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Seeking the neural representation of statistical properties in
print during implicit processing of visual words
Jianyi Liu 1✉, Tengwen Fan1, Yan Chen2,3 and Jingjing Zhao 1✉

Statistical learning (SL) plays a key role in literacy acquisition. Studies have increasingly revealed the influence of distributional
statistical properties of words on visual word processing, including the effects of word frequency (lexical level) and mappings
between orthography, phonology, and semantics (sub-lexical level). However, there has been scant evidence to directly confirm
that the statistical properties contained in print can be directly characterized by neural activities. Using time-resolved
representational similarity analysis (RSA), the present study examined neural representations of different types of statistical
properties in visual word processing. From the perspective of predictive coding, an equal probability sequence with low built-in
prediction precision and three oddball sequences with high built-in prediction precision were designed with consistent and three
types of inconsistent (orthographically inconsistent, orthography-to-phonology inconsistent, and orthography-to-semantics
inconsistent) Chinese characters as visual stimuli. In the three oddball sequences, consistent characters were set as the standard
stimuli (probability of occurrence p= 0.75) and three types of inconsistent characters were set as deviant stimuli (p= 0.25),
respectively. In the equal probability sequence, the same consistent and inconsistent characters were presented randomly with
identical occurrence probability (p= 0.25). Significant neural representation activities of word frequency were observed in the equal
probability sequence. By contrast, neural representations of sub-lexical statistics only emerged in oddball sequences where short-
term predictions were shaped. These findings reveal that the statistical properties learned from long-term print environment
continues to play a role in current word processing mechanisms and these mechanisms can be modulated by short-term
predictions.
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INTRODUCTION
Reading is an important social skill that enables us to extract the
wisdom of others from a range of symbols. These symbols are
visual words with various orthographic features. Proficient reading
requires the assimilation of statistical regularities present in the
writing system1. This statistical structure includes both information
at the sub-lexical level, such as orthographic regularities (e.g.,
frequency and/or legality of consonant doublets in alphabetic
language; the frequency of a radical occurs in a given location
within characters in Chinese), orthography-to-phonology (O-P)
consistency (e.g., consistent body-rime correspondences such as
pill, mill, and still; “inconsistent” words such as pint) and
orthography-to-semantics (O-S) consistency2–6, and information
at the lexical level such as word frequency (i.e., the rate of
occurrence of an orthographic form) that also captures some of
the statistical structure in the mappings from O-P and O-S at the
whole-word (lexical) level1.
The acquisition of such regularity information is considered to

depend on statistical learning1 (SL), which refers to learning based
on some aspect of the statistical structure of input elements,
primarily their frequency, variability, distribution, and co-
occurrence probability7. SL can occur implicitly and has been
observed to be demonstrated across a variety of both linguistic
and nonlinguistic contexts8–13. The investigation into the role of SL
in language acquisition originated from the seminal study
conducted by Saffran and her colleagues14, which demonstrated
that infants possess sensitivity to transitional probabilities (TPs) of

syllables within a continuous speech stream. It was seen as
providing a viable explanation for identifying word boundaries. In
the many hundreds of studies that followed the original auditory
TP learning task by Saffran et al.14, researchers often tailored the
task’s parameters (including the adaptation of nonlinguistic
domain and visual modality) to address closely related ques-
tions15. TP is a type of conditional probability, which essentially
reflects the raw frequency of co-occurrence16,17. This also makes it
limited by the coverage of conditional probability, that is, TP can
mainly explain the learning of adjacent regularities (e.g., one
syllable predicted the syllable directly following). However, SL
applies not only to the acquisition of adjacent regularities, but also
to the learning of nonadjacent regularities – regularities that exist
over an intervening element (e.g., refs. 18,19). Distributional SL
account for the learning of non-adjacent relations, which is
termed for sensitivity to those aspects of the statistical structure of
the input that capture the frequency and variability of exemplars
in the input7,17. In contrast to conditional SL, which focuses on the
acquisition of local statistical structure such as TP learning,
distributional SL places greater emphasis on acquiring global
statistical structure. These two types of SL may have different
contributions to learning different language knowledge, for
example, word segmentation depends more on conditional SL,
while orthographic and morphological regularities of written
words rely more on distributional SL3.
Classical SL experiments represented by TP learning (e.g.,

auditory triplet learning; visual triplet learning) and artificial
grammar learning tasks have typically considered learning on
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the timescale of minutes. However, SL has a continuous learning
trajectory that begins with low-level coding of uncertainty (for
single stimulus tokens) and ends with long-term accumulated
knowledge of the environment15. Although there is research
evidence to confirm the relationship between these short-term SL
effects measured by the classical SL paradigms and reading
performance20–23. The external validity of this evidence is limited
because these studies typically deal with learning of a single type
of regularity over a short period of time (see refs. 7,15 for detailed
discussion). The complexity of the regularities in a given domain,
whether a spoken language or a printed text, is often significantly
different from these simplified learning problems. A major review
recently highlighted the importance of evidence from tasks that
tap regularities characteristic of real-world environments across
different domains24. In fact, there has been a study that has made
attempts in this direction1. This study used an alternative
approach that focused on identifying individual differences in
children’s reliance on long-term accumulated statistical regula-
rities as reflected directly in their word naming behavior. The
researchers found that the measures of reliance on O-P and O-S
had much stronger predictive power than the much weaker
correlations observed in correlational studies of “typical” SL tasks
and reading outcomes. The authors argued that these results
suggest that these more complex regularities are the ones that
play a role in reading acquisition, more so than the simplified
regularities typically studied in classical SL paradigms. The study of
Siegelman et al.1 considering the long-term accumulated knowl-
edge of statistical regularities in written language is a new
attempt, it can help inform researchers about the subtle
regularities that humans are able to assimilate “in the wild”.
So far, there is only circumstantial evidence on whether the

distributional statistical properties of print have been implicitly
learned by proficient readers through long-term exposure
experience to print environments. At the lexical level, the typical
evidence is the word frequency effect25 (WFE), whereby high-
frequency words exhibit processing advantages over low-
frequency words across a range of tasks (e.g., word naming,
lexical decision, semantic decision; for a review see Brysbaert
et al.26). In addition, the WFE has also been verified by several ERP
studies, the typical example is low-frequency words produce
larger N400 amplitudes than high-frequency words (see Kutas &
Federmeier27, for a review). At the sub-lexical level, a variety of
findings make clear that skilled readers read faster and more
accurately words with O-P mappings that are more consistent at
multiple grain-sizes (e.g., grapheme-phoneme consistency28,29;
body-rime consistency30,31). Additionally, several event-related
potential (ERP) studies have validated the consistency effects (low-
consistency words evoke larger ERP amplitudes than high-
consistency words) of Chinese characters within the time windows
of several ERP components32–35. However, these results can be
explained by different theories (e.g., dual-route model36; connec-
tionist model37) and therefore cannot be conclusively attributed
to the effects of SL. If we can surpass the impact of statistical
properties on word recognition and demonstrate that the human
brain genuinely decodes these statistical attributes, then we will
provide more compelling evidence for long-term SL effects. In
order to obtain this critical evidence, we intend to draw
momentum from multivariate pattern analysis (MVPA) in cognitive
neuroscience. In contrast to traditional univariate analysis
techniques (e.g., ANOVA based on ERP amplitudes), MVPA
considers the relationship among multiple variables (e.g., channels
in EEG), which can capture the information that is not detectable
in univariate analysis and improves the sensitivity of identifying
differences among experimental conditions38,39. The most popular
applications of MVPA are decoding (for reviews, see e.g., refs. 40,41)
and, more recently, representational similarity analysis42 (RSA).
RSA is based on the assumption that stimuli (or manipulated

features) with more similar neural representations are more

difficult to decode, while those with more distinct representations
are expected to be easier to decode38. By comparing the
decodability of all possible pairwise combinations of stimuli, a
representational dissimilarity matrix (RDM) is calculated. That is,
for each pair of stimuli, the distance between their activation
patterns (e.g., the representation vector composed of 64 electrode
signals in EEG) is computed using one of several distance metrics
(e.g., correlation between the activation patterns or difference in
classifier performance43). Critically, we can calculate a model RDM
based on experimental design in the same way, for example, we
can calculate pairwise correlations between all words in a word
recognition experiment using the frequency (obtained in the
corresponding corpus) of each word as its characteristic. Further,
by comparing RDMs from brains and models (e.g., Spearman rank
correlation), researchers can know whether brain representations
reflect stimulus properties. For data with high temporal resolution
such as EEG, a series of RDMs can be created for each time point
and used to investigate the temporal dynamics of representations
over time.
The Chinese writing system, which has rich quasi-regularity and

distributional properties, may provide excellent material for
examining the processing of complex statistical regularities in
reading3. These orthographic distributional regularities are mainly
placed among two elements called radicals, one that provides
information about how that character is pronounced (phonetic
radical), and the other providing information about its meaning
(semantic radical). Approximately 80%−90% of Chinese characters
are compound characters consisting of these two radicals44. For
example, in Chinese character 湖/hu:2/ (to lake), the phonetic
radical 胡/hu:2/ reveals its pronunciation (/hu:2/), while the
semantic radical 氵 indicates its semantic category (water-related
concept). In reality, however, many radicals clearly deviate from
positional and mapping (i.e., radical-to-phonology and radical-to-
semantics mappings) regularities in varying degrees. The obvious
feature of the positional distribution of characters is that the
majority of them are left-right horizontally structured characters
(around 69%; according to ref. 45). This, in turn, implies the
presence of other structures (positional inconsistent characters).
For mapping regularities, approximately 35% of Chinese char-
acters are phonetic inconsistent characters that differ from the
common pronunciations of other characters made up of the same
phonetic radicals. Furthermore, 12% are semantic inconsistent
characters that differ from the common meaning categories of
additional characters that are made up of the same semantic
radicals46. This allows us to better manipulate various statistical
attributes of words independently. Specifically, characters that are
inconsistent in any one dimension may be consistent in the other
dimensions (e.g., 银/yin/, to silver, is inconsistent for common
pronunciation, /hen/, but consistent with the meaning category of
钅 as a metal-related concept; 很/hen/, to very, is consistent for
common pronunciation, /hen/, but inconsistent with the meaning
category of 彳 as a walking-related concept). Therefore, we can
simultaneously manipulate the consistency of orthographic,
phonological, and semantic within a single Chinese character,
and construct the appropriate RDM for each consistency feature.
Assuming that prediction is crucial for SL47–49, then predictive

coding emerges as an enchanting framework to elucidate the
underlying predictive processes. Within the framework of
predictive coding, learning is a continuous optimization of a
generative model that reflects the world around us and attempts
to explain the causes of the sensory inputs50,51. This optimization
process is achieved by the continuous interaction between top-
down flow of predictions and bottom-up flow of prediction errors
(the difference between sensory inputs and predictions). Extensive
evidence to date indicates that neurophysiological and behavioral
responses can unveil musical and linguistic SL effects in the
predictive coding framework (e.g., refs. 52–60). In neural response,
several studies have examined the role of predictions in regulating
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the intensity of electrophysiological activities. For example,
researchers53–56 have reported that tones with higher TP (i.e.,
more-predictable tones) evoked weaker event related potential
(ERP) amplitudes compared to tones with lower TP (i.e., less-
predictable tones) (see ref. 61 for review). In addition, starting from
another aspect, several studies59,60,62–64 focus on the processing of
prediction errors due to SL. These studies explored mismatch
negativity (MMN), an ERP differential component interpreted as
the neural manifestation of prediction error65–69, and reported a
“statistical MMN” evoked by probabilistic properties (i.e., TPs) of
sounds acquired through SL rather than their acoustical features.
The MMN is typically measured with a passive oddball paradigm
(employ tasks that are not related to the attributes of the stimuli
being explored), in which a series of standard stimuli are
interspersed with acoustic deviants (“oddballs”; e.g., sounds
differing in pitch, timbre or location66,70–73). Within this paradigm,
the predictable sounds (standards) are subtracted from the
surprising sounds (deviants) to obtain the MMN. As in the
statistical MMN experiments, by manipulating the feature types of
standard and deviant stimuli, researchers can examine prediction
errors for different physical or abstract properties. Substantial
evidence has accumulated suggesting that prediction error
caused by visual deviants can be reflected in visual MMN (visual
counterpart of the auditory MMN). At the outset of vMMN
research, studies focused on simple physical property deviances
(color, spatial frequency, shape, movement direction, etc74–77);
later vMMN has been investigated for abstract property deviances
(facial emotions, word meaning, phonological categorization,
etc69,78–83; for a review see ref. 84). To date, no vMMN studies
have explored the prediction error response related to probabil-
istic properties of printed words. This raises two important
questions. The first is whether distributional statistical regularities
in real-world written language are reflected in the neural
processing of visual words by skilled readers. If the answer is
yes, the second question is whether the neural activities in
response to these statistical properties are continuously modu-
lated by prediction error in the current sensory environment.
The present study aims to address these questions and

considers the real-world statistical regularities of the Chinese
writing system. We designed an experiment using the passive
oddball paradigm containing equal probability sequences. For the
materials, we carefully selected three consistent Chinese char-
acters and nine inconsistent Chinese characters (see the Materials
section). These inconsistent characters were divided into three
categories, each with low consistency only in a particular sub-
lexical dimension (orthographic, phonological, or semantic). This
setting of stimuli is similar to the multi-feature paradigm in
auditory MMN studies, where properties of multiple dimensions
are manipulated simultaneously in the same stimulus85,86. Equal
probability sequences were used to provoke the neural activities
related to visual words that depended on the participants’ long-
term experience. There was no clear predictive evidence in this
sequence, and all the characters were presented randomly.
Oddball sequences were used to provoke the neural activities
related to the same characters when the participants were given
clear short-term predictions. In these sequences, consistent

characters were repeated with a high probability (p= 0.75) and
one of the three types of inconsistent characters occasionally
appeared with a low probability (p= 0.25), giving a total of three
oddball sequences. To track the neural representations of various
statistical regularities, we performed a time-resolved RSA for the
electrophysiological activities of the corresponding characters
separately in the oddball (integrating all three oddball sequences)
and equal probability conditions. Based on the widely reported
robust effects of SL on reading in previous studies, we hypothesize
that significant neural representations of statistical information
(including word frequency and three types of consistency) can be
detected even during implicit visual word processing. Starting
from the principle that the volatility of the environment will
modulate the intensity of prediction error related neural
activities87,88, we propose a second hypothesis that sub-lexical
statistical information (consistency) will be detected stronger
neural representation activities in the oddball condition than in
the equal probability condition.

RESULTS
Behavioral results
The mean hit rates and mean false alarm rates of the button
presses as well as the mean press latencies of correct responses
for each experiment are summarized in Table 1. The high hit rates
(99%) and low false alarm rates (<1%) indicated that the
participants were able to accurately focus their attention on the
color change detection task.

RSA based on predictor RDMs
According to the current experimental design, we attempted to
detect the classification representations of consistent or incon-
sistent features in neural activities and obtain corresponding RSA
results. Prior to the main analysis, we excluded the interference of
phonetic radical categories on neural representation. This is due to
the fact that we did not detect significant neural representations
of specific phonetic radical in any of the conditions (partial
correlation coefficient between neural RDM and radical-control
RDM). For characters in the oddball condition, the RSA results
revealed the time course of the representations of orthographic
consistency (see Fig. 1b, significant time points: 106–403ms and
417–523ms), phonological consistency (177–470ms), and seman-
tic consistency (181–378ms, all cluster-corrected sign permutation
test, cluster definition threshold p < 0.05, cluster-corrected sig-
nificance level p < 0.05). The evidence for representations of
frequency (lexical statistical information) was absent in the EEG
signals of oddball condition. In addition, only frequency
(150–215 ms) and orthographic consistency (159–217ms) repre-
sentations can be detected in the neural activities corresponding
to the characters in equal probability condition (Fig. 1a).
Further information was provided by statistical analysis of the

differences in neural representation between the two conditions.
The results show that the orthographic (238–336 ms), phonologi-
cal (220–300ms) and semantic (193–308ms) consistency informa-
tion in oddball condition can be more strongly predicted by

Table 1. Behavioral results.

Block Type Mean Hit Rates (Range) Mean False Alarm Rates Mean Press Latencies (SD)

Equal probability block 99% (96%–100%) <1% 369.00ms (30.58ms)

IOr oddball block 99% (93%–100%) <1% 393.26ms (40.07ms)

IPh oddball block 99% (93%–100%) <1% 398.22ms (37.02ms)

ISe oddball block 99% (93%–100%) <1% 396.64ms (34.82ms)

IOr inconsistent orthographic, IPh inconsistent phonological, ISe inconsistent semantic.
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neural patterns than those in equal-probability condition (Fig. 1c).
It is worth noting that although significant representations of
frequency were detected only in equal-probability condition, the
intensity of these representations was not statistically different
from that obtained in oddball condition. This means that the
representation of frequency in oddball condition could be
interpreted by stronger representation of sub-lexical statistical
information (by partial correlation calculation).

RSA based on rating RDMs
To examine the generalizability of the results, we performed RSA
analysis based on rating RDMs in the same manner. We obtained
the representation dynamics of orthographic consistency
(161–263 ms and 268–381ms), phonological consistency
(304–394 ms and 485–551ms), and semantic consistency
(164–267 ms and 304–394ms) in the oddball condition (Fig. 1e).
These time regions are basically consistent with the time periods
of predictor RDM-based RSA results. We also detected neural
representations of frequency in oddball condition from 150 to
238ms. In the equal probability condition, only frequency is
significant (152–216ms) (Fig. 1d).
The statistical analysis of the representation differences

revealed stronger representation of semantic consistency in
oddball condition (Fig. 1f). However, although oddball condition
also obtained significant representations of orthographic and
phonological consistency that were different from equal prob-
ability sequence, the differences between these conditions did not
reach statistical significance. We believe that this is due to the
limited sensitivity of rating RDM detection. The results of
frequency on the other hand confirm this view. Because the
same frequency RDM was used in the RSA analysis based on
predictor RDMs and rating RDMs, the difference between the two
is the RDMs controlled in the partial correlation calculation. In the
predictor RDM-based analysis, frequency representation is not
significant after controlling for orthographic, phonological, and
semantic predictor RDM. However, in the rating RDM-based
analysis, the representation of frequency was significantly after
controlling for orthographic, phonological, and semantic rating
RDM. This means that predictor RDMs of various statistical
information have stronger detection ability than rating RDM.

vMMNs results
According to a cluster-based permutation test, the vMMN effect
was identified for inconsistent orthographic characters across ROIs
in the left and right hemisphere, respectively (Fig. 2a, b). The
cluster-based permutation test revealed that there was a
significantly stronger negativity for the differential waveform in
left (cluster1: sum [t]= –777.98, p= 0.0007, effect size= 0.65;
cluster2: sum [t]= –643.61, p= 0.0013, effect size= 0.85) and right
electrodes (cluster1: sum [t]= –776.88, p= 0.0003, effect size=
0.76; cluster2: sum [t]= –673.28, p= 0.0007, effect size= 0.82) for
orthographic-related vMMN. Additionally, a phonological-related
vMMN effect was also found in both electrodes that corresponded
to a left cluster (cluster1: sum [t]= –678.36, p= 0.0007, effect
size= 1.03; cluster2: sum [t]= –198.66, p= 0.0225, effect size=
0.40) and a right cluster (cluster1: sum [t]= –539.98, p= 0.0020,
effect size= 0.78; cluster2: sum [t]= –238.30, p= 0.0169, effect
size= 0.39). Moreover, a vMMN effect was also discovered for
inconsistent semantic characters in the left cluster (cluster1: sum
[t]= –523.46, p= 0.0033, effect size= 0.61; cluster2: sum
[t]= –376.73, p= 0.0062, effect size= 0.47) and a right cluster
(cluster1: sum [t]= –494.44, p= 0.0049, effect size= 0.64; cluster2:
sum [t]= –361.61, p= 0.0095, effect size= 0.57; cluster3: sum
[t]= –281.65, p= 0.0159, effect size= 0.41). The time range for
significant clusters for various vMMNs across different ROI are
shown in Table 2. To summarize, these vMMN responses are
distributed over two consecutive time windows:
150–300milliseconds and 310–500 milliseconds. These active time
periods of vMMNs are basically consistent with the temporal
dynamics of neural representations of sub-lexical statistical
information.

DISCUSSION
The current work explored two important questions closely
related to SL: first, whether the statistical properties of real-
world print environments as discerned through long-term
experience are reflected in the neural processing of words by
skilled readers, and second, whether the neural activities in
response to these statistical properties are modulated by short-
term implicit predictions. Equal probability sequences and oddball

Fig. 1 RSA results. Time course of partial Spearman correlations between EEG RDMs and predictor RDMs for orthographic (red), phonological
(yellow), semantic (blue), and frequency (green) in equal-probability sequences (a), in oddball sequences (b), and the difference between them
(oddball minus the equal-probability) (c). Time course of partial Spearman correlations between EEG RDMs and rating RDMs for orthographic
(red), phonological (yellow), semantic (blue), and frequency (green) in equal-probability sequences (d), in oddball sequences (e), and the
difference between them (f).
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sequences were used in this study to detect the neural processing
of Chinese characters based on long-term experience and short-
term prediction, respectively. We applied RSA to elucidate the
neurodynamic pattern of the multidimensional statistical informa-
tion processing of Chinese characters. First, we found that word
(character) frequency (i.e., lexical level statistics) could be rapidly
recovered from EEG response patterns in the equal probability
condition. This result answers the first question and confirms the
existence of implicit neural representations of statistical proper-
ties, derived from the long-term textual environment, in word
reading. Second, three types of statistical properties at the sub-
lexical level (i.e., orthographic, phonological, and semantic
consistency) could be extracted in the oddball condition. In
addition, the representation strength of these sub-lexical statistics
was significantly stronger in the oddball than in the equal

probability condition. These differences in the strength of neural
representations are consistent with the significant vMMN activities
we obtained. These results answer the second question, revealing
the existence of prediction error signals driven by prediction
related to sub-lexical statistical properties, and confirming the
modulation role of prediction precision in the neural representa-
tion of these properties.
The present study showed that stable neural representations of

word (character) frequency could be detected in the equal
probability condition in which there were no clear short-term
predictions, and these representations were active for periods of
about 150–220 ms after the character was presented. The
frequency information implied by the characters could only be
interpreted by the statistical distribution characteristics of the
long-term reading environment. This provides direct evidence for

Table 2. The time window of existing vMMN responses in different ROIs tested by a nonparametric cluster-based permutation test.

vMMN responses ROIs Time windows Cluster mass

inconsistent orthographic left occipital-temporal Cluster 1: 313–543ms
Cluster 2: 149–286ms

–777.98***
–643.61***

right occipital-temporal Cluster 1: 310–501ms
Cluster 2: 136–284ms

–776.88***
–673.28***

inconsistent phonological left occipital-temporal Cluster 1: 150–274ms
Cluster 2: 360–439ms

–678.36***
–198.66*

right occipital-temporal Cluster 1: 154–274ms
Cluster 2: 376–474ms

–539.98**
–238.30*

inconsistent semantic left occipital-temporal Cluster 1: 159–302ms
Cluster 2: 319–444ms

–523.46**
–376.73**

right occipital-temporal Cluster 1: 155–283ms
Cluster 2: 0–111ms
Cluster 3: 359–471ms

–494.44**
–361.61**
–281.65*

*p < 0.05, **p < 0.01, ***p < 0.001

Fig. 2 Spatiotemporal distribution of vMMN activities. vMMN waveforms that obtained by subtracting the standard from the deviant
characters of each consistency dimension at left (a) and right (b) ROIs. Scalp topographic maps of vMMNs in two active time periods
(150–300ms (c) and 310–500ms (d)).
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the effect of SL on visual word recognition and reveals that the
statistical properties obtained through long-term SL continues to
play a role in current word processing mechanisms. Prior studies25

have indicated that the WFE may be part of the indirect evidence
for the relationship between SL and reading. Behaviorally, the WFE
is a highly replicable and reliable effect that relates to the
observation that high-frequency words are processed more
efficiently than low-frequency words (e.g., refs. 89–91). In the
temporal dynamics of neural processing, most studies92–94 have
found ERP differences between high-frequency (HF) words and
low-frequency (LF) words at around 200ms after word onset. The
WFE has also been reported in several recent ERP studies95,96

focusing on Chinese characters. Wang and Maurer’s study95 found
ERP differences at the time interval of 172–253ms. Another
study96 used an implicit color decision task to report divergence
between the ERPs evoked in response to HF characters and the
ERPs evoked in response to LF characters over a time period of
210–222ms. The ERP time window corresponding to the WFE is
consistent with our RSA results. By breaking through the limitation
of univariate analysis (the traditional form of ERP analysis), we
provide more powerful evidence for the implicit and rapid
processing of word frequency information. However, almost no
significant neural representation activities in response to sub-
lexical level statistical properties were detected in the equal
probability condition. This suggests that skilled adult readers may
be sensitive to larger-grain size statistical properties (i.e., at the
lexical rather than sub-lexical level) in their daily word processing.
In fact, this finding is consistent with prior studies of alphabetic
languages. Some studies have reported that adults are particularly
impacted by body rime rather than grapheme-phoneme level
regularities (e.g., refs. 30,31). It has been reported that, as humans
develop, they become increasingly reliant on O-P regularities at
larger grain sizes29 (i.e., from the sub-lexical to the lexical level).
Neural representations of various sub-lexical level statistics (i.e.,

orthographic, phonological, and semantic consistency) become
detectable when subjects are exposed to visual inputs that
contain clear short-term predictions (i.e., in oddball sequences). In
addition, the intensity of these neural representations is sig-
nificantly stronger than those evoked in the equal probability
condition. These findings reveal a short-term plasticity mechanism
for neural representations of sub-lexical level statistical properties.
We suggest that this plasticity mechanism, as observed in the
present experiment, can be appropriately explained by the
predictive coding framework50,65. In simple terms, predictive
coding is an implicit process that creates an internal model of
sensory inputs with the aim of minimizing surprise97 (i.e., a
quantitative formulation of prediction error, which is the negative
log probability of a sensory event). In order to minimize the cost
(free-energy50) of reducing prediction errors, the system assigns
different weights to real-time prediction errors according to the
variability of the environment (i.e., prediction precision), which
causes the same external input to evoke different levels of
response depending on the environment in which it is located.
This precision setting mechanism can be conceptually understood
as a form of meta-learning: learning what is learnable or
estimating the predictability of new contingencies98. Returning
to the current experiment, a lack of effective prediction (i.e., low
precision) was observed within the equal probability sequences.
All characters were decoded using the established neural
processing patterns, corresponding to neural activities in skilled
adult readers that are sensitive to lexical rather than sub-lexical
statistical properties. However, the situation changed in the
oddball sequences, where the presence of unambiguous predic-
tion (i.e., high precision, by repeated exposure to consistent
characters) caused any inconsistent information to be evaluated
as worthy of learning, thereby activating additional neural activity
that was different from the existing processing patterns. This was
ultimately reflected in stronger and more explicit neural

representations of the various types of sub-lexical statistical
properties. In fact, a recent study using the oddball paradigm
reported similar findings88. That study investigated the neural
mechanisms that underpin SL and volatility attuning, and showed
that, in stable conditions, SL (as behaviorally assessed) was
improved compared to the volatile conditions, prediction errors
increased, and there was a greater modulation of neuronal gain,
forward connections, and backward connections.
We obtained significant “genuine” vMMN responses within the

active time window of neural representations of various forms of
sub-lexical statistical properties. The vMMN responses obtained in
the oddball paradigm were interpreted as a neural manifestation
of the prediction error signal65,87,99,100. The prediction error in the
current experiment could be clearly attributed to the violation of
the consistency category. There are three reasons for this
attribution. (1) The vMMNs were calculated via subtraction of
the ERPs evoked in response to the equiprobable stimuli from the
ERPs evoked in response to the deviant stimuli. The equiprobable
and the deviant stimuli were comprised of the same Chinese
characters, so that the vMMN cannot be described as involving
physical, orthographic, phonological, or semantic differences
between them. (2) As the probability of presenting the equiprob-
able and the deviant stimuli were exactly equal (i.e., 1/4), then the
vMMN cannot be explained as a difference in refractoriness
between the ERPs evoked by them. (3) The vMMN cannot be
explained as a violation of a phonological category or a semantic
category since there was no reducible phonetic or semantic
category within the deviant or equiprobable characters in the
oddball sequence. In summary, we believe that our study defines a
class of prediction error responses driven by consistency category
violation. These categories of consistency at the sub-lexical level
were only available from statistical mappings of a long-term
reading environment, so these findings further illustrate the
dynamic interaction between short-term plasticity driven by
prediction error and long-term experience. We believe that these
findings advance the understanding of the mechanisms of SL and
provide an interesting perspective on SL from the predictive
coding framework.
Finally, let us consider an additional question about categoriza-

tion. Categorization is a prerequisite for generating vMMN
responses, only when the target characteristics of the deviant
and standard stimuli are classified as different types, can the
deviants produce violations (i.e., surprises) of the predictions that
are established by the standard. Categorization is a basic process
that includes visual perception, and this process goes beyond the
physical characteristics of the stimuli84. For example, there are
hundreds of colors that fall under the category “blue” even though
they have different combinations and values of hue, saturation,
and brightness. In the field of character processing, the vMMN
effects of word meaning101 and phonological83 categorization
have been investigated. However, the consistency features of
concern in the current study are rather special. Phonological
consistency, for example, represents how frequently a phonetic
radical represents a given sound by calculating the relative
proportion of characters with the same pronunciation among
those that share the radical (e.g., ref. 102). This means that
phonological consistency is essentially a continuous variable
ranging from 0 to 1, and the other two types of consistency are
essentially the same. However, the consistency effect reported in
previous studies reflects a dichotomy. These studies often anchor
certain most common (i.e., high probability) body rime corre-
spondences as consistent words and others as inconsistent words,
and found that consistent words are read aloud faster and more
accurately than inconsistent words (e.g., refs. 31,103). This
consistency effect has also been verified with Chinese charac-
ters102,104,105. With regard to neural mechanisms, previous fMRI
studies106 have reported greater activation in the left inferior
frontal gyrus, the left temporoparietal (i.e., inferior parietal gyrus
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and supramarginal gyrus) region, and the left temporal–occipital
junction when naming inconsistent characters compared to
consistent ones. Additionally, several ERP studies have validated
the consistency effects of characters within the time windows of
the N170, P200, and N400 components (phonological consis-
tency32–34; semantic consistency35). In fact, the current experi-
mental design perpetuates the above idea of exploring the
consistency effect. Although we did not focus on specific ERP
components, our results provide new evidence for the rationality
of this line of research. Furthermore, from the perspective of
predictive coding, the vMMN activities evoked by consistency
category violation may reveal the true state of the brain’s SL
product (i.e., neural activities in response to statistical properties
contained in the reading environment). In other words, the rich
distributional statistical information obtained through SL can be
aggregated and reclassified into consistent and inconsistent
features and reflected in different neural representation patterns.
We should also note some limitations in the scope and

methodology of the current study. First of all, in terms of the
scope of current research, although our study was designed to
examine the neural representation of statistical properties
contained in print learned through long-term exposure. However,
the relevant problems are not included in the scope of traditional
SL research, and our study is only an exploratory investigation
closely related to SL. In addition, previous MMN studies exploring
TP learning usually controlled the absolute pitch of the subjects,
but the current study did not consider the characteristics of the
subjects’ hearing. As no studies have so far explored the
relationship between orthographic regularity learning and these
hearing characteristics, there are therefore associated potential
limitations to the generalizability of our current findings. Finally, in
the experimental design, we draw on previous oddball studies
that focus on social category information, so that different oddball
sequences have the same short-term predictions (by setting the
same consistent characters as the standard stimuli). The under-
lying assumption of this design is that there are no long-term
prediction differences between different types of stimuli (i.e.,
when there is no difference in the probability of presentation,
people do not expect to see more of a particular type of stimulus).
However, as with most category-based oddball studies, there is
not much direct proof of this hypothesis, so we consider it as
another potential limiting factor in the explanatory power of the
current results.
In summary, our multivariate RSA study demonstrated the

contribution of long-term SL to the neural activity related to
current word processing. Importantly, we found that the short-
term prediction provided by the visual input environment evoked
neural representations of sub-lexical statistical properties. In
addition, we also obtained significant vMMNs, which indexed an
implicit processing mechanism that operates within the predictive
coding framework. These findings reveal the link between
predictive coding and SL, and confirm the short-term plasticity
of neural activities corresponding to long-term SL.

METHODS
Ethics statement
All participants gave oral and written, informed consent in
accordance with procedures that were approved by the ethics
committee at the School of Psychology, Shaanxi Normal University
(Approval No. HR 2021-05-002). The protocols adhered to the
Declaration of Helsinki.

Participants
Forty-eight healthy young adults were recruited, with three being
excluded for excessive EEG artifacts. The final sample of 45 right-
handed (via self-report) young adults (mean age= 18.04, SD=

0.80; 35 females; the age range is from 17 to 20) had an average
of 12.3 years of education, and all had normal or corrected-to-
normal vision. The final sample size surpassed that of similar
work83,101 using EEG to investigate implicit character recognition
during the oddball paradigm and is comparable to other EEG
studies using RSA analysis to explore the representation dynamics
of language processing107,108. Participants were recruited from the
undergraduate and postgraduate student population at Shaanxi
Normal University and were paid 60 RMB for their participation. All
participants reported no speech or hearing problems and had no
prior history of neurological or psychiatric abnormalities.
An additional group of 33 paid healthy college students (19

female, mean age= 21.48 years, SD= 2.33 years) were recruited
to rate the orthographic consistency, phonological consistency,
and semantic consistency (transparency) of each Chinese char-
acter we selected. Take the scoring of semantic consistency, one
question was asked to measure semantic transparency: “To what
extent do you think the radical “X” can represent the meaning of
the Chinese character “Y”?”. For example, for the character “洋”,
the question was “To what extent do you think the radical “氵“ can
represent the meaning of the Chinese character “洋“ ?”. In a similar
way, each dimension of consistency was measured on a seven-
point scale, with 1= totally inconsistent and 7= totally consistent
(examples of other questions are in the supplementary notes).

Materials
There were three different sets of Chinese phonograms selected.
In Chinese, a character is generally made up of a semantic radical
and a phonetic radical, known as “phonograms”. For example, the
character “牲” consists of a semantic radical “牜” and a phonetic
radical “生”. Each phonogram set in the present study has a fixed
phonetic radical and four different semantic radicals, it enables us
to quantify orthographic consistency features based on phonetic
radical (Fig. 3a). In the second row in Fig. 3a, for example, the
phonetic radical in all characters is “生”, while the semantic
radicals are “牜”, “ ”, “月” and “忄”, respectively. Thus, each
stimulus set contained four characters (each row in Fig. 3a), for a
total of 12 characters.
Semantic radicals are generally on the left side of characters,

and phonetic radicals are on the right, which is the main
orthographic rule in the majority (63%) of phonograms (45).
Semantic radicals usually provide semantic information of
characters, while phonetic radicals provide phonological clues.
For example, in the Chinese character “牲”, the semantic radical
“牜” is on the left side, while the phonetic radical “生” is on the
right. The meaning of character “牲” is “domestic animals”. This
means that it can easily be speculated from the semantic radical
“牜”, which refers to “cattle”. Phonologically, the pronunciation of
“牲” is “sheng”, which is also highly consistent with the sound of
the phonetic radical “生” (sheng). Characters like “牲” are
consistent characters. However, there are some characters (i.e.,
inconsistent characters) that do not follow the orthographic
(positional), phonological and/or semantic rules (e.g., “笙”, “性”,
“胜”). Accordingly, these 12 Chinese characters were then divided
into three consistent and nine inconsistent characters. The nine
inconsistent characters were further divided into three categories,
including inconsistent orthographic (IOr) characters, inconsistent
phonological (IPh) characters and inconsistent semantic (ISe)
characters. The three characters in each category come from
different stimulus sets. In other words, all four categories (i.e., 1
consistent and 3 inconsistent categories) have the same number
of characters and the same phonetic radicals (see Fig. 3a). The
inconsistent categories differ from the consistent category with
regards to orthographic, phonology and semantics, respectively.
Specifically, compared to the consistent category, IOr characters

differ with regards to the structure of characters. That is, phonetic
radicals appear on the right side of the character in the consistent
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category. On the contrary, phonetic radicals in the IOr characters
are in the less common position in a character. For example,
phonetic radial “生” posits at the right side of a “牲”, but it is at the
bottom of the IOr character “笙”. Among all characters that are
“艮”, “生” and “羊”, they act as phonetic radicals. The probabilities
that “艮”, “生” and “羊” appear on the right side of characters are
72.22%, 50.00% and 72.73%, respectively. On the other hand, the
percentages of the character positions for “痕”, “笙” and “痒” are
5.56%, 25%, and 18.18%, respectively (Supplementary Table 1).
Furthermore, the position of phonetic radicals in IPh and ISe
categories are on the right side, the same as consistent characters.
Similarly, IPh characters differ from consistent characters (CC)

with regards to phonological consistency. The pronunciations of
CC are high in phonological consistency of corresponding
phonetic radicals, while the phonological consistency is low in
IPh characters. The phonological consistency is defined as the
proportion of a specific pronunciation among all characters that
adopt the same phonetic radicals109. High consistency refers to
the pronunciation of a regular character that is the main
pronunciation of all Chinese characters utilizing the specific
phonetic radical. In contrast, the pronunciation of IPh characters is
a rare sound that corresponds to phonetic radicals. For instance,
the pronunciation of “生” and the regular character “牲” are
/sheng/, which is the same as most characters that contain “生”
(e.g., “笙”, “胜”). However, pronunciation of the IPh character “性”

is /xing/, not “/sheng/”. The phonological consistency is 0.39-0.92
for all three CC and is 0–0.28 for the three IPh characters (see
Supplementary Table 1 for details). In addition, ISe and IOr
characters have the same pronunciation as regular characters
(Supplementary Table 1).
Finally, the ISe characters differ from the consistent ones with

regards to the transparency of the semantic radical. The CC is high
in the transparency of semantic radicals, while the transparency in
ISe characters is low. The transparency is defined as the
connection between the meaning of the semantic radical, and
the meaning of the corresponding character46. That is, semantic
radicals of CC can reflect the meaning of corresponding
characters. However, the meanings of the ISe characters cannot
be speculated from the semantic radicals. For example, the
semantic radical “牜” (cattle) is related to the meaning of “牲”
(livestock). In contrast, the meaning of ISe character “胜” (victory)
is much different from that of the corresponding semantic radical
“月” (moon). The same as CC, characters in the IPh and IOr
categories are high in the transparency of the semantic radical.

Procedure
The experimental procedure consisted of three oddball blocks and
an equal probability block. One of the three categories of
inconsistent characters (each category contains three specific
characters), in turn, served as the deviant stimuli (dev; probability

Fig. 3 Illustration of the experimental procedure. a Details of the selected Chinese characters. b Examples of presentation settings for
consistent and inconsistent characters in different blocks. c Schematic depiction of the color-change judgment task in the equal probability
block. d Schematic depiction of the color-change judgment task in the oddball block. Abbreviations: CC consistent characters, IOr inconsistent
orthographic characters, IPh inconsistent phonological characters, ISe inconsistent semantic characters.
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of occurrence p= 0.25; the number of presentations is divided
equally among the three specific characters) across different
oddball blocks (each block contains 420 trials), while the
consistent characters (containing three specific characters) served
as standard stimuli (std; p= 0.75) (Fig. 3d). In the equal probability
block (contains 480 trials), the probability of inconsistent (three
categories; named equiprobable stimuli) and consistent characters
were the same (p= 0.25) (Fig. 3c). Within each block, the trial
order was fully randomized, and the order of oddball blocks was
also randomized while the equal probability block was imple-
mented at the beginning. For each individual trial, the stimulus
was presented for 200ms, and then a gray image was inserted,
lasting for 500–600 ms, at a random time between trials (Fig. 3b).
Moreover, the color of the characters may change from white to
red at random during some trials (target; p= 0.1; may appear on
the standard stimuli of the oddball blocks as well as all stimuli of
the equal probability block). The task throughout the experiment
was to ignore attributes of the character and to press a button
with the right thumb as quickly and accurately as possible when
red characters (target stimuli) were presented (similar tasks have
been widely used in previous studies examining implicit character
processing, e.g., refs. 110,111). The deviant stimuli in the oddball
blocks would not appear twice in a row, and the target only
appeared after one standard trial. Participants sat comfortably in
an armchair at a distance of 60 cm from the screen, and were
given a break for each block that they completed. Using the
E-prime software, the images of words were presented within the
central visual field (visual angle: horizontally= 2.5°;
vertically= 3.8°).

Behavioral analysis
A participant’s response was counted as a hit if the button was
pressed for less than 700 ms after the character color changed.
Otherwise, the response was counted as a false alarm. Hit and
false alarms (FAs) rates during the color change detection task
were analyzed in order to evaluate the degree of commitment to
unrelated tasks of the participants.

EEG recording and preprocessing
Electroencephalography (EEG) signals were recorded through the
use of a 64-channel amplifier (ANT Neuro EEGO, Inc.) that was
mounted on an electrode cap according to the international
10–10 system. The online reference electrode during the data
collection was CPz. The EEG data was digitized at a sampling rate
of 1000 Hz, and impedances were kept below 10 kΩ during the
experiment.
Offline preprocessing, artifact removal, and data quality

assessment was carried out via the Harvard Automated Processing
Pipeline for EEG (HAPPE) in MATLAB112. A spatially distributed
subset of channels providing whole-head coverage was processed
(excluding the EOG, M1 and M2 channels). HAPPE’s artifact
removal steps included bad channel rejection, removal of 50 Hz
electrical noise through CleanLine’s multi-taper approach113, and
participant artifact rejection (e.g., eye blinks, movement) through
wavelet-enhanced ICA with automated component rejection via
EEGLAB and the Multiple Artifact Rejection Algorithm114. The
average (SD) number of independent components (ICs) containing
artifacts was 9.3 (3.7). Post-artifact rejection, any channels
removed during the bad channel rejection were repopulated
through spherical interpolation to reduce spatial bias in re-
referencing. After filtered with a 0.1–40 Hz digital Butterworth
bandpass filter with a 12 dB/oct roll-off, the EEG data were then re-
referenced to the average reference and mean signal detrended.
Epochs were created from − 300 ms pre-stimulus to 700ms post-
stimulus for each trial and baseline corrected using the first
100ms. Any epochs with retained artifact were rejected using
amplitude criteria (±100 μV), as in prior research110. After epoch

rejection, the average (SD) number of trials retained on incon-
sistent character trials were 31.56 (5.32), 31.72 (5.94), 30.61 (7.26),
29.72 (6.85), 29.33 (6.34), and 30.22 (5.94) for equiprobable IOr,
equiprobable IPh, equiprobable ISe, deviant IOr, deviant IPh, and
deviant ISe, respectively.

Representational similarity analysis
To track the representations of individual characters across time,
we used RSA115. First, we created neural representational
dissimilarity matrices (RDMs) for each time point in the EEG
epochs (10 ms resolution), reflecting the pairwise dissimilarity of
the characters’ brain representations. Second, we modeled the
organization of the neural RDMs using Spearman rank correlation
coefficients39,116, which allowed us to track when representations
are explained by the characters’ lexical (frequency) or sub-lexical
(containing three dimensions of orthographic, phonological and
semantic) statistical information.

Neural RDMs. At each time point from 100ms before stimulus
onset to 600 ms after stimulus onset, we correlated the EEG
activity between trial pairs (for the nine different inconsistent
characters), separately for the oddball condition (put the data of
three oddball sequences together) and equal probability condi-
tion. This results in a distance value (1- Pearson correlation) that
indicates the dissimilarity between character pairs according to
brain activity. By repeating this procedure for each pair of
characters we constructed a 9 × 9 neural RDM (Fig. 4a). Individual
trials were used as input to the RDM calculation. To calculate the
time-point by time-point neural RDMs, the vector for the 61 scalp
electrodes was concatenated with those of the five preceding and
the five succeeding time points, as implemented in CoS-
MoMVPA117. This resulted in a vector length of 671 features
reflecting brain activity spanning 10ms.

Model RDMs. We designed two series of model RDMs to explore
and validate the representation of different statistical information
in the EEG data (Fig. 4b). The first series is a number of RDMs
constructed based on the current experimental design. These
RDMs will be referred to as predictor RDMs in subsequent texts,
and these predictor RDMs include orthographic RDM, phonologi-
cal RDM, semantic RDM and radical-control RDM (based on the
phonetic radical category of the material itself). The above
predictor RDMs are 9 × 9 binary RDMs, in which 1 corresponded
to a comparison between category character (e.g., consistent vs.
inconsistent for the orthographic consistency features), and 0
corresponded to a comparison within category stimuli (e.g.,
consistent vs. consistent). In addition, we also constructed the
frequency RDM according to the word (character) frequency
(based on the data from the LCSMCS118).
To supplement and validate the results obtained from the

predictor RDMs, we constructed another series of RDMs according
to the ratings before the formal experiment (from another group
of subjects), which resulted in three models of 9 × 9 rating RDMs
that corresponded to the orthographic consistency, phonological
consistency, and semantic consistency dimensions of our stimuli.
Specifically, we calculated the pairwise Euclidean distance
between the rating score of each character in each dimension.

Representational similarity analysis. The lower off-diagonal of
each matrix was extracted as vectors to calculate the Spearman
rank correlations between each model and the EEG data. Since
some models were correlated, excluding the other models
allowed us to separate the contribution of these models from
each other119,120. In order to explicitly compare lexical and sub-
lexical level statistical information models, lexical (frequency) RDM
would be excluded when computing a partial correlation between
neural RDM and each sub-lexical (orthographic, phonological and
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semantic) RDMs, and vice versa. We calculated the partial
correlation coefficients at each time point for each subject. These
partial correlation coefficients served as an indicator of the time
course of different statistical information dimensions in the EEG
data.
In addition, in order to detect the difference in the representa-

tion strength of different statistical information between the
oddball condition and the equal probability condition, we
calculated the difference of all partial correlation coefficients of
each subject under two conditions (oddball minus equal
probability).

Statistical inference. We performed a non-parametric statistical
approach for all RSA results which did not depend on assumptions
of the data distributions121. Using the maximum cluster size
method, significant temporal clusters were defined as adjacent
time points that all exceed a statistical cutoff (cluster-inducing
threshold). This cutoff was determined through a sign permuta-
tion test according to the distribution of t-values from 10,000
permutations of the measured correlation values. The 95th
percentile of the t-value distribution was used as the clustering
induction threshold of each time point (equivalent to p < 0.05,
one-sided). To identify significant clusters, we determined the
95th percentile of maximum cluster sizes across all permutations
(equivalent to p < 0.05, one-sided). This approach provided us with
significant temporal clusters in which correlation showed sig-
nificant effects.

Visual mismatch negativity (vMMN) analysis
To verify the existence of prediction error responses, we examined
vMMN activities using a data-driven approach. The differential
waveforms of characters with different inconsistent categories
were obtained by subtracting the ERPs of the corresponding
deviant stimuli from the ERPs of the corresponding equiprobable

stimuli. This method allows the comparison of ERPs that are
evoked by the deviant of the oddball sequence to the ERPs that
are evoked by physically identical stimuli from a sequence without
any particular frequent (standard) stimulus99.
The method of equal probability control was suggested in

order to deal with repetition effects due to refractoriness that
was assumed to be present in the deviant, minus standard
activity that was obtained in classical oddball paradigms122,123.
Activity considered as “genuine” vMMN (i.e., vMMN without
stimulus-specific refractoriness effects superimposed) emerges
when the oddball deviant evokes a larger negativity than the
control stimuli99. Next, a cluster-based permutation test was
utilized to search “genuine” differential activity between the
ERPs of deviant and equiprobable stimuli124. We conducted
this analysis through the use of the Fieldtrip toolbox125 in
MATLAB. We developed grand-averages of differential wave-
forms across two regions of interest (ROI) that correspond to
the left (P7, PO7, O1) and right (P8, PO8, O2) posterior occipital-
temporal electrodes (the electrodes were selected based on
previous studies, e.g., refs. 101,126). For each time point (within
0–600 ms) at left or right electrodes, the clusters were formed
through two or more neighboring time points whenever the t
values (obtained by two-tailed t-test) exceeded the cluster
threshold (0.025). The number of permutations was set to
10,000, and the corrected significance level was set to 0.05.
That is, when the clustering level error probability of a cluster
was less than 0.05, then it was considered that there were
significant effects in the corresponding period (i.e., effective
vMMN activities were identified). We will report the temporal
range of the significant negative clusters, their mass (the sum
of t values in a cluster) and the effect size of the average over
the rectangular shape surrounding a cluster for each incon-
sistent category.

Fig. 4 Schematic for representational similarity analyses of EEG data. a Neural RDMs are constructed for each data point by comparing
pairwise character-specific activations. RDMs are symmetric with a diagonal of zeros, and their size corresponds to the number of inconsistent
characters, here 9 × 9. b Model RDMs for different dimensional statistical information. Finally, the partial correlation coefficients between
neural RDMs and model RDMs was calculated for each subject at each time point to quantify the neural representation strength.

J. Liu et al.

10

npj Science of Learning (2023)    60 Published in partnership with The University of Queensland



Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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