model,
updating the value for following advice is a function of both the
observed outcome and the Q-values of the specific choice at
hand. Hence, if the prediction error for the cards is relatively small
(in absolute values) based on individual learning, less updating of
the value of the teacher is required, and vice versa. To update of
the Q-value to follow (or not follow) advice, Eq. (7) was replaced
by Eq. (10), as follows:

Qfollow advice ¼ Qfollow advice þ α � δfollow advice � jδchosen cardj (10)

This model involves the same three free parameters as the
previous model: learning rate (α), inverse noise parameter (β), and
weighing between the Q-values of the cards and of following
advice (ω).
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Model 5 (informed and non-informed advice-taking)
This model combines Models 2 and 3 and assumes both a general
preference for the advised card, and an evaluation of the teacher
through the reward history (Eq. (11)).

Qnetadvised card ¼ ω � Qadvised card þ ð1� ωÞ � Qfollow advice þ φ

(11)

Model fitting
We performed a model comparison using a leave-one-block-out
approach, as described in the Method section. We calculated a
difference distribution for each paired model comparison and
estimated the expected log probability density (elpd) difference
and the standard error of the difference distribution (using ‘loo’
package; with an elpd difference of 2 times the standard-error
considered substantial35). We found Model 5 to be the winning
model (see Table 1). Parameter recovery is depicted in Supple-
mentary Information.

Estimated parameters
The estimated parameters for the winning model highlight the
contribution of individual learning, informed advice-taking, and
non-informed advice-taking (Fig. 3). The ω parameter was
estimated to be ~0.70 (Fig. 3c), indicating a reliance on individual
learning, but also on informed advice-taking, which tracked the
accuracy of the teacher. This value indicates that a highly accurate
teacher could influence the decisions made by participants
beyond individual learning, a finding that is in line with the
reveal effect discussed above. Parameter φ was estimated to be
~0.2 (Fig. 3d), indicating a tendency to follow advice in a manner
that is unrelated to the teacher’s accuracy. This fixed contribution
is the basis of non-informed compliance and contributed to the
reveal effect as well. This tendency increased the likelihood of
following advice even when it went against one’s individual
experience and/or when the teacher’s accuracy was low.

Associations between the winning model and empirical data
To demonstrate the association between the winning model
parameters and the model-agnostic results, we estimated the
individual bias to follow advice for each participant and for each
simulated agent. To do so, we simulated artificial data with the
same number of trials as the empirical data using individuals’
parameter estimation (we used the mean posterior for each
individual and parameter). We then calculated and plotted the
‘reveal effect’ from empirical data and artificial data for each
subject based on the model and examined the correlation
between them. We found a strong positive correlation (Pearson
r= 0.83, pd~100%; CI89%= 0.77–0.86; Fig. 3e), showing that the
model successfully replicated the behavioral results.

Behavioral signatures for the winning model
Thus far, our modeling results (Table 1) show clear evidence
suggesting that individuals are using both informed and non-
informed advice-taking mechanisms. Specifically, elpd suggested
that using both informed and non-informed processes substan-
tially increased our ability to predict left-out blocks. To illustrate
the existence of both types of advice-taking in the empirical
behavioral data, we additionally performed a set of analyses that
compare simulated results based on the winning computational
model with the behavioral data. We first simulated two data sets
for each individual, based on the individual empirical parameters’
estimation that was gained from the winning model. This set of
analyses serves as two private cases of Model 5: One in which
ω= 1 (and so only non-informed advice-taking takes place here);
and the second in which φ= 0 (and thus only informed advice
taking takes place in this dataset). In the first set (non-informed
advice-taking), we fixated the ω parameter (i.e., ω was set to 1),
thus forming a simulation by which only non-informed advice-
taking underlies the learning process. In the second data set,
(informed advice-taking) we muted the φ parameters (i.e., φ was
set to 0), thus forming simulated data in which only the informed
advice-taking underlies the learning process, and there is no bias
to follow advice. This allowed us to examine the reveal effect in
datasets that were artificially constructed using only one of the
advice-taking processes at a time, and compare them to the
empirical behavioral data. Therefore, these analyses were con-
structed in order to show behavioral signatures for both learning
processes that constitute the winning computational model: non-
informed and informed advice-taking.

Signature for non-informed advice-taking. We calculated the
‘reveal effect’ using only two trials for each participant, per block
– the first time a conceal trial was presented and the first time a
reveal trial was presented. We reasoned that during such an early
stage in the task, informed advice-taking would not be able to
produce a reveal effect. Note that each block included a novel
teacher, with whom the participant did not have prior experience.
For the empirical data, we found a substantial reveal effect
(median = 0.64, CI89% between 0.555 to 0.73, pd ~100%; see Fig. 4,
panels a, d). We found a similar effect in the non-informed artificial
dataset (median = 0.20, CI89% between 0.12 to 0.28, pd ~100%;
see Fig. 4, panels c, f). Importantly, we found evidence against a
reveal effect for the complementary informed advice-taking
artificial data set (median=−0.03, CI89% between −0.0555 to
0.11, pd = 74.40%; see Fig. 4, panels b, e).

Signature for informed advice-taking. To capture a unique
signature for informed advice-taking, we examined the influence
of outcome on choice behavior. Specifically, we calculated a
coherence repeat rate dependent variable, which reflected
whether participants exhibited the same behavior (following the
teacher’s advice or not) across two consecutive trials, n and n+ 1
(coded 0/1 for different/same behavior, respectively). We then

Table 1. Model comparison results – winning model compared to other models.

Model Expected log probability difference compared to the winning model (Model 5 – informed and non-
informed advice-taking)

Null model −4147.2 (88.4)

Model 2 (fixed bias) −514.1 (33.4)

Model 3 (teacher evaluation) −701.3 (48.8)

Model 4 (moderated teacher evaluation) −490.7 (47.0)

Elpd (expected log probability density) was calculated using a leave-one-(block)-out cross-validation approach. An elpd difference that is larger than 4 and at
least twice the standard error is considered to be significant evidence for the winning model35.
Elpd difference standard errors are noted in brackets.
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used Bayesian logistic regression analyses to predict coherence
repeat as a function of previous outcome (rewarded vs.
unrewarded) and advice presentation (concealed vs. revealed on
both n and n+ 1 trials), as well as their paired interaction. Note
that we did not include trials in which advice presentation was
different across n and n+ 1 trials to allow for a more precise
comparison. We reasoned that the interaction of previous
outcome X advice presentation would be present only for
informed advice-taking. Specifically, when advice is presented, a
reward on trial n should increase coherence on trial n+ 1
compared to unrewarded n trials (as can be seen in the updating
of the Qfollow_advice value in the winning Model 5). However, in
concealed advice trials, the value for taking/rejecting advice
should not be updated, and so the reward on trial n should not
affect coherence rates. Note that we also added teacher accuracy
in the nth trial as a fixed effect only with no interaction, allowing us
to control for overall coherence baseline rates, which might
change with teacher accuracy.
For the empirical data, we found evidence in favor of a previous

outcome X advice presentation paired interaction (median = 0.05,
CI89%= 0.03–0.07, pd~100%; Fig. 5, Panels a, d). This suggests, as
we predicted, higher coherence repeat rates after a rewarded vs.
unrewarded n trial, but only when advice was revealed. When the
advice was concealed, the outcome of trial n had no influence on
coherence repeat rates. A similar (but smaller) positive interaction
was found for the informed artificial data (in which non-informed
advice-taking was lesioned; median = 0.03, CI89%= 0.01–0.0, pd =
99.85%; Fig. 5, panels b, e). Importantly, the non-informed artificial
data set (in which informed advice-taking was halted) did not
show evidence in favor of a previous outcome X advice
presentation paired interaction (median = 0.01, CI89%= 0 to
0.03, pd = 91.55%; Fig. 5, panels c, f).
Overall, these analyses were able to show two unique

regression signatures: one that is predicted only by informed,
but not non-informed advice-taking and one that is predicted only
by non-informed but not informed advice-taking. Importantly,
both effects were observed in the empirical data set, providing
further evidence for our model comparison conclusion which
suggests that both types of advice-taking are required to explain
the data.
Yet, one might argue that these data could have been gained

due to non-social aspects of the task as well (such as demand
characteristics). To control for this alternative explanation, we also
tested a non-social version of the student-teacher task, in which
we replaced the virtual teacher with a lottery wheel. The
experimental procedure was the same, except that the virtual
teachers were replaced with a non-human lottery wheel (see
Supplementary information). The results indicated a smaller reveal
effect in the non-social experiment (i.e., increased tendency to
choose the advised card in trials where the advice was revealed vs.
concealed), suggesting that advice that is symbolically framed as
social information holds a greater causal influence on participants’
tendency to follow advice.

DISCUSSION
Previous studies have demonstrated that learners integrate social
information into their value-based decision-making. However, one
prominent unresolved issue with prior studies concerns the
inability to separate unguided internal decisions (individual
learning) from decisions based on external advice. Moreover, we
argue that following advice could be further differentiated into
informed advice-taking (learning the value of following advice),
and non-informed advice-taking (bias to follow advice regardless
of an advisor’s previous accuracy). In the current study, we
therefore opted to approach these two issues using a

Fig. 3 Estimated parameters for the best fitting model. Posterior distribution of the winning model parameters (a–d): The fixed effect
posterior distribution of the learning rate (α, panel a), inverse temperature (β, panel b), informed advice-taking (ω, panel c) and non-informed
advice-taking bias (φ, panel d). Overall, results suggest that participants clearly engaged in both types of advice-taking. This can be seen in an
ω population parameter centered at ~0.70 (1 represents only individual learning with no informed advice-taking, 0 represents only informed
advice-taking with no individual learning). Furthermore, the φ parameter suggests a positive tendency to follow advice regardless of any task
experience (0 represents no non-informed advice-taking, a negative value indicates a tendency to not choose advised cards). The blue dashed
line represents median values, the gray horizontal bar represents 89% CI. e To create a visual illustration of our model’s ability to capture
choice behavior, we simulated artificial data based on the empirical data and individuals’ parameter estimation. We then calculated and
plotted the ‘reveal effect’ from empirical data and artificial data for each subject. The scatter plot clearly indicates an excellent fit, such that the
individuals’ estimated parameters generated a very similar reveal effect to the one observed in the empirical data.
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Fig. 4 Results of simulation analyses showing distinct regression signatures for non-informed advice-taking and posterior distributions.
We analyzed three data sets: (1) empirical data, (2) artificial informed advice-taking (simulated using individuals’ estimated parameters after
muting the non-informed advice-taking by setting φ= 0 across subjects), and (3) artificial non-informed advice-taking (simulated using
individuals’ estimated parameters after discouraging the informed advice-taking process by setting ω= 1 across subjects). The ‘reveal effect’
calculated only from two trials per block and per subject; the first trial in which advice was revealed and the first trial in which advice was
concealed. Thus, informed advice-taking should not be able to produce a reveal effect in this analysis. As hypothesized, we found a substantial
reveal effect in the empirical data (panel a, and its posterior distribution in panel d), which was mimicked only by the non-informed artificial
data (panel c, and its posterior distribution in panel f), but not the informed artificial data (panel b, and its posterior distribution in panel e).

Fig. 5 Results of simulation analyses showing distinct regression signatures for informed advice-taking and posterior distributions. We
analyzed three data sets: (1) empirical data, (2) artificial informed advice-taking (simulated using individuals’ estimated parameters after
muting the non-informed advice-taking by setting φ= 0 across subjects), and (3) artificial non-informed advice-taking (simulated using
individuals’ estimated parameters after discouraging the informed advice-taking process by setting ω= 1 across subjects). We estimated the
likelihood of observing a repetition in coherence from trial n to n+ 1 as a function of outcome in trial n (unrewarded vs. rewarded) and advice
presentation (concealed vs. revealed on both trials). We found a significant paired interaction suggesting that previous reward increased
coherence repetition, only for trials in which the teacher’s advice was presented (panel a, and its posterior distribution in panel d). This
suggests that participants assigned value to teacher’s advice as a function of the observed outcome. Importantly, this interaction was
mimicked only by the informed advice-taking artificial data (panel b, and its posterior distribution in panel e) and not the non-informed
advice-taking artificial data (panel c, and its posterior distribution in panel f). These results clearly mirror our model comparison results,
suggesting that participants engaged in both informed and non-informed advice-taking.
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reinforcement learning design comprising repeated advice. With
this experimental design, we were able to disentangle individual
from social-based decisions, while also investigating the reliability
of advice-taking behavior.
The results showed that, behaviorally, participants demon-

strated a robust bias towards following advice, which was a rather
stable bias across separate measurements. Computational model-
ing enabled us to identify the underlying mechanisms and
showed that the results are likely due to both non-informed
advice-taking (i.e., a fixed bias towards following advice), and
informed advice-taking (i.e., learning the value of following the
teacher’s advice). Analysis of the empirical data showed two
complementary findings for the non-informed and informed
processes, respectively: (1) participants demonstrated a bias to
follow advice even on their very first encounter with the teacher;
and (2) reward history had a causal effect on future advice-taking
behavior. Signatures from simulations analyses comparing artificial
and empirical data showed a double dissociation supporting the
necessity of considering both processes in order to explain the
empirical data. Taken together, the results suggest that an
intelligent process occurs in which teachers’ outcome history
(i.e., accuracy) contributes to participants’ tendency to follow their
advice.
It should be noted that in this work, we aim to study processes

involved in following advice during social learning, which are
considered to be different than processes involved in other forms
of social learning, such as observational learning. For example, it
was shown that in observational learning there are separate
prediction error mechanisms involved for actions and outcomes at
both the behavioral and neural level33. However, observational
learning often involves observing not only the choices, but also
the resulting outcomes; whereas advice is different, since the
information is intentionally transmitted to the learner usually
without incurring personal costs on the advisor, and thus these
differential prediction processes might not be relevant in advice
taking. In support of this dissociation, Hertz et al.13 showed that
participants deliberated less and were more willing to follow
advice than to copy the choices of another player. That study also
indicated that following advice is related to trust in others, thus
raising the issue of the role that the intentions of the advisor play
in this type of learning36. Therefore, we note that the results
gained in the current study do not necessarily expand to other
forms of social learning that were not explicitly examined here.
The computational mechanism found in the current study

resembles that of Diaconescu et al.19, which showed that people
have a social bias towards following advice, accompanied by an
arbitration between social and individual sources of information.
In that study, participants played a lottery game where they could
base their predictions for the raffle’s results based on their
individual experience and/or on advice. Importantly, the advisor’s
intention to help varied throughout the experiment, such that
participants were hypothesized to adjust the source of informa-
tion that they rely on based on this volatility (i.e., based on the
perceived precision of each source of information). Using a
Hierarchical Bayesian model, they showed that participants
tracked the volatility of each information source and arbitrated
between them, taking into consideration the advisor’s precision
and stability. The current work affirms and extends their findings
by showing that a simple experimental manipulation can
disentangle the causal effect of advice from individual learning.
That is, by measuring the difference in coherence rate for trials
where advice was revealed vs. concealed, we can measure the
causal effect of advice on choice behavior in a continuous learning
paradigm, without having to use computational modeling.
Furthermore, our RL modeling supported Diaconescu et al.21

showing that indeed individuals tend to engage in both individual
learning and advice-taking. We further show that this is true in a
much less volatile environment and suggest that both informed

and non-informed types of learning affect the value of the
individual to follow advice.
Najar et al.4 also showed that the demonstrator’s choices

directly influenced those of the player, but it was shown in an
imitation process such that the players mimicked the previous
choices of the demonstrator. Najar et al.’s4 winning value-shaping
model allows for long-lasting learning of social inputs, but
importantly, similar to Diaconescu et al.’s19 model, the socially
oriented bias towards “advised” options is bound with the specific
choice made by the demonstrator. Hence, we suggest that the
bias parameter in our models (i.e., non-informed advice-taking)
might capture a phenomenon that relates to the normative aspect
of following others’ advice since it demonstrates a general bias
that is not limited to a specific choice (see Mahmoodi et al.24 for a
study concerning the involvement of normative and informational
conformity in change of mind).
One explanation for a bias towards following advice comes

from the work of Biele et al.10, which showed that following advice
was intrinsically rewarding in and of itself, thus explaining the
long-lasting influence of a single piece of advice provided one
time. Moreover, Doll et al.’s12 work supported a computational
model by which learners favor advice over individually-learned
information, even when the advice was incorrect, and in Najar
et al.’s4 model, the demonstrator’s choice itself serves as a pseudo-
reward in the computational mechanism. Presumably, such a bias
could rely on epistemic trust, which represents a “trust in
knowledge”, or a tendency to evaluate new social information
as accurate and reliable and to integrate it into one’s own learning
environment37,38. Epistemic trust has been extensively studied in
young children39–41, and studies show that children are able to
evaluate their informants during learning, and estimate whether
they are knowledgeable and trustworthy. For example, Woo and
Spelke42 showed that even toddlers are able to both learn from
the outcome of an agent’s behavior as well as to evaluate the
intention of the social agent. A unified framework by Eaves and
Shafto37 suggests that epistemic trust complements pedagogical
inference, where informants are assumed to be trustworthy. By
integrating the results of these studies, we can conclude that
adaptive learning results from a combination of having trust in,
and evaluating, a pedagogical agent. A social learning strategy
such as “copy when model successful” allows for this type of
evaluation of the informant43. Finally, trust has been shown to
influence learning from advice, but not from observation13; for
example, one study showed that participants with high levels of
paranoia were less likely to comply with advice, but did not differ
from individuals with low paranoia levels in the extent to which
they copied an observed decision. It seems that both processes
are mirrored in the current results, which demonstrate a general
bias to trust the advisor and follow advice (non-informed) and
form an evaluation of the teacher (informed advice-taking).
The current results also relate to other works concerning social

learning across different areas. For example, one line of research
aims to theoretically distinguish between different avenues
through which one learns from others’ behavior. It was found
that, in young children, learning is often the result of “blind
imitation”, such that by simply copying others, one learns new
behaviors44. In contrast to imitation, another form of social
learning is emulation, which is considered more resource-
consuming and involves the learning of the effects or goals of
the actions (as opposed to the actions themselves). A neuro-
computational study concerning imitation and emulation learning
processes demonstrated that brain networks employ a highly
adaptive and dynamic approach to allocate control between
choice imitation and goal emulation, depending on emulation
reliability, or the relative uncertainty in each strategy’s predic-
tions45. In the current study, participants could have followed the
teacher’s selection by either blind imitation or emulation – i.e.,
copying the teacher’s choices in order to maximize rewards.

M. Pereg et al.

8

npj Science of Learning (2024)     4 Published in partnership with The University of Queensland



However, the interaction between a fixed bias to follow advice
and an observed pattern in which participants learned from the
outcome history goes against a “blind imitation” approach,
suggesting that participants deliberated the value of following
advice and then made a choice of whether to emulate the
teacher’s behavior or not. This is supported in the simulation
analyses showing the effect of the informed advice-taking process.
Nonetheless, the robustness of the bias to follow advice also
suggests that participants utilized both processes when making
their choices, such that the bias itself could be considered blind
imitation.
Thus, one question that comes to mind concerns the boundary

conditions for such a strong bias to follow advice. It should be
noted that the bias to follow the teacher’s advice is highly related
to what is termed informational conformity - i.e., the tendency to
conform with social information in uncertain/unknown environ-
ments, where we believe that others hold valuable information46.
Indeed, previous works have shown that individuals have a higher
tendency to use social information when it is harder to reach a
decision on their own, or when they are less confident in their
own choice47. In the current study, we used a probabilistic
reinforcement learning task in which the uncertainty level was
high due to the shifting values of the cards across trials, which also
required that participants keep track of the outcome history per
card. This was done in order to increase learning demands48.
Hence, it is possible that a different (perhaps weaker) bias towards
following advice would have been found with a different design in
which the learning demands were lower.
This study holds several limitations. The first involves a broad

question regarding the “social” nature of the task, given that
participants were not deceived to think that an online human
agent was behind the virtual teachers. As per definitions, we refer
to social learning under a broad classification that concerns
following/learning from signals that originate from other agents.
In contemporary naturalistic human social settings, individuals are
consistently subjected to social content that is circulated by
anonymous virtual entities (e.g., online reviews, social navigation
applications, and other similar social platforms). We would like to
propose that the frequent exposure of participants to such
anonymous entities in social platforms, increases the likelihood
that participants will address symbolic virtual agents in empirical
studies (such as a virtual teacher in the current study) as social
information49,50. This view is in line with many other studies that
conveyed information to participants using different illustrations,
images, and text (either symbolic or explicit) to study social
learning processes13,49–52. Specifically, Vélez and Gweon50 used a
card game and incorporated advice from an artificial agent to test
how people integrate partial individual information with incom-
plete advice. In another work, Atlas et al.52 examined fear
conditioning to test whether instructed knowledge modulates
feedback-driven learning. The social information was conveyed
through emotionally charged faces and verbal instructions to issue
fear conditioning. Moreover, in previous works, such minimal
instructions were enough to elicit social behavior online that was
similar to social behavior in the lab under more elaborate social
settings53 and even to induce online participants to sacrifice some
payment to gain social rewards54.
In search for further empirical support to the claim the virtual

teachers were perceived as providing social information, we
performed an additional experiment using a non-social cue, and
found that when the advisor is framed as a lottery wheel, rather
than a virtual teacher, the reveal effect diminishes (see
Supplementary Information). This is in line with previous studies13,
who found a small but significantly greater tendency to follow
advice than to mimic observed actions by others. Therefore, an
advantage towards following advice (over observation)13, taken
together with the advantage we found for following advice (over
the lottery wheel) – might indicate that there is an additional

meaning for advice that is symbolically framed as social
information. However, more studies should be designed to
directly examine this question, perhaps as a matter of different
social framings, ranging from overtly non-social to the presence of
another peer that provides advice.
Two methodological limitations concern the experimental

design and the computational modeling approach. We chose an
experimental design that will suit repeated interactions with the
card game and the virtual teachers. Given that we aimed to
measure not only the bias towards the advice, but also the
learning processes concerning both the cards and the teachers,
the blocks needed to include a rather large number of trials that
will enable a reliable measure. However, as opposed to other
studies that used a single advice, we had to keep participants on
their toes and encourage learning throughout the block, and so
both the cards’ expected values and the teachers’ accuracy gently
drifted during the block (e.g., Daw55). Overall, the accuracy level of
the teachers was above 50% at all times, and with no sudden
changes. Also, we did find that the value of taking advice in the
winning model followed the teacher’s accuracy across trials (see
Supplementary Information). However, overall, the current study
was mostly designed to allow a reliable measure of the interaction
with the teachers, rather than testing whether there were major
alterations in the participants’ responses to the teacher’s advice.
This issue should be further tested in future studies with a more
deliberate experimental design.
Regarding the computational modeling approach, we exclu-

sively examined a prediction-error-based reinforcement learning
model to elucidate the learning processes. While this approach
offers valuable insights into how agents update their beliefs and
actions in response to prediction errors, it is important to
acknowledge the existence of alternative decision-making frame-
works that were not explored in this study. One option could be
active inference, which focuses on minimizing surprise by
iteratively updating beliefs and selecting actions that bring
sensory inputs into alignment with their internal generative
models56. Another alternative could be forward models that
operate by generating predictions of sensory outcomes based on
an agent’s planned actions57. Each of these alternative approaches
offers distinct perspectives on decision-making, and future
research may benefit from investigating their applicability to our
research domain.
Moreover, the current findings demonstrate strong evidence for

a mixture model where two learning mechanisms are taking place
simultaneously: non-informed and informed advice-taking. The
combined model (Model 5) involving both processes was
constructed by integrating the basic formulation of each of these
mechanisms. Specifically, in the winning mixture model (Model 5)
non-informed advice-taking was formulated as a value bonus
assigned to the instructed card, and informed advice-taking was
updated based on the observed outcome. It is of course possible
that a more complex mixture process takes place during this type
of learning. For example, the moderated informed advice-taking
mechanism described in Model 4 might even further improve the
predictive accuracy of the empirical data if combined within a
mixture, informed and non-informed, model. Further studies are
thus required to provide a more comprehensive examination of
different informed learning mechanisms that might subside with
the non-informed advice-taking tendencies.
Future studies should also look further into the conditions that

lead to such a strong bias. As suggested, one thing that comes to
mind is the influence of decision difficulty. Second, the current
experimental paradigm, which involves repeated interactions with
an advisor, is a good candidate for examining how people
evaluate the value of the advisor and whether and how the advice
accuracy influences behavior throughout the learning process.
Although we found a positive correlation between the internal
values of following advice and the teachers’ accuracy rates (see
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Supplementary Information), this is not the main focus of the
current study. Future studies could also examine this issue by
formally modeling this type of learning, for example by using a full
Bayesian updating of the teacher’s accuracy rates.
To conclude, in this work, we were able to disentangle two

types of social learning: informed and non-informed advice-taking.
Our computational model supports the involvement of both
processes, alongside individual learning. Finally, advice-taking was
shown to be reliable across measurements, thus behaving as a
trait-like decision bias to follow external advice.

METHODS
Participants
We recruited participants through the Prolific online platform for a
two-part experiment in return for monetary compensation. One
hundred and sixty-six Prolific workers completed Session 1, and
153 completed Session 2. The final sample comprised 153
participants (mean age = 26.63, range 18 to 46; 90 men, 59
women, 4 other gender identification). Participants reported
normal or corrected vision and no current or past psychiatric or
neurological diagnosis. The study protocol was approved by the
Research Ethics Council of Tel Aviv University and all participants
signed an informed consent form before participating in
the study.

The student-teacher task
Participants completed two sessions of a multi-armed bandit
reinforcement learning task during which they were asked to
choose between cards in order to gain rewards (Fig. 1). The task
included four cards, and in each trial, the computer randomly
selected and offered two cards for participants to choose from.
Each card led to a reward according to a reward probability that
changed gradually across trials (the temporal profile of reward
probabilities was generated using a noisy random walk; see
Supplementary Fig. 1 in Supplementary Information). Participants
were informed regarding the drifting-value nature of the cards
(i.e., the cards’ changing value) and were instructed to try to do
their best to gain as many rewards as possible, which would be
converted to a monetary bonus at the end of the experiment. In
addition, the task included avatars of teachers, that latently chose
a card on each trial based on a noisy estimation of the cards’ true
expected values (see Supplementary Information). During the
instructions phase, we informed participants about “virtual
teachers” that will give them advice from time to time and
suggest which of the cards should be chosen. The “teachers” were
represented by small illustrations of different faces (see Fig. 1 for
an example). Participants were instructed that the virtual teachers
were familiar with the card game, but do not know whether a card
will produce a reward, and so it is up to the participant to decide
whether to follow their advice. Note that no deception was used,
the participants knew that the teachers were virtual and designed
by the experimenter. Participants were familiarized with the
teacher’s avatar at the beginning of each block and were told that
the teacher would direct them from time to time, to help them
choose the best card. In practice, the virtual teacher had access to
the true expected value of the cards, and made a decision using a
noisy softmax (see Supplementary information). To encourage
participants to keep track of both the cards’ value and the
teacher’s advice, we slowly and randomly changed the noise in
the teacher’s decision (changing the softmax noise parameter
using a slowly drifting random walk, see Supplementary Informa-
tion). On average the teacher accuracy was 63% and ranged
between 53 to 77% accuracy.
An additional important detail is that the teachers’ choices were

generated by the computer on all trials but revealed to participants
as advice only on 60% of the trials. The rate at which the advice

was revealed was chosen based on an assessment of the required
number of trials per condition. Hence, the task involved two
primary conditions, concealed advice and revealed advice, which
alternated randomly between trials. In “concealed advice” trials,
participants were only presented with the two offered cards, and
did not observe the teacher’s choice. In the “revealed advice” trials,
the teacher’s choice was revealed to the participants (Fig. 1). To
indicate the advice, the teacher’s avatar appeared next to the
advised card, and a red X appeared next to the other card for
perceptual balance. Finally, to encourage participants to keep track
on both the cards’ value and the teacher advice, we slowly and
randomly changed the teachers ability to pick the more valuable
card (using a random walk, see Supplementary Information). The
teachers’ accuracy was based on the Softmax function, such that
the β component followed a stochastic distribution (see Supple-
mentary Fig. 2 for teachers’ β, Supplementary Information). The
Softmax for teacher accuracy is provided in Eq. 12.

pðiÞ ¼ exp β tð Þ ´ p rw; ið Þð ÞÞ
P2

n¼1 exp β tð Þð Þ ´ p rw; ið ÞÞ (12)

The probability of the teacher choosing card i is a function of
the β of the teacher on a certain trial t, and the true probability of
that card i to lead to a reward.
At the beginning of the session, participants were presented with

task instructions, as well as a multiple-choice quiz which they had to
complete with 100% accuracy in order to continue to the card
game. Participants completed the student-teacher task across two
sessions (one day after the other), and at the end of the experiment,
were paid a fixed amount (£2.5 per session) plus a bonus [£0.75
per session, if they completed both sessions (range: £0-£1.5, mean=
£0.75)]. Each session involved three blocks with 130 trials each, and a
short break was provided after 65 trials. Each block introduced a
new set of visual stimuli - the cards and the avatar teachers were
replaced on each block in every session. Each trial began with a
500ms fixation, after which the cards (with or without the teacher’s
advice) appeared until a choice was made or until 6 seconds had
elapsed. After participants made their choice, the chosen card
appeared on the screen for 500ms, and the reward feedback was
displayed alongside the selected card for 1000ms. Finally, a black
screen appeared for 500ms before the next trial started (Fig. 1).

Preprocessing
Preprocessing involved locating data points during which the
participant was unengaged with the task: Participants who kept
pressing the same key (key repetition on more than 90% of trials)
were set for exclusion, yet none reached this criterion (0
participants excluded). Trials with unreasonably fast or slow
reaction times (<200 ms or >4000ms) were omitted (resulting in
3.75% of all trials). Participants with more than 25% excluded trials
due to fast/slow reaction times (13 participants) were excluded
from the analyses altogether. The remaining data set included 140
participants, with an average of 749 trials per subject, resulting in
a total of 104,918 observations that were later used for Bayesian
parameters updating in the main analysis.

Bayesian parameters estimation
We performed Bayesian logistic regression and reinforcement
learning computational modeling analyses using ‘brms’, ‘rstan’,
and ‘loo’ packages in R35,58,59. Models included population-level
(fixed effects) and individual-level (random effects) parameters for
all estimated models and sampled with weakly informative priors.
To estimate chain convergence, we visually examined trace plots,
pairs plots, and R-hat estimates and found them to show good
chain convergence. We report the median, 89% CI, highest density
interval (HDI), and probability of direction (pd) for parameters’
posterior distributions (logistic regression estimates are on the
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log-odds scale; for prior robustness checks, see Supplementary
Information). Note that 89% CI was selected following recent
recommendations for Bayesian posterior estimates60. Specifically,
the 89% CI bares no special meaning, and is as arbitrary as other
estimates (i.e., 95%). Instead of using the CI as a single estimate for
drawing conclusions regarding the effect of interest, we made an
effort to describe the full posterior (including explicit figures) and
provide more information regarding a range of CIs where the
conclusion of the analysis was not clear cut. All models were
estimated by comparing Expected Log-Probability Density (i.e.,
elpd). For computational models, we performed model compar-
ison using a leave-one-block-out approach. For each model, we
left out one of the six blocks and calculated the expected log
predictive density for each trial in the left-out block [i.e., we
estimated the population and individual parameter posteriors
using hierarchical Bayesian modeling (using ‘stan’ Markov chain
Monte Carlo) and then calculated the log predictive density for
each trial in the left-out block]. This procedure was repeated for all
blocks resulting in pointwise predictions for each posterior sample
and across all observations (that is, an estimated elpd for each
observation). We then used the ‘loo_compare’ function (from the
‘loo’ package) to perform pairwise model comparisons between
each model and the model with the largest elpd. An elpd
difference of 2 times the standard error was considered
substantial35. We further conducted posterior predictive checks
to establish the conclusions arising from our model comparison
results (Supplementary Information).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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