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Generalization of procedural motor sequence learning after a
single practice trial
B. P. Johnson1,2, I. Iturrate1,3, R. Y. Fakhreddine 1,4, M. Bönstrup 5, E. R. Buch1✉, E. M. Robertson6 and L. G. Cohen 1✉

When humans begin learning new motor skills, they typically display early rapid performance improvements. It is not well
understood how knowledge acquired during this early skill learning period generalizes to new, related skills. Here, we addressed
this question by investigating factors influencing generalization of early learning from a skill A to a different, but related skill B. Early
skill generalization was tested over four experiments (N= 2095). Subjects successively learned two related motor sequence skills
(skills A and B) over different practice schedules. Skill A and B sequences shared ordinal (i.e., matching keypress locations),
transitional (i.e., ordered keypress pairs), parsing rule (i.e., distinct sequence events like repeated keypresses that can be used as a
breakpoint for segmenting the sequence into smaller units) structures, or possessed no structure similarities. Results showed
generalization for shared parsing rule structure between skills A and B after only a single 10-second practice trial of skill A.
Manipulating the initial practice exposure to skill A (1 to 12 trials) and inter-practice rest interval (0–30 s) between skills A and B had
no impact on parsing rule structure generalization. Furthermore, this generalization was not explained by stronger sensorimotor
mapping between individual keypress actions and their symbolic representations. In contrast, learning from skill A did not
generalize to skill B during early learning when the sequences shared only ordinal or transitional structure features. These results
document sequence structure that can be very rapidly generalized during initial learning to facilitate generalization of skill.
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INTRODUCTION
Early learning of a new sequential motor skill develops rapidly
during the initial training session1. Marked stepwise performance
improvements are evident over short, seconds-long rest periods
interspersed with practice1,2. These accumulating micro-offline
gains account for most of total early motor learning, identifying a
rapid form of consolidation of skill2. These findings extended the
concept of consolidation to faster timescales than the hours or
days previously reported3,4.
Previous work over longer time scales (e.g., several minutes or

hours) that extend beyond early learning showed that acquiring
one skill can facilitate the learning of subsequent new ones5. The
property associated with this phenomena—generalization—has
been previously identified across different dimensions of skill
learning, including inter-manual or oculo-manual transfer (i.e.,
transfer of skill learning from one hand to the other or between
eye and hand effectors)6–8, or transfer between different memory
or skill domains (e.g., - transfer of learning from a word list to a
motor skill or vice versa)9–11. The observed skill learning facilitation
is dependent, in part, upon the history of previous
experience12–15.
Over these longer time scales, both training schedule and

similarity of skill sequences may dictate how generalizable prior
knowledge is, and how rapidly new skills can be learned16–18. For
example, the overall amount of training performed on a first skill
prior to exposure of a second one may impact how learning
generalizes18. Other features influencing generalization of sequen-
tial skills include the location of a given action in the sequence
(e.g., the third action is the same in both sequences, shared
ordinal location structure)19,20, or the repetition of pairs of
consecutive actions (shared transition structure)21. In some cases,

skills share more abstract features, beyond ordinal or transitional
structures, like sequence regularity or a common parsing rule.
Extracting such information could be viewed as a form of
algebraic pattern learning21, and is potentially useful for identify-
ing break-points where complete action sequences can be
segmented into a series of smaller subunits – facilitating a process
commonly referred to as “chunking”22 (e.g., when repeatedly
typing the keyboard sequence 4-1-3-2-4 without interruption, the
sequence can be divided into 4-4 and 1-3-2 based on the rule that
the sequence starts and ends with the same keypress). This rule
could later facilitate the learning of new sequences with similar
abstract composition qualities23. The influence of these different
factors on the generalization of early skill learning are not known.
Here, we tasked subjects with first learning a keyboard

sequence skill A, followed by a second sequence skill B. We
investigated how a newly acquired skill generalizes to subsequent
ones during early learning over timescales as short as several
seconds1. Specifically, we asked which features of practice
schedule (i.e., – varying the amount of practice on skill A before
beginning practice on skill B or the duration of the practice break
in between) and sequence structure (i.e. – ordinal, transitional, or
more abstract parsing rule structure) generalize during this early
learning stage.

RESULTS
We studied 2095 human subjects over four experiments using the
Amazon Mechanical Turk (MTurk) platform.
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Generalization of early learning after different practice
durations
The first experiment (n= 551) evaluated the effects of training of a
skill A on generalization to a skill B as a function of skill A practice
duration. Participants (See Supplementary Table 1) trained on a
5-item explicit motor sequence task performing keypresses with
their non-dominant left hand. They were randomly assigned to
one of four skill A (sequence 4-1-3-2-4) practice length groups (1,
2, 5, or 12 trials lasting 10 seconds each; 1 T, 2 T, 5 T or 12 T). After
practice, subjects were tested on their performance of skill B
(sequence 2-3-1-4-2; five 10-second trials). Practice trials were
separated by 10-second rest intervals. Participants were instructed
to repetitively tap the 5-item sequence indicated on the screen as
quickly and accurately as possible on a computer keyboard of
their choosing2. Written instructions (including illustrations) were
visually displayed on the screen at the beginning of the task.
Instantaneous performance was calculated as correct sequence
tapping speed (keypresses/sec)1,24 to quantify absolute perfor-
mance levels and microscale changes during early learning and as
the number of correct sequences per trial, a trial-to-trial skill
measure traditionally used in this task25–27 (Fig. 1a, b; Supple-
mentary Figs. 1–4).
Performance at the onset of skill B was comparable across

groups (Fig. 1c). Relating performance at the end of skill A and the
onset of skill B (GenB0�Af ), we found that the one trial practice
group was the only group that started skill B at a higher

performance level than they ended skill A (p= 0.001, Fig. 1d). This
finding, reminiscent of micro-offline gains reported during early
learning28–30, is suggestive of a form of rapid generalization of skill
during wakeful rest1 (one-trial generalization, see Supplementary
Discussion for Experiment 1 and Supplementary Fig. 1a)31.

One-trial generalization as a function of inter-skill rest interval
Next, we investigated the effect of varying rest interval durations
between a single practice trial of skill A and skill B (Experiment 2;
n= 795). Participants (See Supplementary Table 2) trained on a
5-item explicit motor sequence task with their non-dominant left
hand for one trial of skill A (sequence 4-1-3-2-4) followed by 5
trials of skill B (sequence 2-3-1-4-2) interleaved with 10 s of rest.
Participants were randomly assigned to one of five different inter-
skill rest intervals groups ranging from 0 to 30 s (0 s, 2 s, 5 s, 10 s or
30 s). All task instructions and outcome measures were identical to
those described for Experiment 1.
We found that varying inter-skill rest intervals did not modify

performance at the onset of skill B nor micro-offline gains from the
end of skill A to the onset of skill B (GenB0�Af ) (see Fig. 2 and
Supplementary Discussion for Experiment 2 for details).

One-trial generalization of content
In a third experiment, we asked what specific sequence structure
content is encoded in one-trial generalization (n= 537). All
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Fig. 1 Influence of length of training of skill A on generalization to skill B during early learning. Experiment 1 evaluated the influence of
length of training of a skill A on generalization to a skill B (n= 551; see Supplementary Table 1 for demographics). a Task: Participants were
randomized to practice a skill A for 1, 2, 5 or 12 trials. Rest intervals between trials were 10 s duration. Practice of skill A (4-1-3-2-4) was
followed in all groups by five testing trials of skill B (2-3-1-4-2). Skill was measured as the average inter-tap interval within correct sequences
(tapping speed measured in keypresses/s). b Performance of the training groups (grey: skill A; cyan: skill B; mean ± s.e.m.). Training in skill A
resulted in rapid performance improvements, consistent with previous work. Specifically, participants demonstrated rapid motor skill learning
primarily during micro-offline periods which reached plateau by trial 11 in the 12 trials group9 (Supplementary Fig. 1). c Skill at the onset of
skill B (red: 1 trial; blue: 2 trials; green: 5 trials; yellow: 12 trials). Following the end of practice on skill A, performance at the onset of skill B was
comparable between experimental groups. d Change in skill from the end of skill A to the onset of skill B (i.e., GenB0�Af ). All groups had
significant changes in performance between the end of skill A to the onset of skill B. The group that practiced one trial of skill A was the only
group that showed GenB0�Af , suggestive of a micro-offline contribution to generalization (shaded bar). *p < 0.05, where * over individual group
plots indicate significant one-sample t-test within-group differences between B0 and Af and * between group plots indicate significant
Kruskal-Wallis (pairwise comparison) between-group differences.
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participants practiced the same skill A (sequence 4-1-3-2-4) as in
Experiments 1 and 2 (see Supplementary Table 3). Subsequently,
they were randomly assigned to 1 of 4 groups where skill B
shared one of the following: (a) sequence parsing rule structure
(i.e., the sequence started and ended with the same keypress;
sequence 2-3-1-4-2; PARSING RULE), (b) transition structure
(sequence 2-4-1-4-3 shares transitions 2-4 and 4-1 with skill A;
TRANSITION), (c) both ordinal and transition structure (sequence
2-4-3-2-4 shares the triplet 3-2-4 in the third, fourth, and fifth
positions, respectively; O+ T), or (d) was identical to skill A (i.e., –
extended exposure to A; SAMEA). Practice trials and rest intervals
were 10 s long (Fig. 3a, b) and participants’ instructions and
performance measurements were identical to Experiments 1
and 2.
Performance at the onset of skill B was significantly different

between groups (Kruskal-Wallis test: X2(3, 533)= 25.305, p < 0.001;
Fig. 3c), higher in the SAMEA and PARSING RULE than in the
TRANSITION group (both p < 0.001; FWE-corrected). Performance
at the onset of skill B was higher than at the onset of skill A in all
groups (GenB0�A0 ; all p ≤ 0.015, Supplementary Fig. 6a). Micro-
offline gains from the end of the first skill to the onset of the
second (GenB0�Af ), were largest with continued practice of skill A
(Fig. 3d). Further, micro-offline gains with continued practice of
skill A were larger than those identified when skill B shared only
transition or both ordinal and transition information with skill A
(SAMEA vs TRANSITION, p < 0.001; SAMEA vs O+ T, p= 0.050; both
FWE-corrected) (See Supplementary Discussion for Experiment 3
and Supplementary Fig. 7).

Contribution of parsing rule structure and sensorimotor
mapping to one-trial generalization
In a fourth experiment, we intended to separate the relative
contributions of shared parsing rule structure and sensorimotor
mapping (i.e., familiarizing the use of the non-dominant left hand
to keyboard use) between skills to one-trial generalization. We
tested two additional groups (n= 212) (see Supplementary Table
4 and Supplementary Fig. 8). One group performed one trial of
random order keypresses in response to single numbers (1–4)
displayed on the screen, followed by a 5 trials test of skill B (2-1-3-
4-2; RANDOM). We reasoned that generalization documented in
this group would solely reflect improved sensorimotor mapping of
the symbolic numeric sequence to keypress actions since no
sequential skill A was learned. A second group performed one trial
of skill B (2-1-3-4-2) followed by 5 trials of extended practice of the
same skill B (SAMEB).
Analysis of these two groups with those acquired in Experiment

3 showed a between-group difference in performance at the
onset of skill B (Kruskal-Wallis test: X2(5, 759)= 36.813, p < 0.001;
Fig. 4b). Performance at the onset of skill B was significantly higher
in the PARSING, SAMEA and SAMEB groups than in the RANDOM
group (p= 0.046, p= 0.016, and p= 0.008 respectively). The
contribution of ordinal and transitional information to perfor-
mance at the onset of skill B was comparable to that of typing
random keypresses (Fig. 4b).
Performance at the onset of skill B was approximately 19%

larger in the PARSING RULE than in the RANDOM group
(Independent-samples t-test: t (250)= 3.577, p < 0.001; Fig. 4c)
indicative of the presence of content and not only sensorimotor
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Fig. 2 Varying rest interval durations does not impact rapid generalization during early learning. Experiment 2 evaluated the influence of
varying rest duration between skill A and skill B on generalization (n= 795; see Supplementary Table 2 for demographics). a Task: Participants
were randomized to practice 1 trial of skill A followed by five testing trials of skill B (2-3-1-4-2) with either 0, 2, 5, 10 or 30 s following the end of
practice of the skill A trial. Subjects in all groups performed equal number of total trials (six). Performance is shown for the single trial of skill A
and the first trial of skill B for each of the five groups (grey: 0 s; orange: 2 s; green: 5 s; yellow: 10 s; purple: 30 s; mean ± s.e.m.). Performance in
all 5 trials of skill B are shown in Supplementary Fig. 5. b Skill at the onset of skill B. Note the similar performance at the onset of skill B
regardless of interval durations. c Change in skill from the end of skill A to the onset of skill B (i.e., GenB0�Af ). Note that all groups but the 0 s
group experienced significant micro-offline (i.e., GenB0�Af ) gains. *p < 0.05, where * over individual group plots indicate significant one-sample
t-test within-group differences between B0 and Af.
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transformation in one-trial generalization. Micro-offline gains from
the end of the first skill to the onset of the second (GenB0�Af ) in the
PARSING RULE group represented 46% and 81% of those
observed in the SAMEA and SAMEB groups (See Supplementary
Fig. 9a, b)1, highlighting the substantial variation in generalization
associated with skill structure during early learning.
To further disambiguate the contribution of shared parsing rule

structure from nonspecific finger-to-keyboard sensorimotor map-
ping, we related performance at the onset of skill B in the RANDOM
group from those in the PARSING, SAMEA AND SAMEB groups (See
Supplementary Fig. 9d). Performance at the onset of skill B in the

PARSING group was 76% and 66% of those in the SAMEA and SAMEB
groups respectively. Thus, generalization of shared parsing rule
structure was evident after one trial of practice, was substantial in
comparison to micro-offline gains observed for continued practice
of the skill1, and was not explained by non-specific improvements in
sensorimotor mapping.

DISCUSSION
We observed generalization to a novel skill B after a single practice
trial of a different previously learned skill A. This one-trial
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Fig. 3 Content of generalization during early skill learning. Experiment 3 evaluated the content of generalization of skill A to four different
skill Bs (n= 537; see Supplementary Table 3 for demographics). a Task: Each skill B shared with skill A different features: a similar parsing cue
structure (sequence started and ended with the same number, i.e., 2-3-1-4-2; PARSING), similar transitions (i.e., 2-4-1-4-3, transitions 2-4 and 4-
1; TRANSITION), a combination of similar transitional/ordinal features (i.e., 2-4-3-2-4; O+ T) or a repetition of skill A (i.e., 4-1-3-2-4; SAMEA).
b Performance in the first trial of skill A and testing of the four groups performing different types of skill B (grey: PARSING; green: TRANSITION;
yellow: O+ T; purple: SAMEA; mean ± s.e.m.). Note the similar performance in skill A across groups. Performance in all 5 trials of skill B are
shown in Supplementary Fig. 7. c Skill at the onset of skill B. Onset of B was highest in the group that continued performance of skill A (SAMEA
group). Note that skill at the onset of skill B in the SAMEA and PARSING groups are significantly larger than the TRANSITION group. d Change
in skill from the end of skill A to the onset of skill B (i.e., GenB0�Af ). GenB0�Af was highest in the SAMEA group, being significantly greater than
the TRANSITION and O+ T groups. Note that the SAMEA and PARSING groups showed significant micro-offline gains (i.e., GenB0�Af ), while the
TRANSITION and O+ T groups did not. *p < 0.05, where * over individual group plots indicate significant one-sample t-test within-group
differences between B0 and Af and * between group plots indicate significant Kruskal-Wallis test (pairwise comparison) between-groups
differences (Fig. 3c) or one-way ANOVA (pairwise comparison) between-group differences (Fig. 3d).
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generalization was explained by the combination of shared
parsing cue structures between the two skills (i.e., two sequences
composed of completely different keypresses start and end with
the same keypress) and sensorimotor mapping. Lengthening
practice in skill A or modifying the time interval between a single
practice trial of skill A and skill B did not influence generalization.
Overall, these results provide evidence for within-seconds, one-
trial generalization of parsing cue structure during early learning
of a new skill.
We identified micro-offline generalization consisting of better

performance levels at the onset of skill B compared to the end of a
single practice trial of skill A. The finding of rapid generalization
during early learning is consistent with previous work showing
that generalization can occur before memories consolidate32,
when relationships between units within sequences form33, and
memories are still malleable9. Even exposure to only one trial of
practice in other memory domains is linked to significant
performance improvements34.
We found that generalization following one trial was greater

when the two skills shared the same parsing event cue (i.e., same
keypresses at start and end of the two sequences) and weaker

when they shared only transition structure. In fact, when the skills
shared transition information, generalization was only observed
for the invariant keypress-to-symbol sensorimotor mapping
common to both sequences. On the other hand, generalization
was approximately 20% larger when skills shared the same
parsing event than when subjects typed random keypresses.
Rapid formation of a generalizable memory for such parsing

event affords several behavioral advantages. First, it compresses
two keypresses into a single, highly discernible event. Second, it
parses the 5-item sequence into two parts: the unique double-tap
event, and a smaller sequence chunk consisting of only 3 keypress
events. Third, since the sequence is repeatedly typed, the double-
tap event also serves as a temporal marker for initiating the
execution of the 3-item chunk. Overall, these results suggest that
different representations of motor skill may develop at different
rates, beginning as early as seconds following the initiation of
practice. Additional practice may be required to generalize ordinal
and transitional representations of skill21 in the context of
this task.
What neural mechanisms could support the formation of

abstract memories (i.e., parsing cue structure) that can be
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Fig. 4 Contribution of similar parsing cue structure to generalization during very early learning. Experiment 4 attempted to dissociate the
relative contributions of parsing cue and sensorimotor mapping structure to generalization during very early learning (additional sample
added onto that of Experiment 3: n= 212; see Supplementary Table 4 for demographics). a Task: Experiment 4 added two groups: in one,
subjects performed a single trial of random order keypresses (replacing skill A) followed by 5 test trials of skill B (2-1-3-4-2; RANDOM) and the
second group trained over one trial of skill B (2-1-3-4-2) followed by 5 test trials of the identical skill B (SAMEB). Performance in all 5 trials of skill
B for the SAMEB and RANDOM groups are shown in Supplementary Fig. 8. b Skill at the onset of skill B (mean ± s.e.m). Onset of B in the
PARSING, SAMEA, and SAMEB groups were all greater than in the RANDOM group, demonstrating generalization of content beyond simple
sensorimotor transformations observed in the RANDOM group. Conversely, onset of B was comparable in the RANDOM, TRANSITION, and
O+ T groups. Thus, ordinal and transitional information contribution to generalization was negligible, largely comparable to that of typing
random keypresses. c Onset of B was greater in the PARSING group than in the RANDOM group, providing an estimate for the relative
contribution of knowledge of the parsing cue to generalization during very early skill learning. *p < 0.05, where * between group plots
indicate significant Kruskal-Wallis (pairwise comparison) between-group differences.
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generalized to a new skill after only a single practice trial? In the
motor domain, early learning has been linked to wakeful
hippocampus-neocortical neural replay. Neural replay, the reacti-
vation of neural network activity patterns representing skill
sequences, is prominently present during the rest period that
follows the very first practice trial of a new skill28,30. Importantly,
replay events in the entorhinal cortex and engaged neocortical
regions support formation of memories that encode abstract
relational structure between motor or cognitive states35, providing
a possible substrate for generalization. Future research could
evaluate if neural replay supports rapid generalization of abstract
structural similarities during procedural learning.
There are several possible limitations that should be noted. First,

keypress sequences may be easier or harder to execute
depending on biomechanical or neurophysiological factors
influencing coupling of finger motions. The impact of sequence
difficulty on generalization of early learning remains to be
addressed in future experiments. Sequence length is another
issue we have not investigated and could potentially influence
generalization. For example, the compression effect of a double-
tap event may be attenuated as the sequence length increases. It
would be interesting to determine whether sequence structure
regularities generalized as parsing cues scale in size as sequences
get longer (e.g., – a repeated doublet such as 1-2-1-2 would
rapidly generalize for a 10-item sequence), or generalize over
different time-frames.
In conclusion, our results document parsing structure general-

ization in the very early stages of skill learning (i.e., within-seconds
and after a single trial of practice). This information may be useful
for improving the design of practice schedules in the context of
sports, music, and physical rehabilitation.

METHODS
Participants
This study was approved by the Combined Neuroscience
Institutional Review Board (IRB) of the National Institutes of
Health. All participants were recruited from Amazon Mechanical
Turk (MTurk) and agreed to participate via an online acknowl-
edgement of participation, rather than an informed consent form
as this study was deemed exempt from the IRB. Inclusion criteria
were: > 18 years of age, right-handedness, and living in the United
States. The exclusion criterion included participation in previous
sequence learning studies from our laboratory. Sample sizes were
determined by conducting power analyses on pilot data
previously collected on MTurk in our lab2.
After excluding subjects that did not adhere to the task

instructions, the total sample size for all experiments in this study
was N= 2095. Experiment 1 included 551 participants (216
women, 330 men, 4 other; M ± SD age 36.658 ± 10.748, See
Supplementary Table 1), Experiment 2 included 795 participants
(350 women, 444 men, 1 other; M ± SD age 36.794 ± 11.031, See
Supplementary Table 2), Experiment 3 included 537 participants
(268 women, 266 men, 3 other; M ± SD age 37.7 ± 11.800, See
Supplementary Table 3) and Experiment 4 included 212 partici-
pants (81 women, 131 men, 0 other; M ± SD age 37.08 ± 8.630, See
Supplementary Table 4). Participants were randomly assigned to
all groups in each experiment.

Task
Participants completed an explicit sequence learning task via
Psytoolkit36,37 using their non-dominant left hand on a computer
keyboard device of their choosing in an environment of their
choosing. The instructions indicated that participants should type
a sequence of five keypresses (e.g., 4-1-3-2-4) as quickly and
accurately as possible, as many times as possible throughout the
10 s long practice/test trials, then rest with their fingers on the

keyboard and gaze focused on the screen word “rest” during rest
periods. The numeric keys of the keyboard were used to perform
the task, with the following finger-key setup: pinky finger
(anatomical digit 5)-#1, ring finger (anatomical digit 4)-#2, middle
finger (anatomic digit 3)-#3, index finger (anatomical digit 2)-#4.
Confirmation of each keypress throughout practice trials occurred
by displaying a dot on the top of the computer screen each time a
key was pressed, regardless of whether the key was correct or not.
In Experiment 1, participants were randomized to perform 1, 2, 5,
or 12 10 s trials of skill A (4-1-3-2-4) before performing 5 10 s test
trials of skill B (2-3-1-4-2), with 10 s of rest between trials and
between skills. In Experiment 2, all participants performed 1 10 s
trial of skill A (4-1-3-2-4), with 10 s of rest between trials, and were
randomized to experience 0 s, 2 s, 5 s, 10 s, or 30 s or rest between
skills, before performing 5 10 s trials of skill B (2-3-1-4-2) with 10 s
of rest between all trials. In Experiment 3, all participants
performed 1 10 s trial of skill A (4-1-3-2-4), with 10 s of rest
between trials and between skills, before being randomized to
perform 5 10 s trials of one of the following variations of skill B: 4-
1-3-2-4; 2-3-1-4-2; 2-4-1-4-3; or 2-4-3-2-4. In Experiment 4, one
group performed random keypresses for 1 10 s trial followed by 5
10 s trials of skill B (2-3-1-4-2), with 10 s of rest between trials and
between skills; whereas another group performed 1 10 s trial of
skill B (2-3-1-4-2) followed by 5 10 s trials of the same skill B (2-3-1-
4-2), with 10 s of rest between trials and between skills. Regardless
of experiment, all participants completed a questionnaire at the
end of the task which included items regarding which hand was
used to type the sequence, age and other demographic questions,
and history of musical instrument use (see Supplementary Tables
1–4). We did not ask subjects if they identified this parsing cue
consciously and thus could not dissect implicit/explicit
contributions38.

Data analysis
Each participant’s performance was checked for adherence to task
instructions. Task assignments were deemed to not adhere to task
instructions if any of the following occurred: (1) participants
answered that they used their right hand to type the sequence
when asked at the end which hand they used; (2) completion of
only one repetition of the sequence beyond trial 1 of a given
sequence; (3) keypresses were consistently different from the
instructed sequences; (4) deterioration of tapping speed perfor-
mance over consecutive trials after an initial increase in tapping
speed performance. Micro-online and micro-offline learning was
determined as previously reported1,2. Micro-online learning refers
to the difference in tapping speed between the first and last
correct sequence of a practice trial. Micro-offline learning refers to
the difference in tapping speed between the last correct sequence
of a practice trial and the first correct sequence of a subsequent
practice trial.
Skill performance was analyzed as previously described1,2. The

tapping speed was defined as one over the mean temporal
interval (in seconds) between consecutive correct keypresses (i.e.,
keypresses/s). The number of correct sequences per trial included
partially correct sequences that were ended by the end of the trial.
Generalization can be measured in several ways (Fig. 5),

including initial performance onset of a new skill, immediate or
overall changes in performance between two skills, and the speed
of acquisition of a new skill sometime referred to as learning to
learn31. Here, we were agnostic to the choice of which measure to
use, opting to display full results for the reader to evaluate.
Generalization of motor skill was thus defined based upon prior
literature: (1) change in performance between the end of skill A
and the onset of skill B (i.e., GenB0�Af )

39,40, (2) initial performance at
the onset of skill B41,42, (3) change in performance between the
onset of skill A to the onset of skill B (i.e., GenB0�A0 )

43–46, and (4) the
learning rate of skill B (i.e., κB; see Eq. 1)31. Individual subject
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performance curves were modeled with the following exponential
function:

L tð Þ ¼ C1 þ C2� 1� e�κtð Þ; (1)

Here, L tð Þ represents an individual subject’s learning state on a
given practice trial, t. Parameters C1 and C2 control the pre-
training performance and asymptote, respectively. Finally, κ
controls the learning rate. For a given sequence, the median
correct sequence tapping speed was calculated for each trial. A
constrained nonlinear least-squares method (MATLAB’s lsqcurvefit,
trust-region-reflective algorithm) was then used to estimate
parameters C1 (boundary constraints = [0,5]), C2 ([0,15]) and κ
([0,2]) from these observed tapping speed data.

Statistical analyses
All statistical analyses were performed using IBM Statistical
Package for the Social Sciences (SPSS) Version 27 (IBM Corp).
Equality of variance was assessed via Levene’s tests and data
normality was assessed through observation of skewness and
kurtosis values. Independent t-tests and analyses of variance
(ANOVA) were used for normally distributed between-groups data,
whereas the non-parametric equivalents of Mann-Whitney U and
Kruskal Wallis tests were used for abnormally distributed data,
respectively. In the event of statistically significant omnibus tests,
post-hoc corrections for multiple comparison-related family-wise
error were applied to decrease family-wise error rate. Within-
group gains were analyzed with t-tests comparing group values
with a reference value of zero. Bayesian ANOVAs or Kruskal Wallis
tests, depending on data normality, with reference priors were
used in certain cases to confirm that between-group statistics
were statistically equivalent. All analyses were performed with an
alpha level of 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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