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Deliberately making miskates: Behavioural consistency under
win maximization and loss maximization conditions
Yajing Zhang1✉, Thi Kim Truc Huynh1 and Benjamin James Dyson 1,2✉

We argue that the feedback traditionally used to indicate negative outcomes causes future detrimental performance because of the
default goal of win maximization. In gaming paradigms where participants intentionally performed as well (win maximization) and
as poorly (loss maximization) as possible, we showed a double dissociation where actions following wins were more consistent
during win maximization, but actions following losses were more consistent during loss maximization. This broader distinction
between goal-congruent and goal-incongruent feedback suggests that individuals are able to flexibly redefine their definition of
‘success’, and provide a reconsideration of the way we think about ‘losing’.

npj Science of Learning            (2023) 8:55 ; https://doi.org/10.1038/s41539-023-00206-6

How did you react to the error in our title “Deliberately making
miskates”? If you assumed that this was unintentional, then your
reaction was probably an unfavourably negative one: we have
been careless in our proofreading. However, in learning that the
error was intentional, your reaction loses some of its negative
connotations. This example clearly demonstrates that there is an
interaction between the properties of a stimulus and the goal
behind stimulus production1,2. Orthographically, the printed word
“miskates” remains a spelling error, independently of whether the
spelling was unintentional or intentional. However, the negativity
associated with this error can be reconciled with the knowledge of
intentionally incorrect spelling. In this paper, we empirically
investigate the interaction between the positive or negative
nature of a stimulus, and, whether the production of that stimulus
is incongruent or congruent with the goal set by the individual.
A dominant goal in most organismic behaviour is win

maximization, typically defined as gaining as many/much as one
can3–5. Both experimental and everyday tasks are similarly framed
in terms of doing one’s best: a memory test might require
participants to try to remember in as much detail as possible6, a
perceptual test might insist that performance is both as fast and as
accurate as possible7, and, an individual visiting a casino hopes to
leave with as much money as possible. Therefore, with behaviour
oriented towards the goal of win maximization, it should not be
surprising that when participants receive feedback that a memory
detail is inaccurate, a perceptual error has been made, or money is
lost, the delivery of this information can have negative
consequences8–10. Furthermore, Operant Conditioning11,12 dictates
that there are very clear consequences for future actions on the
basis of current outcomes: organisms will tend to repeat actions
after a win (win-stay) but change actions after a loss (lose-shift).
Although lose-shift behaviour is sub-optimal, it remains more
predictable than win-stay11 and also becomes more likely as the
cognitive load of the task increases12. By these accounts, we
would do well to avoid losses13.
However, a reimagining of the consequences of putatively

negative feedback is possible by considering the role of goal-
directed learning. When your goal is win-maximization, on any trial
that you are informed that you lost there is a discrepancy between
your goal state and your current state (consistency theory; see

refs. 14,15). This discrepancy we will refer to as goal-incongruent
feedback. By this logic however, a second example of discrepancy
presumably arises under the unique case when the goal of losing
is violated by the experience of winning. To be specific, if win
maximization is the goal, then each individual win represents goal-
congruent feedback, whereas each individual loss represents goal-
incongruent feedback. Conversely, if loss maximization is the goal,
each individual loss represents goal-congruent feedback, whereas
each individual win represents goal-incongruent feedback.
Therefore, much of the data accrued on the negative impact of

losing may simply be due to the implicit (or explicit) goal of win
maximization. If reactions to wins and losses are essentially
arbitrary and individuals are able to flexibly redefine their
definition of success, we should also see wins disrupting
behaviour when the organism aims to lose. We carried out four
experiments in which participants competed against computer-
ized opponents under conditions of win-maximization and loss-
maximization. In all experiments, different forms of computerized
strategy were designed such that optimized participant behavior
was either aligned or misaligned with the operant conditioning
principles of win-stay and lose-shift. In Experiment 1, participants
played Matching Pennies with the goal of win-maximization, where
‘wins’ represented goal-congruent and ‘losses’ represented goal-
incongruent feedback. Our data showed that behavioral consis-
tency was disrupted when goal and feedback were incongruent:
specifically, performance was worse following losses relative to
wins when the goal was win maximization. In Experiment 2,
participants played the same game with the explicit goal of loss-
maximization. Again, consistency was disrupted when the goal
and feedback were incongruent but the behavioural observation
was reversed: performance was worse following wins relative to
losses when the goal was loss maximization. In Experiment 3, we
confirmed the between-participant observations of Experiments 1
and 2 by running a within-participants design. In Experiment 4, we
extended these findings to a different game (Dice Dual) involving
6 rather than 2 responses. Across Experiments 1–4, we also found
no evidence that behaviour was significantly optimized when
participant strategy was aligned with operant conditioning
principles. Thus, our data demonstrate a double dissociation
where behaviour following wins was more consistent during win
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maximization, but behaviour following losses was more consistent
during loss maximization.

RESULTS
Measuring behavioural consistency
Across the experimental series, we test the idea that individuals
are able to flexibly redefine their definition of success by
measuring behavioural consistency when playing a game
intentionally both as well as possible (i.e., win maximization) and
as badly as possible (i.e., loss maximization). During win
maximization, putatively positive feedback (‘win’) represents

goal-congruency. Conversely, negative feedback (‘lose’) represents
goal-congruency during loss maximization. If receiving negative
feedback is inherently detrimental, then performance should be
universally less consistent following losses relative to wins. If,
instead, behavioural disruption is determined by goal incon-
gruency, performance should be less consistent following loss trials
within the context of win maximization but also less consistent
following win trials within the context of loss maximization.
Across Experiments 1–4, the strategy required for exploitation

was determined by both the nature of opponency (repetition,
alternation) and maximization goal (win, loss). As summarized in
Table 1, in the case of win maximization for the repetition

Table 1. Opponency structure and optimal strategies in Experiments 1–4 where [H]=Heads [T]= Tails [O]=Odd number [E]= Even number.

Opponent Optimal Strategy

Win Maximization (Exp. 1, 3) Loss Maximization (Exp. 2, 3)

Unexploitable

[HHHHH] + [TTTTT] (random) x 9 n/a n/a

Exploitable via repetition

[HHHHH] + [TTTTT] (random) x 3 n/a n/a

[HHHHHHHHHH] x 3 Win-Stay / Lose-Shift Win-Shift / Lose-Stay

[TTTTTTTTTT] x 3 Win-Stay / Lose-Shift Win-Shift / Lose-Stay

Exploitable via alternation

[HHHHH] + [TTTTT] (random) x 3 n/a n/a

[HTHTHTHTHT] x 3 Win-Shift / Lose-Stay Win-Stay / Lose-Shift

[THTHTHTHTH] x 3 Win-Shift / Lose-Stay Win-Stay / Lose-Shift

Win Maximization (Exp. 4) Loss Maximization (Exp. 4)

Unexploitable

[OOOOO] + [EEEEE] (random) x 9 n/a n/a

Exploitable via repetition

[OOOOO] + [EEEEE] (random) x 3 n/a n/a

[OOOOOOOOOO] x 3 Win-Stay / Lose-Shift Win-Shift / Lose-Stay

[EEEEEEEEEE] x 3 Win-Stay / Lose-Shift Win-Shift / Lose-Stay

Exploitable via alternation

[OOOOO] + [EEEEE] (random) x 3 n/a n/a

[OEOEOEOEOE] x 3 Win-Shift / Lose-Stay Win-Stay / Lose-Shift

[EOEOEOEOEO] x 3 Win-Shift / Lose-Stay Win-Stay / Lose-Shift

Table 2. Descriptive statistics of win rates and degrees of win-stay and lose-shift across Experiments 1-4 Standard error in parenthesis.

Win Maximization Loss Maximization

Win Rate Win-stay Lose-shift Win Rate Win-stay Lose-shift

Experiment 1

Exploitable via repetition 0.657 (.013) 0.800 (.018) 0.557(.020) n/a

Exploitable via alternation 0.601 (.015) 0.370 (.032) 0.381 (.016)

Experiment 2

Exploitable via repetition n/a 0.369 (.018) 0.452 (.029) 0.228 (.032)

Exploitable via alternation 0.420 (.018) 0.569 (.026) 0.609 (.036)

Experiment 3

Exploitable via repetition 0.655 (.013) 0.787 (.019) 0.557 (.015) 0.394 (.017) 0.535 (.023) 0.239 (.023)

Exploitable via alternation 0.603 (.014) 0.342 (.029) 0.431 (.017) 0.420 (.014) 0.615 (.020) 0.576 (.029)

Experiment 4

Exploitable via repetition 0.607 (.014) 0.724 (.022) 0.524 (.019) 0.416 (.014) 0.521 (.021) 0.311 (.025)

Exploitable via alternation 0.583 (.013) 0.383 (.027) 0.427 (.019) 0.426 (.014) 0.288 (.018) 0.588 (.031)
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opponent, goal-consistent performance was guaranteed via the
expression of traditional win-stay and lose-shift mechanisms:
participants repeat their previous response following a win but
change their previous response following a loss. However, win
maximization for the alternation opponent could only be achieved
by expressing the opposing rules: win-shift and lose-stay. These
assignments were reversed when the goal was loss maximization:
win-shift and lose-stay were required to lose against the repetition
opponent, and, win-stay and lose-shift were required to reliably
lose against the alternation opponent. As a result of this design,
we were also able to assess the ‘default’ nature of actions
traditionally associated with wins and losses as dictated by
operant conditioning (win-stay / lose-shift; see16,17). If there is
hardwired precedence for win-stay and lose-shift, then perfor-
mance should be more consistent when strategy aligns with these
principles (specifically, win maximization + repetition opponent,
and, loss maximization + alternation opponent). However, if these
outcome-action associations are arbitrary, consistency in expres-
sing win-shift should be similar to win-stay, as should consistency
in expressing lose-stay relative to lose-shift.

Experiment 1 (win maximization)
Win rates (proportion of a participant’s winning trials over all
trials), the degree of win-stay (a proportion of win-stay trials over
the total number of winning trials), and the degree of lose-shift (a
proportion of lose-shift trials over the total number of losing trials)
are calculated across Experiments 1–4 (see Table 2). During win
maximization against an opponent exploitable via repetition
(Experiment 1; Fig. 1a), both the degree of win-stay (r= 0.708,
p < 0.001) and lose-shift (r= 0.423, p < 0.001) were positively
correlated with win rate. By comparing the absolute values of
the abovementioned correlation coefficients (i.e., r= 0.708 and
r= 0.423) using a z-test (two-tailed z test; see18,19), we found that
stay actions following wins had a significantly stronger correlation

than shift actions following losses (z= 2.347, p= 0.019). Therefore,
performance was more consistent following wins relative to losses
in the context of win maximization.
With the same goal of win maximization against an opponent

exploitable via alternation (Fig. 1b), both the degree of win-stay
(r= -0.874, p < 0.001) and lose-shift (r= -0.446, p < 0.001) were
negatively correlated with win rate. This is consistent with the
requirement to win-shift and lose-stay (see Method). Actions
following wins once again had a significantly stronger correlation
than actions following losses (z= 5.019, p < 0.001). Therefore,
performance was more consistent following wins relative to losses
in the context of win maximization. Thus, the data from
Experiment 1 are clear that the requirement to deploy either stay
or shift behaviour as a function of opponent was more consistent
following wins relative to losses, when the goal of the task is win
maximization.

Experiment 2 (loss maximization)
During loss maximization against an opponent exploitable via
repetition (Experiment 2; Fig. 1c), both win-stay (r= 0.585,
p < 0.001) and lose-shift (r= 0.895, p < 0.001) behaviour were
again positively correlated with win rate. In contrast to
Experiment 1, actions following losses now had a significantly
stronger correlation than actions following wins (z= 3.895,
p < 0.001). Therefore, performance was more consistent follow-
ing losses relative to wins in the context of loss maximization.
Against an opponent exploitable via alternation (Fig. 1d), both
the degree of win-stay (r= -0.356, p= 0.015) and lose-shift
(r= -0.859, p < 0.001) were negatively correlated with win rate.
This is consistent with the requirement to win-shift and lose-
stay (see Method). Actions following losses had a significantly
stronger correlation than actions following wins (z= 4.057,
p < 0.001), showing that performance was more consistent
following losses relative to wins in the context of loss

Fig. 1 Scatterplots of win-stay and loss-shift behaviour as a function of individual win rate, and the nature of goals and opponency. A
double dissociation is observed between Experiments 1 and 2. a, b describe results in Experiment 1: the degree of behavioural consistency is
significantly greater following a winning rather than losing outcome when the goal is win maximization; (c, d) describe results from Experiment
2: the degree of behavioural consistency is significantly greater following a losing rather than winning outcome when the goal is loss
maximization. In both Experiments 1 and 2, this is irrespective of whether the action is consistent or inconsistent with the fundamental
reinforcement learning principles of win-stay and lose-shift.
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maximization. Collectively, Experiments 1 and 2 represent a
double dissociation. When the goal of the task was win
maximization, the deployment of either stay or shift behaviour
was more consistent following wins relative to losses, but when
the goal of the task was loss maximization, the deployment of
either stay or shift behaviour was more consistent following
losses relative to wins.

Experiments 3 and 4 (win and loss maximization)
This same double dissociation observed in the within-participants
design of Experiment 3 (again using the 2-response game
Matching Pennies; see Fig. 2) was similarly replicated in
the within-participants design of Experiment 4 (using the
6-response game Dice Dual; see Fig. 3). That is, the behaviour
was more consistent both following wins relative to losses in the

Fig. 2 The double dissociation between Experiments 1 and 2 replicates in the within-participants design of Experiment 3. a, b Both win-
stay and win-shift are more consistent in the context of win maximization, however, (c, d) both lose-stay and lose-shift are more consistent in the
context of loss maximization (right four panels).

Fig. 3 The double dissociation between Experiments 1 and 2 replicates in the within-participants design of Experiment 4. a, b Both win-
stay and win-shift are more consistent in the context of win maximization, however (c, d) both lose-stay and lose-shift are more consistent in the
context of loss maximization (right four panels).
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context of win maximization but also more consistent following
losses relative to wins in the context of loss maximization.
In the context of win maximization against an opponent

exploitable via repetition, the ability to enact win-stay behaviour
was more consistent than the ability to enact lose-shift behaviour
(Experiment 3: z= 2.744, p= 0.006; Fig. 2a; Experiment 4:
z= 2.370, p= 0.018; Fig. 3a). In the context of win maximization
against opponent exploitable via alternation, the negative correla-
tion between win rate and win-stay behaviour was more
consistent than lose-shift behaviour (Experiment 3: z= 6.047,
p < 0.001; Fig. 2b; Experiment 4: z= 3.6676, p < 0.001; Fig. 3b). In
the context of loss maximization against opponent exploitable via
repetition, the ability to enact lose-shift behaviour was more
consistent than the ability to enact win-stay behaviour (Experi-
ment 3: z= 2.250, p= 0.024; Fig. 2c; Experiment 4: z= 3.1041,
p= 0.002; Fig. 3c). In the context of loss maximization against
opponent exploitable via alternation, the negative correlation
between win rate and lose-shift was more consistent than win-stay
behaviour (Experiment 3: z= 4.060, p < 0.001; Fig. 2d; Experiment
4: z= 3.9443, p < 0.001; Fig. 3d).

Comparing win-stay / lose-shift against win-shift / lose-stay
Furthermore, we observed no evidence that win-stay/lose-shift
were privileged forms of outcome-action association. In the
context of win maximization in Experiment 1, participants were
significantly less consistent in their ability to deploy win-stay
behaviour (during repetition) than win-shift behaviour (during
alternation) to intentionally increase win rate (r= 0.708 vs [abs]
r= 0.874; z= -2.935, p= 0.003; two top left panels of Fig. 1). In the
context of loss maximization (Experiment 2), participants were no
less consistent in their ability to deploy lose-stay behaviour (during
repetition) than lose-shift behaviour (during alternation) to
intentionally decrease win rate ([abs] r= 0.895 vs. r= 0.859;
z= 1.283, p= 0.199; two bottom right panels of Fig. 1). In
Experiment 3, win-stay behaviour (during repetition) was numeri-
cally less consistent than win-shift behaviour (during alternation)
during win maximization (r= 0.804 vs [abs] r= 0.877; z= -1.601,
p= 0.109; two top left panels of Fig. 2). No difference was shown
between lose-shift behaviour (during alternation) and lose-stay
behaviour (during repetition) during loss maximization ([abs]
r= 0.835 vs. r= 0.834; z= 1.086, p= 0.278; two bottom right
panels of Fig. 2). In Experiment 4, win-stay behaviour (during
repetition) was significantly less consistent than win-shift beha-
viour (during alternation) during win maximization (r= 0.683 vs
[abs] r= 0.827; z= -1.9632, p= 0.0496; two top left panels of Fig.
3). No difference was shown between lose-shift behaviour (during
alternation) and lose-stay behaviour (during repetition) during loss
maximization ([abs] r= 0.815 vs. r= 0.789; z= 0.4173, p= 0.677;
two bottom right panels of Fig. 3).
As an additional test of whether win-stay / lose-shift represented

privileged forms of outcome-action associations, we also exam-
ined reaction times to see whether the speed to initiate these
specific responses was faster than their reversed counterparts:
win-shift / lose-stay. However, across Experiments 1–4, we found
no significant interaction between outcome and action, such that
win-stay and lose-shift timings were not significantly faster than
win-shift and lose-stay timings (see Supplement Materials). There-
fore, increased behavioural consistency following wins when the
goal-state was winning (and following losses when the goal-state
was losing) was independent of whether the individual is required
to repeat (stay) or change (shift) their response to maintain
maximization.

DISCUSSION
There are two major implications of this work. First, our data show
that people are flexible in defining ‘success’ specifically via the

malleable interpretation of putatively positive (win) and negative
(lose) forms of feedback. We suggest that the traditional disruption
generated by losses is the result of incongruity with the goal
(implicit or explicit) of win maximization20,21. In support of this
idea, we similarly showed disruption generated by wins due to an
equivalent incongruity between feedback and goal in the context
of loss maximization. This shows the top-down control we have
over the interpretation of feedback, and the clear interaction
between the properties of a stimulus and the goal behind stimulus
production1,2. Our observations that behaviour is similarly
disrupted by losing in the context of pursuing wins, and, winning
in the context of pursuing losses are also consistent with the
framework of goal-directed learning22,23. In the current studies,
when the goal was to maximize wins (Experiments 1, 3 and 4),
there was little conflict between what people were asked to do
and the goal of win maximization implicit in most daily
interactions. Much more unusual was the request to adjust one’s
goal towards loss maximization (Experiments 2, 3 and 4), and our
interest was in whether the same behavioural inconsistency would
be demonstrated when putatively positive feedback (win) became
the source of goal incongruency. Although our data suggest
flexibility in goal-directed learning, one caveat is the degree to
which the sensory properties of the visually-presented words ‘win’
and ‘lose’ constitute intrinsically positive and negative signals. One
reason for the flexibility we observed may be because the use of
points system represents abstracted rather than concrete forms of
feedback. Therefore, it will be of interest to see whether behaviour
consistency remains isomorphic between win maximization and
loss maximization conditions when more tangible rewards and
punishments are associated.
Second, our data show a remarkable ease with which we can

switch out of putatively fundamental operant conditional
outcome-action associations represented by win-stay and lose-
shift24. Our fluid adaptation to counter reinforcement-learning
strategies such as win-shift is consistent with data from
nectarivorous birds and other organisms who also flexibly adapt
to environments that have high depletion rates25,26. However,
humans may be unique in our ability to simulate the sabotaging of
our own performance in pursuit of the goal of loss maximization
demonstrated here. For examples within popular culture, see the
board game Go For Broke27, wherein players must lose $1 million
dollars, and, the UK entertainer Les Dawson who delighted
audiences with deliberately terrible piano playing. Moreover, we
have shown that both of these findings are observed in both
binary (Experiments 1–3) and non-binary (Experiment 4) decision-
making spaces, thereby lending credence to the generalizability of
these findings.
In conclusion, the historical emphasis on win-stay and lose-shift

mechanisms, and the presumed disruption of performance as a
result of losses, are due to the often unspoken goal of win
maximization within empirical sciences. We have shown that
incongruent performance generated by the experience of losing is
simply the result of a mismatch between an expected goal state
and the current observed state. The same mismatch and the same
consequences of that mismatch are produced when the intention is
to lose but instead the organism wins. The flexibility with which
individuals can define ‘success’ and specifically the interpretation
of negative feedback is consistent with other observations such as
deliberately seeking loss as in the principle of ‘fun failure’28,29 or
demonstrating cognitive proficiency via the act of intentional self-
sabotage. This highlights the importance of subjective interpreta-
tion in decision-making, and may help to explain the individual
differences associated with emotional reactions to feedback.
Finally, we may wish to re-evaluate the extent to which our
understanding of human and animal behaviour sciences has been
limited by our implicit focus on win maximization.
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METHOD
Data from convenience samples of 71 (Mean= 19.77, SD= 3.12,
33 female), 46 (Mean= 19.2, SD= 1.67, 23 female), 84 (Mean=
19.47, SD= 3.25, 40 female), and 77 (Mean = 20.84, SD= 6.12, 38
female) participants were analyzed from the student population at
the University of Alberta for Experiments 1, 2, 3, and 4,
respectively. These sample sizes exceed the 30–40 participants
previously analysed for zero-sum games in our lab (see refs. 13,30),
and, the minimum sample size of 29 participants for each
experiment calculated using G*Power31 with large treatment
effect (i.e., correlation ρ H1= 0.5), alpha value at 0.05, and power
level at 0.8. All participants were provided with written informed
consent. They gave their informed consent for inclusion before
they participated in the study. They completed the study for
course credit and the on-line protocol was approved by the
University of Alberta Research Ethics Committee (Pro00102699
and Pro00112365). Paradigms were controlled by Presentation
20.2 (build 07.25.18) and delivered remotely after participants
downloaded Presentation Package Player. Two exclusion criteria
were implemented: (1) procedural: where a participant stopped
and re-started the paradigm thereby completing at least one
condition more than once, and (2) behavioural: where a
participant selected the same item 100% of the time throughout
at least one condition. 8 (Experiment 1), 8 (Experiment 2), 22
(Experiment 3), and 6 (Experiment 4) participants were excluded
from analyses according to the procedural criterion, and a further
4 (Experiment 1), 3 (Experiment 2), 8 (Experiment 3), and 2
(Experiment 4) participants were excluded from analyses accord-
ing to the behavioural criterion. Data patterns across Experiments
1–4 remain consistent when participants excluded due to the
behavioural criteria were added to the sample.

Experiments 1–3
For Experiments 1–3, participants played 540 rounds of Matching
Pennies consisting of 6 conditions each containing 90 trials. Each trial,
both participant and computerized opponent selected either Heads
or Tails. Participants won the trial if coin sides mismatched and lost
the trial if coin sides matched. The 6 counterbalanced conditions
consisted of the presence or absence of a cumulative score, crossed
with three different kinds of opponency (unexploitable, exploitable via
repetition, exploitable via alternation; see Table 1). Our factor
pertaining to cumulative score yielded no notable effects, so we
collapse across score manipulation.
The 90 trials per condition were subdivided into 9 groups of 10

trials each, with groups randomized within conditions. For the
unexploitable opponent, each group consisted of 5 Heads and 5
Tails response which were further randomized within each group
(e.g., TTHTHHHTHT). For the exploitable via repetition opponent, 3
blocks were identical to the unexploitable opponent, 3 blocks
consisted of 10 presentations of Heads in a row (e.g.,
HHHHHHHHHH), and, 3 blocks consisted of 10 presentations of
Tails in a row (e.g., TTTTTTTTTT). For the exploitable via alternation
opponent, 3 blocks were once again identical to the unexploitable
opponent, 3 blocks consisted of 10 coin alternations beginning
with a Head (e.g., HTHTHTHTHT), and, 3 blocks consisted of 10 coin
alternations beginning with a Tail (e.g., THTHTHTHTH). Conse-
quently, all opponents played an equal percentage (50%) of Heads
and Tails within each condition. The unexploitable conditions
served as a filler task between two exploitable conditions. Because
there were no optimal strategies to be employed in unexploitable
condition to maximize either wins or losses, we did not include
the results from the condition in our analyses and focus
exclusively on exploitable opponency.
At each trial, participants would press one of the two buttons

corresponding to Heads [K] or Tails [L] prompted by a fixation
cross. Both participant and opponent selections were shown on
the left and right side of screen, respectively, for 1000 ms.

Selections were removed during a 500 ms pause, followed by
either “WIN (+1)” or “LOSE (-1)” in green and red font, respectively,
for 1000ms. Scores were updated and the fixation cross returned.
In Experiment 1, the goal was win maximization. Before win

maximization conditions, participants were instructed to “Just try
to do as well as you can!” In Experiment 2, the goal was loss
maximization. Before loss maximization conditions, participants
were instructed to “Just try to do as BADLY as you can! Try to get
the most negative score.” In Experiment 3, both win maximization
(cf., Experiment 1) and loss maximization (cf., Experiment 2) goals
were completed in a within-participants design across 6 counter-
balanced conditions, without the cumulative score manipulation.

Experiment 4
To examine whether the data exhibited for the binary-response
game Matching Pennies generalized to non-binary paradigms,
participants played 540 rounds of the lab-designed game Dice
Dual in Experiment 4. Here, participants and computerized
opponents chose one number from the six sides of a die using
6 linearly organized keys. Participants won the trial if the sum of
the two sides was even and lost the trial if the sum was odd. Thus,
Dice Dual was structurally isomorphic to Matching Pennies (the
actual odd or even die side was irrelevant) but had surface
differences with respect to the number of responses available. For
the unexploitable opponent, each group randomized 5 odd
numbers and 5 even numbers (e.g., 1563224516). For the
exploitable via repetition opponent, 3 blocks were identical to
the unexploitable opponent, 3 blocks consisted of 10 presentations
of odd numbers in a row (e.g., 5331311551), and, 3 blocks
consisted of 10 presentations of even numbers in a row (e.g.,
4622442466). For the exploitable via alternation opponent, 3
blocks were once again identical to the unexploitable opponent, 3
blocks consisted of 10 number alternations beginning with an odd
number (e.g., 5416321256), and, 3 blocks consisted of 10 number
alternations beginning with an even number (e.g., 2152361456).
Consequently, all opponent types played an equal percentage
(50%) of odd and even numbers within each condition. In
Experiment 4, both win maximization and loss maximization goals
were completed in a counterbalanced, within-participants design
(as per Experiment 3).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data is available in the Supplement Materials.
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