
ARTICLE OPEN

Conventional twin studies overestimate the environmental
differences between families relevant to educational attainment
Tobias Wolfram 1,2,4✉ and Damien Morris3,4

Estimates of shared environmental influence on educational attainment (EA) using the Classical Twin Design (CTD) have been
enlisted as genetically sensitive measures of unequal opportunity. However, key assumptions of the CTD appear violated for EA. In
this study we compared CTD estimates of shared environmental influence on EA with estimates from a Nuclear Twin and Family
Design (NTFD) in the same 982 German families. Our CTD model estimated shared environmental influence at 43%. After
accounting for assortative mating, our best fitting NTFD model estimated shared environmental influence at 26%, disaggregating
this into twin-specific shared environments (16%) and environmental influences shared by all siblings (10%). Only the sibling shared
environment captures environmental influences that reliably differ between families, suggesting the CTD substantially
overestimates between-family differences in educational opportunity. Moreover, parental education was found to have no
environmental effect on offspring education once genetic influences were accounted for.
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INTRODUCTION
Educational attainment (i.e., ultimate years of education com-
pleted) is a key variable in the behavioural sciences because of its
effectiveness in predicting a wide variety of important life
outcomes. Despite being a measure that can be calculated from
a single questionnaire item (e.g., “what is the highest qualification
you’ve obtained?”) educational attainment (EA) is one of the best
predictors of occupational status and income1, longevity and
health outcomes2, and the risk of receiving a criminal conviction3.
The qualities needed to advance through the modern secondary
and tertiary education system appear to be useful for navigating a
wide variety of challenges that life throws at individuals in
advanced industrial economies.
One of the most established findings in the social sciences is

that EA tends to run in families—a result which has widely been
interpreted as evidence of persistent inequality in environmental
opportunity and the “social reproduction” of socioeconomic
advantages4–8. However, as noted by Jencks and Tach “the size
of the correlation between the economic status of parents and
their children is not a good indicator of how close a society has
come to equalising opportunity… In particular, we must separate
the contributions of genes” (p.2-3)9. From the 1970 s twin studies
began to show evidence that the variation in EA had a substantial
genetic component10,11. Two studies published in the last decade
have sought to summarise the results of the international twin
literature that has accumulated since then: a meta-analysis by
Branigan et al.12 and a mega-analysis by Silventoinen et al.13 (see
Supplementary Note 1). Both studies converged on similar results,
estimating mean heritability at 40%–43% and mean shared
environmental influence at 31%–36%. These heritability estimates
are low relative to other highly correlated cognitive outcomes
such as adult general cognitive ability (60%–80%)14–16 or
adolescent school grades ( ~ 60% at age 16)17. However, the
estimates of shared environmental influence are especially
conspicuous, being among the highest for any behavioural trait
investigated in adults.

That such high estimates have been reported for a socio-
economic outcome that bears on many important life chances has
compelled some researchers to draw far-reaching conclusions
about what this says about equality of opportunity in con-
temporary society. For example, after reporting high shared
environmental estimates in their U.S. sample, Nielsen and Roos18

argued this “indicates a high level of inequality of opportunity for
educational attainment in American Society at the turn of the
twenty-first century” (p.535). However, a review paper by Freese
and Jao19 cautioned against prematurely leaping to moralised
conclusions about high estimates of shared environmental
influence for EA when these might have innocuous explanations.
One possibility is that these are methodological artefacts. The

mean international estimates of genetic and environmental
influence on EA described above were calculated using variations
on the Classical Twin Design (CTD). In CTD studies the variance in
the target outcome is typically partitioned into additive genetic
influence (A), shared environmental influence (C), and nonshared
environmental influence (E) by comparing the resemblance of
monozygotic (MZ) twins reared together with the resemblance of
dizygotic (DZ) twins reared together. But just as estimates of the
family environment’s influence on EA are confounded by
unmodelled genetic influences in studies using parent-child or
non-twin sibling correlations12, ACE estimates in the CTD are
confounded by other unmodelled parameters that can potentially
bias them up or down or affect their interpretation20–22. Two
unmodelled parameters of particular interest in the present study
are assortative mating and twin-specific shared environments.
One of the potential explanations for high C estimates of EA

suggested by Freese & Jao (2017) was the presence of unmodelled
assortative mating19. The CTD ACEmodel assumes random mating
between spouses, attributing any additional resemblance shared
by MZ twins relative to DZ twins to the additional 50% of their
genes they are assumed to share [following Falconer’s formula
A= 2(rMZ-rDZ)]23. Any residual resemblance between MZ twins
after accounting for genetic influences is attributed to the shared

1Department of Sociology, University of Bielefeld, Niedersachen, Germany. 2Department of Sociology, ENSAE/CREST, Paris, France. 3Social, Genetic & Developmental Psychiatry
Centre, King’s College London, London, United Kingdom. 4These authors contributed equally: Tobias Wolfram, Damien Morris. ✉email: twolfram.eisenach@gmail.com

www.nature.com/npjscilearn

Published in partnership with The University of Queensland

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00173-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00173-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00173-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00173-y&domain=pdf
http://orcid.org/0000-0002-0280-2512
http://orcid.org/0000-0002-0280-2512
http://orcid.org/0000-0002-0280-2512
http://orcid.org/0000-0002-0280-2512
http://orcid.org/0000-0002-0280-2512
https://doi.org/10.1038/s41539-023-00173-y
mailto:twolfram.eisenach@gmail.com
www.nature.com/npjscilearn


environment (i.e. C= rMZ-A)23. However, under conditions of
positive phenotypic assortment where spouses actively match on
a heritable trait, this will induce a genetic correlation between
spouses for that trait which also leads to higher genetic
resemblance between their DZ twin offspring than the 50%
kinship coefficient assumed under the CTD. This will cause the
CTD to underestimate heritability and overestimate shared
environmental influence.
EA exhibits some of the highest spousal correlations for any trait

investigated, averaging r= 0.5324. However, phenotypic assort-
ment is not the only possible explanation. Alternative explanations
that do not imply increased genetic correlations between DZ
twins are spousal convergence, in which partners become more
similar over time due to their environmental influence upon each
other; and social homogamy, in which the community from which
individuals draw their partners resembles them for purely
environmental reasons25. However, a large Australian study found
spousal convergence played a negligible role in partner similarity
for EA26, and recent molecular genetic studies have found strong
evidence for phenotypic assortment on EA and associated
traits27–32. A recent Norwegian study estimated the genetic
correlation between spouses for EA at 0.37 and the genetic
correlation between siblings at 0.6731—a value much larger than
the expected correlation of 0.5, suggesting that CTD estimates of
EA have been doubling the difference between MZ and DZ twin
correlations to estimate heritability when tripling the difference
might be more appropriate. Martin33 developed a method to
correct CTD ACE estimates for bias due to phenotypic assortment

when data on spousal correlations for parents is available. The
authors of the Silventoinen et al.13 mega-analysis of 193,518 twins
applied this adjustment to a subsample of 23,705 families with
parent data (cross-parental correlations of 0.57). When they did so,
the C estimate was driven to zero and all the C variance was re-
allocated to the A estimate. The unadjusted ACE estimates for this
subsample were not published in the paper but were almost
identical with the full sample (A= 43%, C= 30%, and E= 27% vs.
A= 43%, C= 31%, and E= 26%. Private correspondence with
authors). To the extent that the spousal correlations for the wider
sample are similar and phenotypic assortment explains that
correlation, this potentially implies the mean C estimate in the
main results for the mega-analysis should be entirely re-allocated
to the A estimate, i.e.: A= 74%, E= 26%.
In Branigan et al.12, 13 of the 34 subgroups included in the

meta-analysis were from studies that published spousal correla-
tions for either the twins or their parents; however, the potential
bias assortative mating introduced to ACE estimates in these
studies was not explored. In Table 1 we recalculated the ACE
estimates for each of these subgroups and adjusted them for
assortative mating. We then replicated the fixed effects meta-
analysis performed by Branigan et al.12 for this subsample,
obtaining grand mean estimates for both the adjusted and the
unadjusted ACE estimates (full details of this analysis are provided
in Supplementary Note 2 and Supplementary Tables 1 and 8). The
difference between our grand mean estimates in the adjusted vs.
the unadjusted sample suggest, on average, A is biased down-
wards and C biased upwards by 16–17 percentage points in these

Table 1. Evidence that assortative mating may be biasing estimates of genetic and shared environmental influence on educational attainment in the
Branigan et al. (2013)12 meta-analysis.

Paper Sex Sample Cohort nMZ nDZ rMZ rDZ ACE estimates rParents Adjusted ACE
estimates

A C E µ A C E

Heath et al. (1985)72a Male Norwegian Twin Panel 1915–1939 259 313 0.86 0.77 18% 68% 14% 0.86 22% 64% 14%

Heath et al. (1985)72a Female Norwegian Twin Panel 1915–1939 405 425 0.89 0.75 28% 61% 11% 0.86 47% 42% 11%

Heath et al. (1985)72a Male Norwegian Twin Panel 1940–1949 253 284 0.82 0.48 68% 14% 18% 0.72 82% 0% 18%

Heath et al. (1985)72a Female Norwegian Twin Panel 1940–1949 342 400 0.85 0.68 34% 51% 15% 0.72 59% 26% 15%

Heath et al. (1985)72a Male Norwegian Twin Panel 1950–1960 370 463 0.85 0.47 76% 9% 15% 0.73 85% 0% 15%

Heath et al. (1985)72a Female Norwegian Twin Panel 1950–1960 518 576 0.89 0.66 46% 43% 11% 0.73 89% 0% 11%

Lykken et al. (1990)73 Male Minnesota Twin Registry 1936–1955 433 632 0.64 0.44 40% 24% 36% 0.55 59% 5% 36%

Lykken et al. (1990)73 Female Minnesota Twin Registry 1936–1955 392 571 0.66 0.5 32% 34% 34% 0.55 41% 25% 34%

Baker et al. (1996)74b,c Male Australian Twin Register 1893–1950 216 94 0.7 0.53 34% 36% 30% 0.426 41% 29% 30%

Baker et al. (1996)74b,c Female Australian Twin Register 1893–1950 520 299 0.77 0.55 44% 33% 23% 0.426 59% 18% 23%

Baker et al. (1996)74b,c Male Australian Twin Register 1951–1965 226 161 0.74 0.47 54% 20% 26% 0.426 74% 0% 26%

Baker et al. (1996)74b,c Female Australian Twin Register 1951–1965 479 290 0.75 0.49 52% 23% 25% 0.426 75% 0% 25%

Bingley et al. (2005)75c Male Danish Twins Registry 1925–1977 2185 3534 0.62 0.444 35% 27% 38% 0.392 42% 20% 38%

Grand mean 38% 39% 22% 55% 23% 22%

nMZ number of monozygotic twin pairs, nDZ number of dizygotic twin pairs, rMZ correlation between MZ twins, rDZ correlation between DZ twins, rParents
correlation between parents. A = additive genetic influence, C = shared environmental influence, E = nonshared environmental influence.
aCorrelations in Heath et al. (1985)72 were polychoric. As no distinction was made between ACE estimates derived from Pearson correlations and polychoric
correlations in Branigan et al. (2013)12 we treat both correlations interchangeably in this re-analysis. We use the µ path estimate from the model-fitting results
in Heath et al. (1985)25 which corrects rParents for biased reports of parental education from each twin.
bSpousal correlations were only published for the full sample for Baker et al. (1996)74 but we assume here that they were the same for each gender and birth
cohort.
cCorrelations between twins and spouses were used for rParents in Baker et al. (1996)74 and Bingley et al. (2005)75 because correlations between parents were
unavailable.
This table presents data from a subsample of studies included in Branigan et al.12 that reported correlations between parents or spouses for educational
attainment. For each entry, we calculated ACE estimates using Falconer’s formulas23 then adjusted these estimates for assortative mating using a formula from
Martin33. We then replicated the Branigan et al.12 meta-analysis for both the adjusted and unadjusted ACE estimates. After adjusting for assortative mating,
mean A estimates were 17 points higher and mean C estimates were 16 points lower. Grand mean ACE estimates are shown in bold. Full details on the
methodology are provided in Supplementary Note 2 and full workings are provided in Supplementary Table 1.
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CTD studies. Our grand mean ACE estimates for the unadjusted
subsample are very similar to the headline results from the full
sample in Branigan et al. (2013) suggesting the headline estimates
may be biased to a similar extent (A= 38%, C= 39%, E= 22% in
the subsample vs. A= 40%, C= 36%, E= 25% in the full sample).
Twin-specific shared environmental influence is another unmo-

delled parameter in CTD studies that has important implications
for how CTD estimates of shared environmental influence are
interpreted. In this study, twin-specific shared environments refers
to environmental influences held in common by twins which are
experienced as nonshared environmental influences by siblings
growing up at different times. These will include the effects of,
e.g.: birth order relative to other siblings; “birthday effects” of
being born earlier or later in the year; and the cohort effects of
being born in a particular political, economic, or cultural epoch.
Kendler et al. (2019)34 invoked twin-specific shared environments
alongside assortative mating as a potential explanation for why
CTD estimates of C were 11–12 percentage points higher for EA
than estimates from half- or step-sibling study designs using the
same Swedish register data.
A longstanding convention in CTD studies is to interpret C

estimates as a measure of “between-family” environments which
“make members of a family…similar to one another and different
from members of other families” (p.18)35. For EA, this convention
leads to C being interpreted as a measure of inequality of
environmental opportunity between families, e.g., Nielsen and
Roos (2015)18 write: “The shared environment component… has a
direct policy interpretation: it reflects the potential effect on
educational attainment of raising the quality of the most
disadvantaged family environments to the level of the most
advantaged ones” (p.539). But to the extent that C captures twin-
specific shared environments, it will also capture environmental
effects that make siblings in the same family different from each
other, making them an inflated estimate of between-family
environmental differences. Moreover, while twin-specific shared
environments will capture real inequalities of opportunity
between siblings, these within-family differences in opportunity
are not the kind that ordinarily preoccupy policymakers or
advocacy groups, who tend to be more concerned about
between-family differences in, e.g., parental income, education,
or occupational status36.
The presence of twin-specific shared environments (T) can be

detected by incorporating data from DZ twins and their non-twin
siblings in the same study, with T indicated when DZ twins
resemble each other more closely than non-twin siblings. These
effects have previously been reported for a US twin and sibling
study of EA18 which found that C was 11.3% higher (and E
correspondingly 11.3% lower) for twins than for non-twin siblings
when accounting for T. The supplements of the first Genome-Wide
Association Study (GWAS) of EA also included a twin and sibling
analysis of the Swedish Multigenerational Registry, which reported
that T accounted for 6.2% of the variance37. Furthermore, when
we compared sibling correlations for EA from a recent interna-
tional study8 with DZ twin correlations from studies in the same
countries with similar birth cohorts, the DZ twin correlations were
invariably higher, suggesting twin-specific environments might be
a general phenomenon for this outcome (see Table 2).
In this study, we used a Nuclear Twin and Family Design (NTFD)

to account for both assortative mating and twin-specific shared
environments using data on twins, their parents, and their siblings
in the German TwinLife sample. Moreover, unlike the CTD, NTFD
models can estimate non-additive genetic influences (N) and
shared environmental influences simultaneously. Unmodelled N
can bias estimates of heritability upwards in the CTD ACE model
and bias estimates of shared environmental influence downwards.
The degree of bias introduced depends on whether these
unmodelled non-additive genetic influences consist of gene-gene

interactions at single loci (“dominance”) or interactions across
multiple loci (“epistasis”).
Furthermore, NTFD models can disaggregate phenotypic

transmission (P)—here the environmental effects of parental
education on offspring education—from other twin or sibling
shared environments. NTFD models can likewise disaggregate the
variance explained by passive gene-environment correlation (rGE),
which is captured under the C-component in the CTD ACE model.
The contribution of passive rGE to EA is a subject of growing
scientific interest as molecular genetic studies have indicated it
might explain around half of the phenotypic variation captured by
current EA polygenic scores (PGSs)29,38–41. We compare the results
from NTFD and CTD models run on EA data from the same families
in order to assess the size and direction of bias in our CTD
parameter estimates.
A previous TwinLife study by Eifler and Riemann (2021)42 used

an NTFD phenotypic assortment model to decompose the
variance in school leaving certificates. Here we extend that work
to decompose ultimate years of education completed as imputed
from both completed qualifications and enrolled post-secondary
education courses. We further build on that analysis by contrast-
ing NTFD results with CTD results, by fitting social homogamy
models in addition to phenotypic assortment models, and by
modelling both dominance and epistasis as potential sources of
non-additive genetic influence. By exploring a wider range of
boundary conditions in which different assumptions are made and
different parameters are estimated, we have attempted to map
out the plausible parameter space defined by NTFD models of
these data22.

RESULTS
Correlations between different relatives
Correlations for EA between different relatives in our sample are
presented in Table 3. MZ twins were highly correlated (r= 0.77)
suggesting substantial familial (i.e., genetic and/or environmental)
influences on the trait. DZ twins were somewhat less correlated
than MZ twins (r= 0.6) suggesting that some of the familial
influence is genetic, but most is due to shared environmental
influence. However, mothers and fathers were also highly
correlated with each other (r= 0.6), suggesting that assortative
mating of some kind is present. This could imply that genetic
influence is higher, and shared environmental influence lower,
than CTD ACE estimates would normally imply. Additionally, DZ
twin correlations (r= 0.6) were substantially higher than the
correlations between twins and their non-twin siblings (r= 0.45),
suggesting that twin-specific shared environmental influences
might play an important role.

Model fitting results
Based on the twin correlations above, in which the MZ twin
correlations were less than twice as large as the DZ twin or sibling
correlations, we proceeded to fit a CTD ACEmodel to our twin only
data rather than an ANE model that estimates non-additive
genetic influences instead of shared environmental influences.
This produced estimates of: A= 34% (95% CIs: 23–47%), C= 43%
(31–53%), and E= 23% (20–26%).
We then fit NTFD models to our full twin, parent, and sibling

data. Three phenotypic assortment (PA) models and three social
homogamy (SH) models were compared against a saturated
model, respectively fixing non-additive genetic effects (N), sibling
shared environments (S), and phenotypic transmission (P) to zero,
as only two of these three parameters can be estimated
simultaneously20. None of these six baseline models fit the data
significantly worse than the saturated model. We proceeded to
drop all non-significant paths from each of the baseline models to
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see if doing so produced a significant reduction in fit. It did not.
Model fitting results are presented in Table 4.
Our PA models returned mean estimates of additive genetic

influence ranging between 51–56%, non-additive genetic influ-
ences of 0–1%, parental influence of 0–1%, passive rGE of −2%
−0%, sibling shared environments of 0–10%, twin-specific shared
environments of 16–25%, and nonshared environments of 23%.
Non-additive genetic influences, parental influences, and passive
rGE could be dropped from all three PA baseline models without
producing a significant decline in fit.
Our SH models returned mean estimates of additive genetic

influence of 36–70%, zero non-additive genetic influence,
phenotypic transmission of 0–4%, passive rGE of 0–10%, sibling
shared environments of 0–11%, twin-specific shared environ-
ments of 0–25%, and nonshared environments of 21–23%.

Phenotypic transmission was statistically significant in the two SH
baseline models in which it was freely estimated and was
therefore retained in the corresponding submodels. The SH
baseline model that fixed phenotypic transmission to zero was
our worst-fitting model and also yielded unusual results, e.g.,
producing heritability estimates even higher than our PA models
(69%). Without this model or its nested submodels the SH
heritability estimates range from 36–39%, substantially lower than
our PA estimates and closer to our CTD estimate of 34%.
Under all PA models the parent-offspring correlation for EA was

entirely genetically mediated. Under our SH models 43–46% of the
parent-offspring correlation was genetically mediated except in
our worst-fitting models where phenotypic transmission was fixed
to zero (see Supplementary Table 4).
In general, SH models fit the data slightly worse than our PA

models; however, our SH baseline model which assumed no

Table 2. Correlations for educational attainment are consistently higher between dizygotic twins than between non-twin siblings suggesting twin-
specific shared environments influence this trait.

Sibling studies Twin studies

Paper Country (Birth
year)

Sample rSIB rDZ Country (Birth
year)

Sample Paper

Gratz et al.
(2021)8

Finland
(1974–1980)

Registers (Statistics
Finland)

0.36 0.52a Finland
(1974–1979)

Finn16 Silventoinen et al.
(2020)13

0.60b Finland
(1936–1955)

Finnish Twin Cohort
Study

Silventoinen et al.
(2004)76

0.62b Finland
(1919–1957)

Finnish Twin Cohort
Study

Silventoinen et al.
(2000)77

Germany
(1976–1989)

SOEP 0.51 0.60a Germany
(1990–1993)

TwinLife Baier & Lang (2019)60

0.60a Germany
(1914–1969)

Bielefeld Longitudinal
Study

Silventoinen et al.
(2020)13

0.67a Germany
(1926–1987)

Berlin Twin Register

Norway
(1970–1980)

Registers 0.41 0.51b Norway
(1967–1979)

Norwegian Twin Register Ørstavik et al. (2014)78

0.46 Norway
(1967–1979)

Norwegian Twin Register Lyngstad et al. (2017)79

Sweden
(1960–1982)

Multi-generation
Registry

0.44 0.55 Sweden
(1926–1958)

Swedish Twin Registry Isacsson (1999)80

0.50c Sweden
(1950–1970)

Multi-generation
Registry

Rietveld et al. (2013)37

UK (1954–1989) UKHLS 0.42 0.47 UK (1951–1985) TwinsUK Branigan et al. (2013)12

USA (1954–1986) PSID 0.51 0.56 USA (1976–1984) AddHealth Nielsen & Roos (2015)18

0.52a USA (1908–1977) California Twin
Programme

Silventoinen et al.
(2020)13

0.54a USA (1910–1976) Carolina African
American

0.56a USA (1979–1989) Colorado Twin Registry

0.61a USA (1894–1987) Mid Atlantic Twin
Registry

Twin and sibling studies

rSIB rDZ Country (Birth year) Sample Paper

0.39 0.49 Norway (1946-65) Registers Björklund & Salvanes (2011)61

0.45 0.50 Sweden (1950–1970) Multi-generation Registry Rietveld et al. (2013)37

0.45 0.56 USA (1976–1984) AddHealth Nielsen & Roos (2015)18

rSIB represents the Pearson correlation for years of education between siblings and rDZ for the correlation between dizygotic twins.
arDZ was algebraically derived from ACE estimates using the formula 0.5 A+ C.
brDZ was pooled from male and female samples (simple arithmetic mean and inverse variance weighted averages were the same).
crDZ is male only (while rSIB is mixed).
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non-additive genetic influence fit the data marginally better than
PA models which assumed no sibling effects (see AIC and BIC
values in Table 4). Our best fitting model overall, reporting both
the lowest Akaike’s Information Criterion and lowest Bayesian
Information Criterion43,44, was the PA ASTE model where A= 51%
(46–56%), S= 10% (0.1–18%), T= 16% (8–26%), and E= 23%
(21–26%).

Our best fitting NTFD model is contrasted against the CTD ACE
model in Fig. 1. Our six NTFD baseline models are compared in
Fig. 2. Variance components and confidence intervals for all NTFD
models are presented in Table 5. Finally, the path estimates (with
standard errors) for all NTFD models are available in Supplemen-
tary Table 2.
In addition to the results displayed here which assume that

non-additive genetic influence is characterised by dominance we
also ran an alternative set of epistatic models which assumed it
was characterised by multi-local gene–gene interactions that only
MZ twins share in common (see Supplementary Tables 3 and 5).
This scenario isn’t considered biologically plausible but ensures
that non-additive genetic effects shared by DZ twins aren’t over-
estimated22. There were negligible differences between the
dominance and epistatic model results.

DISCUSSION
We set out to explore how NTFD estimates of genetic and
environmental influence for EA differed from conventional CTD
estimates when the inclusion of more relative classes allowed
additional parameters to be estimated. When phenotypic assort-
ment (PA) was assumed, broad heritability estimates ranged from
51% to 56% in our NTFD models. Our best-fitting model estimated
heritability at 51%, up 17 percentage points from our CTD
estimate of 34%. This difference aligns with the 17-point
assortative mating adjustment to heritability that we calculated

Table 4. Fit indices for Nuclear Twin and Family Design models.

Ref # Model name Fixed parameters -2LL df AIC BIC Against Δ df Δ -2LL p-value

Full Saturated 8,981.36 0 9,064.84 9,129.90

PA-1 ASTPE N= 0 9,006.71 3570 9028.98 9047.56 Full 39 25.35 0.96

PA-1.1 ASTPE (no rGE) N = rGE = 0 9,006.71 3571 9026.93 9043.84 PA-1 1 0.00 0.96

PA-1.2 ASTE N= P= 0 9,006.71 3573 9022.86 9036.42 PA-1 3 0.00 1.00

PA-2 ANTPE S= 0 9,010.47 3570 9032.75 9051.32 Full 39 29.12 0.88

PA-2.1 ANTPE (no rGE) S = rGE = 0 9,010.56 3571 9030.79 9047.70 PA-2 1 0.09 0.77

PA-2.2 ATPE S=N= 0 9,010.63 3571 9030.86 9047.77 PA-2 1 0.16 0.69

PA-2.3 ATPE (no rGE) S=N = rGE = 0 9,010.63 3572 9028.82 9044.05 PA-2 2 0.16 0.92

PA-2.4 ANTE S= P= 0 9,010.56 3573 9026.71 9040.27 PA-2 3 0.09 0.99

PA-2.5 ATE S=N= P= 0 9,010.63 3574 9024.75 9036.63 PA-2 4 0.16 1.00

PA-3 ANSTE P= 0 9,006.71 3570 9028.98 9047.56 Full 39 25.35 0.96

PA-3.1 ASTE P=N= 0 9,006.71 3573 9022.86 9036.42 PA-3 3 0.00 1.00

SH-1 ASTPE N= 0 9,006.71 3570 9028.98 9047.56 Full 39 25.35 0.96

SH-2 ANTPE S= 0 9,011.19 3570 9033.46 9052.03 Full 39 29.83 0.85

SH-2.1 ATPE S=N= 0 9,011.19 3571 9031.41 9048.32 SH-2 1 0.00 1.00

SH-3 ANSTE P= 0 9,034.37 3570 9056.64 9075.21 Full 39 53.01 0.07

SH-3.1 ASTE P=N= 0 9,034.36 3573 9050.51 9064.07 SH-3 3 0.00 1.00

SH-3.2 ANSE P= T= 0 9,034.95 3573 9051.10 9064.66 SH-3 3 0.58 0.90

SH-3.3 ASE P=N= T= 0 9,034.95 3574 9049.06 9060.94 SH-3 4 0.58 0.96

PA Phenotypic Assortment model, SH Social Homogamy model, A Additive genetic influence, N non-additive genetic influence (dominance), S environmental
influences shared by all siblings, T environmental influences shared by twins only, P phenotypic transmission, E nonshared environment, rGE passive gene-
environment correlation, -2LL negative 2 log likelihood, df degrees of freedom, AIC Akaike’s Information Criterion, BIC Bayesian Information Criterion, Δ
difference.
Non-additive genetic influences, sibling shared environmental influences, and phenotypic transmission effects were respectively set to zero in three baseline
Phenotypic Assortment models and three baseline Social Homogamy models (top row of each section). These were compared with a saturated model (top
row). For baseline models which did not show a significant reduction in fit (α= 0.05), non-significant paths were iteratively dropped to see if nested sub-
models showed a significant reduction in fit relative to baseline. Our best-fitting model (ASTE) is in boldface and appears twice under PA-1.2 and PA-3.1. Our
best-fitting SH model (ASTPE) is in italics. Alternative model-fitting results where non-additive genetic influences were characterised as epistasis rather than
dominance are provided in Supplementary Table 3, but differences were negligible. For our P= 0 baseline models only one path is dropped (m) but for all
P= 0 submodels three paths have been dropped (m, x, and w). This is because the value of x and w automatically fall to zero when m is dropped (see path
diagram in Fig. 3) and parameter estimates remained the same whether one, two, or three paths were dropped. We have omitted redundant P= 0 submodels
that were less parsimonious.

Table 3. Correlations for educational attainment between different
types of family members.

Dyads r (95% CIs) Number of pairs

MZ twins 0.769 (0.73–0.803) 498

DZ twins 0.595 (0.531–0.652) 439

Sibling and random twin 0.453 (0.339–0.554) 212

Mother and random twin 0.406 (0.35–0.46) 884

Mother and sibling 0.497 (0.385–0.594) 201

Father and random twin 0.418 (0.345–0.486) 525

Father and sibling 0.388 (0.232–0.524) 132

Parents 0.597 (0.536–0.651) 482

r = Pearson correlation, CIs Confidence Intervals. The p value was <0.001
for all correlations.
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in our re-analysis of studies in Branigan et al.12 (see Table 1).
Together these results indicate that the 40% and 43% mean
heritability estimates for EA reported in Branigan et al.12 and
Silventoinen et al.13 might underestimate the true international
average heritability for the relevant populations.
If the mean heritability of EA is ~17 percentage points higher

than previously believed, this could also indicate that the ceiling
on polygenic prediction for EA is higher than previously assumed.
While the variance explained by PGSs (12–16% depending on
cohort)29 is already approaching the current SNP heritability for EA
(averaging ~15% globally)45, as whole genome sequencing of
large samples becomes widespread, and rarer variants associated
with EA are identified, it’s expected that both the SNP heritability
and the variance explained by future EA PGSs will increase46–48.
Pedigree-based estimates of heritability therefore provide an
optimistic upper bound for the strength of the polygenic
prediction that might ultimately be achieved.
Our NTFD results also suggest that CTD estimates of shared

environmental influence (C) for EA might be overestimated. Total

shared environmental influence (including passive rGE) was 26%
in our best-fitting model, down 17 points from our CTD estimate
of 43% after accounting for phenotypic assortment. Again, this
aligns closely with our assortative mating adjustment to the
Branigan et al. (2013) ACE estimates. Once we consider the
growing evidence for genetic correlations between spouses for
EA27–32 and the high spousal correlations for the studies included
in Branigan et al. (2013)12 and Silventoinen et al. (2020)13, it
suggests the 31–36% mean international estimates of shared
environmental influence for EA in those studies might be
substantially inflated.
However, our results also indicate that CTD estimates of shared

environmental influence on EA cannot be safely interpreted as
“between-family” differences in environmental opportunity irre-
spective of whether unmodelled assortative mating is an issue.
Our NTFD models were able to decompose the shared environ-
ment into variance components that are shared by non-twin
siblings (i.e., S, P, and rGE) and twin-specific shared environments
(T) that are not. T accounted for 16–25% of the variance in our PA

Fig. 1 Comparing estimates of genetic and environmental influence for educational attainment (EA) in the Classical Twin Design (CTD)
with estimates from a Nuclear Twin and Family Design (NTFD). Our best fitting NTFD model showed higher additive genetic influence and
lower shared environmental influence compared to the CTD model after adjusting for phenotypic assortment (PA). In addition, our best fitting
NTFD model found that a substantial fraction of the variance attributed to shared environmental influence in the CTD model consisted of
twin-specific shared environments that non-twin siblings do not hold in common, and which cannot be safely interpreted as “between-
family” environmental differences.

Fig. 2 Comparing estimates of genetic and environmental influence for educational attainment (EA) across different baseline models in
the Nuclear Twin and Family Design (NTFD). Here we depict our three Phenotypic Assortment (PA) and three Social Homogamy (SH) baseline
models in which alternative parameters were fixed to zero for model identification purposes. Akaike’s Information Criteria (AIC) values are
displayed above each column. Three baseline models were tied for the best fit (AIC values provided in bold). The variance components in our
two best fitting PA baseline models were almost identical with the variance components in our best fitting model overall (see Fig. 1). These
estimates can be compared against the variance components in our best fitting SH model (the SH-ASTPE baseline) in which ~14% of the
variance shifts from additive genetic influence to phenotypic transmission and passive gene-environment correlation (rGE) while other
estimates remain broadly the same. In the PA-ANTPE model, additive genetic influence should be interpreted as overlapping with negative
rGE, which reverses its effects.
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models and contributed a similar range in our SH models (when
our worst fitting SH models that set parental effects to zero were
excluded). Taking both assortative mating and twin-specific
shared environments into account, our best-fitting model
indicated just 10% of the variance in EA could be attributed to
between-family environmental differences. This is 33 points lower
than our C estimate of 43% under the CTD. Our survey of DZ twin
versus non-twin sibling correlations for EA in Table 2 indicates that
twin-specific shared environments are relevant for many of the
populations in which CTD studies of EA have previously been
conducted. These results suggest that researchers should refrain
from drawing strong conclusions about the differences in
educational opportunity between families based on CTD estimates
for EA12,13,49.
Additionally, the decomposition of the shared environment

under our NTFD PA models (which include our best-fitting model)
implied negligible environmental influence of parental education
on offspring education. Under these models, the observed parent-
offspring correlation was entirely genetically mediated (see
Supplementary Table 4) inverting the traditional sociological
interpretation that this correlation captures environmental
inequalities4–8. However, this does not imply that parents have
no effect on offspring EA. Parental attributes other than EA could
be driving some of the phenotypic similarity between siblings and
between twins that is captured under S and T and those parental
attributes could potentially include alternative socioeconomic
indicators such as parental income.
Full genetic mediation of the parent-offspring correlation for EA

was also found in a recent Norwegian study using a Multiple
Children of Twins design50. However that study speculated that
this was the result of Norway’s egalitarian social policies and
specifically predicted that the more stratified German education
system would produce different results50. Instead, our results

indicate that genetic mediation of the parent-offspring correlation
might be a more general phenomenon. That would suggest the
intergenerational mobility literature exaggerates the environmen-
tal transmission of advantage and the differences in opportunity
between families even more than CTD studies have previously
indicated12.
For over 60 years it has been common practice in the social

sciences to treat the correlation for EA between first-degree
relatives as a direct measure of inequality of environmental
opportunity, painting a picture of society that is deeply and
persistently unmeritocratic4–8. By demonstrating that a substantial
fraction of the familial correlation is genetic, CTD studies have
shown that environmental differences between families play a
much smaller role in the intergenerational persistence of EA than
has sometimes been suggested12. Nevertheless, conspicuously
high CTD estimates of shared environmental influence for EA have
continued to cause concern about high levels of unequal
opportunity for this outcome13,18,51. The results presented here
suggest that shared environmental influence might account for
even less of the variation in educational attainment than
conventional twin studies have indicated and that environmental
opportunities might therefore be more equal than these studies
have implied. Moreover, a large fraction of the remaining shared
environmental variation for EA appears to consist of twin-specific
shared environments that capture within-family differences in
opportunity that carry a different moral and political connotation
to between-family differences (even if they remain potential
targets for political intervention). A promising avenue for future
research would be to identify specific environmental variables
which account for these within- and between-family differences in
educational opportunity52,53.
That noted, we stress that equality of environmental opportu-

nity—while a widely endorsed social goal—is not an uncontested

Table 5. Variance components for Educational Attainment in our Nuclear Twin and Family Design models.

Ref # Model name A N S T P rGE E

PA-1 ASTPE 51% (32–56%) 10% (0–19%) 16% (8–27%) 0% (0–2%) 0% (0–9%) 23% (21–26%)

PA-1.1 ASTPE (no rGE) 51% (46–56%) 10% (0–18%) 16% (8–26%) 0% (0–0%) 23% (21–26%)

PA-1.2 ASTE 51% (46-56%) 10% (0–18%) 16% (8–26%) 23% (21–26%)

PA-2 ANTPE 56% (8–56%) 0% (0-0%) 24% (16–32%) 0% (0–13%) −2% (NA–12%) 23% (21–26%)

PA-2.1 ANTPE (no rGE) 52% (47–56%) 1% (0–10%) 24% (16–30%) 0% (0-0%) 23% (20–26%)

PA-2.2 ATPE 52% (37–60%) 25% (20–32%) 0% (0–0%) 0% (−1–8%) 23% (21–26%)

PA-2.3 ATPE (no rGE) 52% (47–56%) 25% (20–30%) 0% (0-0%) 23% (21–26%)

PA-2.4 ANTE 52% (47–56%) 0% (0–10%) 24% (16–30%) 23% (21–26%)

PA-2.5 ATE 52% (47–56%) 25% (20–30%) 23% (21–26%)

PA-3 ANSTE 51% (46–56%) 0% (0–8%) 10% (0–18%) 16% (7–26%) 23% (21–26%)

PA-3.1 ASTE 51% (46–56%) 10% (0–18%) 16% (8–26%) 23% (21–26%)

SH-1 ASTPE 36% (25–49%) 11% (1–19%) 16% (7–27%) 4% (1–7%) 10% (7–12%) 23% (21–26%)

SH-2 ANTPE 39% (5–52%) 0% (0–0%) 25% (17–32%) 3% (2–17%) 10% (7–12%) 23% (20–26%)

SH-2.1 ATPE 39% (28–52%) 25% (17–32%) 3% (1–7%) 10% (7–12%) 23% (20–26%)

SH-3 ANSTE 69% (63–76%) 0% (0–2%) 6% (0–15%) 4% (0–14%) 21% (19–24%)

SH-3.1 ASTE 69% (61–76%) 6% (0–15%) 4% (0–14%) 21% (19–24%)

SH-3.2 ANSE 70% (63–76%) 0% (0–3%) 9% (2–16%) 22% (19–24%)

SH-3.3 ASE 70% (63–76%) 9% (2–16%) 22% (19–24%)

PA phenotypic assortment model, SH social homogamy model, A additive genetic influence, N non-additive genetic influence (dominance), S environmental
influences shared by all siblings, T environment shared by twins only, P effects of parental education, rGE passive gene-environment correlation, E nonshared
environment.
Results for both Phenotypic Assortment (PA) models and Social Homogamy (SH) models are provided. Baseline models in which N, S, or P have been fixed to
zero for model-identification purposes appear in the top row of each section. Our overall best fitting model (PA-ASTE) is in boldface and appears twice under
PA-1.2 and PA-3.1. Our best fitting SH model (SH-ASTPE) is italicised. 95% confidence intervals are in parentheses. Alternative results where non-additive
genetic influences were characterised as epistasis are provided in Supplementary Table 3, but differences were negligible.
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Fig. 3 Path diagram of Nuclear Twin and Family Design (NTFD) structural equation model of educational attainment. The model for
monozygotic (MZ) twins is displayed at the top and for dizygotic (DZ) twins at the bottom. Variances of latent factors are set to 1 unless
otherwise specified (e.g., q = variance of A factor, x = variance of P factor). Path p was also set to 1 for model identification purposes. Social
homogamy models set the genetic paths in red font to zero. A dominance model sets the non-additive genetic correlation between all
siblings who are not MZ twins at 0.25 whereas an epistatic model sets that correlation at 0 (blue font).

T. Wolfram and D. Morris

8

npj Science of Learning (2023)    24 Published in partnership with The University of Queensland



one. Some have argued for a more radical egalitarian agenda that
seeks to reduce the influence of both environmental and genetic
accidents of birth on socially valued outcomes54–56. Others have
argued that promoting conditions that maximise general welfare
and personal freedom should take precedence over attempts to
reduce environmental differences between people57–59. These
important philosophical debates are, however, beyond the scope
of this paper.
Our study involved the following limitations. By assuming

subjects who are enroled in ongoing post-secondary studies go
on to complete those courses, we potentially introduce bias by
failing to capture dropouts. However, if we make stricter
assumptions and only use the level of education completed, this
severely reduces the variance in years of education (because of
the youth of our sample). This is also an unrealistic assumption
about the educational trajectory of subjects enrolled in post-
secondary education given low German drop-out rates and a
tendency for students and trainees to transfer horizontally into an
alternative vocational or tertiary qualification rather than making a
vertical change between categories60. Follow-up studies when the
cohort is older will be able to address this limitation.
In addition, the negligible effect of parental EA on offspring EA

under our PA models contradicts the evidence from studies which
find a significant association between the EA of adoptive parents
and adoptive children61,62. Here we stress that, while our best-
fitting model was a PA model, our SH models also fit the data. It’s
possible that a mixed homogamy scenario, in which phenotypic
assortment and social homogamy both play a role, might explain
the data better than the PA and SH models compared in this
study. If so, that would suggest that the true contribution of
genetic and environmental influences to the parent-offspring
correlation and to the variance in EA lies somewhere between the
PA and SH estimates presented here. This might also explain why
our best-fitting model indicates no passive rGE in contrast to
molecular genetic literature that suggests that EA polygenic scores
partly capture passive rGE28,29,38–41; however, we also note that
phenotypic assortment is expected to produce some of the
molecular genetic effects that have been interpreted as passive
rGE or “genetic nurture”28,38,63.
We also stress that the biases in CTD parameter estimates that

we have reported for EA will not necessarily generalise to other
traits. The size and direction of these biases can vary considerably
across different traits depending on the extent to which different
assumptions in the CTD model are violated.
In summary, by comparing the estimates of genetic and

environmental influence on Educational Attainment (EA) from a
Nuclear Twin and Family Design with the results from a
conventional twin-only study in the same German families, we
were able to account for some potential confounds in the Classical
Twin Design (CTD). Our results indicate that unmodelled
assortative mating may be introducing substantial downwards
bias into CTD estimates of heritability for EA while correspondingly
biasing estimates of shared environmental influence upwards. Our
results also indicate that twin-specific shared environments might
account for a substantial portion of the shared environmental
estimate in CTD studies of EA, suggesting that such estimates
cannot be safely interpreted as between-family differences in
environmental opportunity. Our survey of previous CTD studies of
EA suggest both issues are likely to generalise beyond our
TwinLife sample, as we find high spousal correlations in those
studies and high DZ twin correlations relative to non-twin sibling
correlations in comparable samples. Together these findings
suggest the differences in educational opportunity between
families are substantially lower than CTD estimates of shared
environmental influence on EA have indicated. In addition, we
found that the relatively high parent-offspring correlation for EA in
our German sample was fully explained by genetic transmission
under our best fitting model, suggesting parental education might

not be the engine of social reproduction of advantage that many
sociological studies have implied.

METHODS
Sample
All analyses were performed on data from TwinLife: a cross-
sequential panel-study of German twins and their immediate
relatives (parents, spouses, and the nearest sibling by age).
TwinLife is broadly representative of twin and multiple-birth
households in Germany64. The full sample consists of 4,097 twin
pairs spanning four birth cohorts (born 1990–1993, 1997–1998,
2003–2004 and 2009–2010). Since its inception in 2014, data on
participating twins and their relatives has been collected every
year with face-to-face interviews and telephone interviews taking
place on an alternating biennial basis. For this study, we used data
from the oldest 1990–1993 cohort of twins (and relatives) only. We
only used data on siblings who were born less than five apart from
the twins in any given family to ensure our results were not
primarily driven by outliers with large sibship-age differences.
Data on educational attainment was available for 1,020 MZ twins
(498 complete pairs), 896 DZ twins (439 complete pairs),
215 siblings, 906 mothers, and 536 fathers. Descriptive statistics
are provided in Table 6.

Ethical approval
The TwinLife study received ethical approval from the German
Psychological Association (protocol numbers: RR 11.2009 and RR
09.2013). Respondents provided written informed consent for
their data to be used for research purposes65.

Educational Attainment
Educational attainment was operationalised as a continuous
variable by mapping the highest educational qualification
obtained to a corresponding number of years of education (see
Supplementary Table 6). Where twins or siblings were partway
through a tertiary or professional qualification, we assigned years
of education based on the completed qualification. In doing so we
follow, Baier and Lang60, who note that German young adults who
do not complete their enroled course generally achieve an
alternative qualification of a similar type (e.g. tertiary or
vocational) rather than dropping out. Means and standard
deviations for the different types of family members are displayed
in Table 6.

Analyses
After calculating means and variances for each relative class, we
calculated correlations between each type of family member (as
shown in Table 3). We then corrected educational attainment for
age and gender66 and z-standardised the residuals before fitting
CTD or NTFD structural equation models. Twin modelling was
performed using the OpenMx67 package in R68.

The Classical Twin Design (CTD). The CTD is one of the most
commonly used study designs in behavioural genetics. The CTD
compares the resemblance of reared-together MZ twin for a given
trait with the resemblance of reared-together DZ twins. The CTD
assumes random mating on the trait in question, under which DZ
twins are expected to share half of their trait relevant genes in
common on average, compared to MZ twins who share all of their
genes in common. The CTD also assumes that rearing conditions
are equal between both kinds of twins (the Equal Environments
Assumption), therefore any additional resemblance shown
between MZ twin pairs compared to DZ twin pairs is attributed
to additive genetic influence (A). Any residual similarity between
MZ twins that is not explained by genetic influences is attributed

T. Wolfram and D. Morris

9

Published in partnership with The University of Queensland npj Science of Learning (2023)    24 



to the shared environment (C). If MZ twins are more than twice as
similar as DZ twins, genetic dominance is typically assumed to
explain this, and it is modelled instead of C. Finally, the variance
that cannot be accounted for by MZ twin resemblance is
attributed to the nonshared environment (E). The methodology
for fitting CTD structural equation models to twin data has been
described in detail elsewhere69.

The Nuclear Twin and Family Design (NTFD). Including additional
relative classes in the NTFD enables several of the assumptions in
the CTD to be relaxed and more parameters to be estimated. Non-
additive genetic influences (N) and shared environmental
influences can be estimated simultaneously, and the shared
environment can be further decomposed into the shared sibling
environment (S), the environmental effects of parental education
on offspring education (P), and—if non-twin siblings are also
included in the model—the twin-specific shared environment (T).
Passive rGE can also be disaggregated from shared environmental
influences. As means and variances in EA were similar for both
twins and non-twin siblings (see Table 6), T was modelled as a
variance component for all relative classes rather than an
additional variance component experienced exclusively by
twins18,70.
Incorporating data from parents also allows the NTFD model to

directly account for assortative mating. We explored two
boundary conditions: a phenotypic assortment model in which
the correlation for EA between parents was assumed to be the
result of active mate selection on education (inducing a genetic
correlation between spouses), and a social homogamy model in
which the correlation between spouses was assumed to be
environmentally driven. We modelled social homogamy by
extending the traditional NTFD model using innovations from
the “Cascade” model developed by Keller et al. (2009)20. A latent
phenotype (M’ and F’) is introduced between the observed
parental phenotype (M and F) and the assortative mating copath
(µ) linking each parent in the standard NTFD model.
Under the phenotypic assortment model, the variance of the

latent parental phenotype is defined by the same variance
components as the parental phenotype (and the variance of the
parental phenotype is the same as its covariance with the latent
phenotype making the algebra identical with that of the standard
NTFD model). By contrast, under the social homogamy model, the
genetic (a and n) paths leading to the latent phenotype are set to
zero, obliging the covariance between the parental phenotype
and the latent phenotype to be mediated by non-genetic factors.
As phenotypic transmission, non-additive genetic effects, and

sibling-shared environmental influences could not all be esti-
mated simultaneously20, we ran three baseline models (ANSTE,
AFSTE, ANFTE) in which each of these three effects were
respectively fixed to zero. This was performed under both a
phenotypic assortment and a social homogamy assumption.
These six baseline models were then compared against a

saturated model (describing the means, variances and covariances
of the different relative classes) using a chi-squared test to see if
any produced a significantly worse fit to the data. For each
baseline which did not show a significant reduction in fit, we
iteratively dropped all paths with 95% confidence intervals
crossing zero to see if this produced a significant reduction in fit
using further chi-squared tests. Parameter estimates were
reported for all baseline models which did not show a significant
reduction in fit from the saturated model and were likewise
reported for all submodels which did not show a significant
reduction in fit compared to these baseline models. From these
statistically significant models, the overall best-fitting model was
determined on the basis of the lowest Akaike’s Information
Criterion71. Finally, we ran a set of six additional baseline models
to test if results were substantially affected if non-additive genetic
effects were characterised as multi-local epistatic effects rather
than as dominance or bi-local gene-gene interactions22.
A path diagram of our NTFD phenotypic assortment model is

provided in Fig. 3. The algebra assumed to underlie our CTD,
NTFD-PA, and NTFD-SH models is provided in Supplementary
Table 7. The methodology for fitting NTFD structural equation
models to twin and family data has been described in detail
elsewhere20.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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