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Prior math achievement and inventive production predict
learning from productive failure
Manu Kapur 1✉, Janan Saba 2 and Ido Roll2

A frequent concern about constructivist instruction is that it works well, mainly for students with higher domain knowledge. We
present findings from a set of two quasi-experimental pretest-intervention-posttest studies investigating the relationship between
prior math achievement and learning in the context of a specific type of constructivist instruction, Productive Failure. Students from
two Singapore public schools with significantly different prior math achievement profiles were asked to design solutions to
complex problems prior to receiving instruction on the targeted concepts. Process results revealed that students who were
significantly dissimilar in prior math achievement seemed to be strikingly similar in terms of their inventive production, that is, the
variety of solutions they were able to design. Interestingly, it was inventive production that had a stronger association with learning
from PF than pre-existing differences in math achievement. These findings, consistent across both topics, demonstrate the value of
engaging students in opportunities for inventive production while learning math, regardless of prior math achievement.
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INTRODUCTION
Who benefits from constructivist instruction? This concern is at the
heart of much debate1–3. It is widely agreed that learners give
meaning to their experiences. Constructivist theories of learning
design further advocate for instructional opportunities that
provide learners with explicit opportunities to do so4,5. It suggests
that students learn by solving authentic, challenging problems6,7.
Support is provided, for example, from peers or through design
elements of the environment and the activities8. A constructivist
view of learning design supports instruction that challenges
learners to engage in sense-making without providing them with
ready-made solutions that may short-circuit this process9–11. One
criticism of this approach is that although challenging problems
may work well for students who succeed in solving them (or
discover the underlying model), other students may fail to benefit
from them12. According to this view, to benefit from constructivist
activities, one needs to have high-domain knowledge that allows
one to navigate their own learning. Research on the Expertise
Reversal effect offers one example of the need for novices for
increased support13.
Research on productive failure (PF) challenges this view14–16. PF

literature shows that giving students challenging activities on
which they fail may, in fact, better prepare them to learn from
subsequent instruction, compared with students who do not
struggle to solve these challenging problems15–23. PF engages
students in preparatory problem-solving, where learners activate
their general prior knowledge and generate multiple suboptimal
solutions, namely, the inventive production process, before
engaging in subsequent direct instruction16. It is argued that the
process of struggle offers students valuable experiences with
which they can construct meaning of the subsequent instruction4.
It is important to mention that different points of view are seen

among studies on PF: several studies, such as theses mentioned
above, support the PF approach. Other studies support engaging
in direct instruction24,25 prior to problem-solving. Several studies
have compared direct instruction to PF and found no clear
benefits to either approach when learning about general inquiry

skills26,27 and in non-STEM domains28. In our study, we are not
discussing the benefits of PF over direct instruction or vice versa.
Instead, we look into the PF context to explore factors that may
contribute to promoting math learning.
This study focuses on inventive production in mathematics

education. It explores the relationship between inventive produc-
tion, prior math achievement (as measured by performance on a
standardized problem-solving test), topic-specific prerequisite
knowledge (as measured on a pretest), and learning from PF (as
measured on a posttest).
To our knowledge, only two studies29,30 have illustrated

inventive production and its relationship to prior math achieve-
ment. They focused on describing the span of strategies that
students invented. However, these studies do not highlight which
measure better predicts student learning—students’ prior math
achievement or their inventive production during the learning
process? That is, are students who generate more solutions likely
to learn more overall from the subsequent instruction? Although
one could conjecture from these studies that prior math
achievement may not be strongly associated with inventive
production, a quantitative demonstration of the association
between prior math achievement and inventive production was
lacking.
While most PF studies have been comparative in nature (PF

versus Direct Instruction), this paper focuses on student factors
within the PF design. We evaluate the relationship between
inventive production, prior math achievement, and learning from
PF. Specifically, we seek to better understand who can benefit
from PF instruction, which is constructivist in nature.

Productive failure
Several studies support the relative effectiveness of engaging in
direct instruction112,24,25,27. They argue for providing students
with high levels of support (in the form of instruction) prior to
problem-solving (referred to as I-PS15). For example, the Instruc-
tion phase may include a formal introduction to the target domain
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concepts and work examples. Following, students move to a
Problem-Solving phase where they engage in problem solving31.
An alternative approach applies the learning sequence of

problem-solving followed by Instruction (PS-I15). PS-I sequence of
learning enables students to participate in solution attempts for
problems related to new target concepts prior to the instruction
phase that involves lectures and/or practice. The goal of the
Problem-Solving phase is to prepare students for future learning
from the Instruction phase (PFL21,22). When the Problem-Solving
and Instruction phases of PS-I are designed in accordance with the
principles of PF, the design becomes a PF design32. In PF, the
design of the problem-solving phase incorporates confronting
students with challenging experiences of problem-solving, pro-
moting their agency, and facilitating learning with appropriate
cognitive load32. Thus conceived, in this study, we focus on the PF
design, which is a subset of the PS-I design.
PF14,32 is an instructional sequence in which students generate

representations and solutions to a novel problem that targets a
concept they have not learned yet prior to receiving instruction on
the same topic. PF begins with a generation and exploration phase
in which students are asked to generate and explore the
affordances and constraints of multiple Representations and
Solution Methods (RSMs). Students are not expected to apply a
specific procedure, rather, they are encouraged to develop their
own solution approaches. Typically, as demonstrated later in this
paper, students apply a wide variety of mathematical tools to
design a variety of RSMs. Most of these solutions are not
“complete” in terms of their mathematical validity, efficiency, or
generalizability. Therefore, the generation and exploration phase
is followed by consolidation and knowledge assembly, where
students learn the targeted concept by organizing students’
representations and ideas based on canonical solutions16,32. PF is
intentionally designed to result in failure in problem-solving. So, in
the following instruction, this process of failure can be productive
in preparing students to better learn the target concepts19.
Studies have shown that instruction that is based on student-

generated RSMs facilitates students’ awareness of specific gaps in
their reasoning33 and prepares them to learn from subsequent
instruction, as suggested by the studies on impasse-driven
learning34 and test-enhanced learning35. In addition, the
followed-up instruction, which explicitly emphasizes these gaps
and errors, may promote students’ conceptual understanding and
learning transfer14,15.

The benefits of inventive production as part of PF
Understanding how students engage with the problem at hand
during the generation and exploration phase is important to
understand the overall benefit of PF instruction. Schwartz and
Martin22 use the term inventive production to describe the process
of generating original solutions to novel problems. In PF
instruction, inventive production is based on students’ attempts
to generate multiple RSMs during the generation and exploration
phases before the instruction phase.
When students attempt to solve a mathematical problem

related to the concept they are yet to learn, their attempts to
generate multiple RSMs in the Problem-Solving phase potentially
have multiple benefits. These include the activation of their
general prior knowledge to generate the RSMs, awareness of
knowledge gaps when these RSMs are evaluated, and identifying
key requirements from the target solution when these failures are
then analyzed15,36.
Studies14 by Watson & Mason (2002) have shown that students

have the ability to generate solutions to problems that require
concepts they have not been formally taught, albeit these are
often partial solutions. In this case, merely engaging in inventive
production may be sufficient to prepare students for subsequent
instruction (“time for telling”21). For example, diSessa and

colleagues37 found that when sixth graders were asked to invent
static representations of motion, students were able to generate
and critique a large collection of representations. Likewise,
Carpenter and Moser38 showed that first-graders, who had not
been taught number operations, were able to design different
types of strategies for addition and subtraction problems, ranging
from rudimentary modeling to more sophisticated strategies.
Granberg’s study39 explores secondary students’ problem-solving
process to solve a linear function problem using a dynamic
software program GeoGebra. The findings show that although
students constructed incomplete and, in some cases, erroneous
new knowledge, most of them have engaged in productive
struggle and succeeded in reconstructing useful general prior
knowledge and constructing correct new knowledge to solve the
problems. In their study on modeling activities, Doerr and
English40 presented findings that both American and Australian
students could devise a number of ranking systems despite not
having been formally instructed on the concept.
Similar findings were found in research on model eliciting

activities41, fractions42,43, combinatorial problems44,45, number
operations46, ratios and proportion47, and percentages29.
These studies make a significant contribution by demonstrating

and describing students’ constructive resources48 and document-
ing the possibility space of representations, solutions, and
strategies students can generate when given an opportunity to
do so. However, these studies do not test the association between
inventive production and learning outcomes. For that, we need to
examine other studies that have associated inventive production
and learning outcomes. For example, Kamii and colleagues49

showed that students who designed their own procedures for
addition and subtraction demonstrated a better understanding of
place value than those who relied on taught algorithms. In a
longitudinal study over the course of three years (from grades 1 to
3), Carpenter and colleagues50 found that students who invented
strategies to solve addition and subtraction problems prior to
learning the teacher-taught algorithm not only showed better
knowledge of the base-ten number concept but were also more
successful in solving extension problems than students who relied
only on the teacher-taught algorithm. These findings have been
extended to mental computation tasks30,51 and fractions52.
Extending these findings to older children, Schwartz and

Martin22 showed that ninth-grade students who invented an
index of variance before a lecture on the topic outperformed the
comparison group on transfer measures. Similarly, Levav-
Waynberg and Leikin53 reported that tenth-grade students who
attempted to prove new geometrical theorems over the course of
a year developed expertise and enhanced the connectedness of
their geometrical knowledge, compared to a comparison group of
students who had not any special intervention. Terwel and
colleagues54 showed that students who learned to use represen-
tation in the process of collaborative design outperformed their
peers who were taught the target representation in a more
traditional way. Kapur32,55 reported a positive correlation between
the number of RSMs generated during PF and conceptual
knowledge acquisition.
However, results on the relationship between inventive

production and learning are mixed. Two studies, that used the
same learning materials, found that in the PF condition, students’
general prior knowledge activation (measured by the number and
quality of RSMs) did not correlate significantly with their
performance on the conceptual knowledge post-test33,56.
Taken together, the abovementioned studies suggest that: (a)

students have the constructive resources to invent solutions to the
novel, challenging problems that target concepts they have not
learned yet, and (b) mixed results were found related to the
benefit of instruction that engages students in inventive produc-
tion for math learning. What is missing from the above review is
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evidence that associates students’ prior math achievement,
inventive production, and learning outcomes.
As the PF process depends on students’ engagement in

inventive production, we are interested in examining the key
factor that influences inventive production, which is prior math
achievement. Lembke and Rey’s study29 took into account
students’ prior math achievement as measured by a standardized
problem-solving test and showed that average-ability students
could invent almost the same number of strategies as high-ability
students. Heirdsfield30 also reported on a group of low-ability
students who were able to invent strategies as a way to
compensate for less knowledge. Although one could conjecture
from these two studies that prior math achievement may not be
strongly associated with inventive production, a quantitative
demonstration of the association between prior math achieve-
ment and inventive production was lacking.
In this paper, we examine the associations between prior math

achievement, inventive production, and learning outcomes from
PF. We operationalize this using two research questions:

i. What is the relationship between students’ prior math
achievement and their ability to engage in inventive
production, that is, generate novel solutions during
problem-solving?

ii. Which measure better predicts student learning from PF—
students’ prior math achievement, students’ topic-specific
prerequisite knowledge, or their inventive production
during the learning process?

Our first conjecture is that inventive production may not
depend as strongly on prior math achievement as one would
expect. Our second conjecture is that learning from PF does not
depend as much on prior math achievement or topic-specific
prerequisite knowledge as it does on students’ inventive
production
To identify the relationship between prior math achievement,

inventive production, and learning from PF outcomes, we
investigated empirical evidence from a set of studies in Singapore
math classrooms. The studies focused on two “big ideas” in math
education that are often conceptually challenging: (a) ratios
(specifically, average speed) for seventh-grade students and (b)
variance (specifically, standard deviation) for eighth-grade stu-
dents. To strengthen the external validity of the study, we chose
two topics that are sufficiently unrelated to each other.
Students from two schools, hereinafter referred to as Schools A

and B, were selected based on the academic ability profile of their
student intake as evidenced by the primary school leaving
examination (PSLE). The PSLE is a sixth-grade national standar-
dized examination based on Singapore’s curricular and content
standards for Mathematics, English, Science, and Mother Tongue.
The aggregate score on the PSLE forms the major criteria used to
enter secondary schools (i.e., grades 7–10) in Singapore.
Table 1 presents the descriptive statistics for the PSLE math

grade and PSLE total score for the two schools. MANCOVA was
conducted with the PSLE math grade and PSLE total score as the
two dependent variables. Results of analyzing seventh-grade

students’ scores revealed a significant multivariate effect between
the two schools, F(2, 109)= 282.97, p < 0.001. Compared to
students from School B, students from School A achieved
significantly higher PSLE scores, F(1, 110)= 464.42, p < 0.001,
d= 5.34, and PSLE math grade, F(1, 110)= 110.44, p < 0.001,
d= 2.12. Similarly, results of analyzing eighth-grade students’
scores revealed a significant multivariate effect among the two
schools, F(2, 102)= 76.26, p < 0.001. Compared to students from
School B, students from School A achieved significantly higher
PSLE scores, F(1, 103)= 154.02, p < 0.001, d= 2.49, and PSLE math
grade, F(1, 103)= 35.47, p < 0.001, d= 1.23.
The studies on both topics were quasi-experimental with a

pretest-intervention-posttest design. Each study was carried out as
part of regular curriculum time. One week before the start of each
study, all students took a 30-min pretest as a measure of topic-
specific prerequisite knowledge of the targeted concept. Seventh-
grade students completed an 8-item pretest (α= 0.72) on the
prerequisite concepts of speed, average speed, and rate of
change. Eighth-grade students took a five-item pretest (α= 0.75)
on the prerequisite concepts of central tendencies and distribu-
tions, and variance.
While prior math achievement, as evaluated by the PSLE,

evaluates overall knowledge of math and its application, the
pretests (which assess students’ topic-specific prerequisite knowl-
edge) measure relevant prerequisite knowledge rather than
specific knowledge of the targeted topics (see “Data Collection”
section).
In both studies, the PF instruction was delivered in two phases

—the generation and exploration phase and the consolidation
phase16,32. In the generation and exploration phase, which lasted
two periods, Students were assigned into groups (triads) by the
teacher based on teachers’ knowledge about their students. The
choice of working within groups (a key PF fidelity criterion16) is
based on vicarious failure (VF), which addresses that observing
other students’ failure to solve a problem would also be
productive for her\his own learning from subsequent instruc-
tion56,57. Studies illustrate the benefit of exposing students to
other’s general prior knowledge and expertise in developing,
detecting, and correcting multiple RSMs58. Findings show that not
all students in the generation and exploration phase have to
generate solutions themselves; By observing their classmates’
generation solution process, they can obtain equal preparation for
learning56 and activate their general prior knowledge similar to
their partners59. In our study, through group discussions, students
designed solutions to solve a complex problem involving the
targeted concepts (see supplementary materials for the complex
problem). During this phase, no extra support or scaffolds were
provided, nor was any homework assigned.
During the consolidation phase, the teacher asked the groups

to share their RSMs, that is, their invented solutions, with the goal
of comparing and contrasting the affordances and constraints of
the student-generated RSMs. The teacher then shared the
canonical ways of solving the problems with the class. While
doing so, the teacher drew comparisons and contrasts between
the canonical and student-generated RSMs and, in the process,

Table 1. Descriptive statistics for PSLE performance between Schools A and B.

PSLE math grade
(lower is better)

PSLE total score
(higher is better)

Ratios study (seventh grade) School N M SD M SD

School A (higher-performing students) 36 1.11 0.32 235.4 3.01

School B (lower-performing students) 76 2.26 0.62 211.2 6.40

Variance study (eighth grade) School A (higher-performing students) 69 1.74 0.63 233.4 9.34

School B (lower-performing students) 36 2.64 0.89 211.5 6.64
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explicated the targeted concept in the context of the problems.
Finally, students practiced solving isomorphic problems, and the
teacher discussed the solutions to these problems.
The consolidation phase was given to the entire class as a whole

and thus had no between-group variability. Following the
instruction, students practiced applying the taught procedure. It
is important to emphasize that both groups in the two studies
received the same testing procedure and the same instructional
manipulation.
One week after the unit, all students took a posttest (which was

not equivalent to a pre-test) as a measure of their learning.
Seventh-grade students completed a 35-min, 5-item posttest
(α= 0.78) after the study. Eighth-grade students completed a 45-
min, six-item posttest (α= 0.78). Both posttests comprised three
items on procedural fluency, two items on conceptual under-
standing, and one item on near transfer.
To evaluate inventive production, the artifacts (the RSMs) that

were generated by the groups of students were analyzed. We
used Kapur and colleagues’ measure of the total number of
different RSMs generated by a group18,32. We acknowledge that
the number of RSMs may be a simplistic measure of inventive
production. However, the number of RSMs is a practical measure
that does not introduce bias.

RESULTS
Tables 2 and 3 present the descriptive statistics for the pretest
scores, number of RSMs, and posttests scores for Schools A and B
in each of the topics: ratios unit and variance unit, respectively.

Pretests
An ANOVA did not reveal any significant difference between the
two schools on their topic-specific prerequisite knowledge: For
school A: M= 8.60, SD= 0.85, for school B: M= 8.89, SD= 1.53,
F(1, 110)= 1.530, p= 0.219 in the pretest on ratios. For school A:
M= 8.16, SD= 1.82, for school B: M= 8.35, SD= 1.36,
F(1, 103)= 0.303, p= 0.583 in the pretest on the topic of variance.
It is important to notice that in both studies, both schools had
similar high scores in the topic-specific pre-tests (see Table 3).
These results indicate that both schools have similar relevant
topic-specific prerequisite knowledge of the target concepts.

Inventive production (number of RSMs)
As students were not familiar with the target concepts of ratios
and variance, they applied a variety of approaches and heuristics,
such as qualitative analysis, algebraic approaches, and trial-and-
error, to name a few. Notably, no single method was likely to solve
the given challenge. In fact, none of the groups successfully solved
the given problem during the generation and exploration phase.
Instead, students were encouraged to persist in exploring the
design space. Overall, for each unit (ratios and variance), we
identified nine different RSMs in students’ written work. The full
span of RSMs is detailed in the supplementary materials.

To test our first conjecture, we examined the effect of prior math
achievement (by sampling students from schools with significantly
different PSLE math grades) on inventive production. An ANOVA
revealed a significant difference between the two schools on the
number of RSMs in ratio unit, for school A: M= 6.83, SD= 1.44, for
school B: M= 6.16, SD= 1.38, F(1, 110)= 5.669, p= 0.019, d= 0.48.
In variance unit. An ANOVA did not reveal any significant
difference between the two schools on the number of RSMs, for
school A: M= 5.23, SD= 1.50, for school B: M= 5.19, SD= 1.49, F(1,
103)= 0.015, p= 0.903, d= 0.03.

Posttests
To test the second conjecture, we analyzed the effects of prior
math achievement (measured by PSLE math grade), topic-specific
prerequisite knowledge (measured by pretest scores), and
inventive production (measured by the number of RSMs) on
posttest performance while accounting for the effects of school.
Therefore, we carried out an ANCOVA with posttest score as the
dependent variable, school as the between-subjects factor, PSLE
math grade, topic-specific prerequisite knowledge, and number of
RSMs as the three covariates. The analysis of the ratios-posttest
revealed that both the number of RSMs, F(1, 107)= 62.589,
p < 0.001, and PSLE math grade, F(1, 107)= 4.436, p= 0.032, had
significant effects on the posttest performance. Topic-specific
prerequisite knowledge, F(1, 107)= 2.725, p= 0.102, and school,
F(1, 107)= 0.522, p= 0.471, did not. However, The analysis of the
variance-posttest revealed a significant effect only on the number
of RSMs, F(1, 100)= 105.518, p < 0.001. PSLE math score,
F(1, 100)= 0.001, p= 0.980, school, F(1, 100)= 2.394, p= 0.125,
or Topic-specific prerequisite knowledge, F(1, 100)= 0.493,
p= 0.484, we not associated with posttest scores.

DISCUSSION
This study sought to evaluate the relationship between students’
incoming knowledge and their learning from PF instruction. We
identified two main findings:
First, a weak-to-no association between prior math achievement

and inventive production. results of the variance unit show no
significant difference between students from the school with
higher prior math achievement and those from the school with
lower prior math achievement. Results from the ratios unit show
that 7th-grade students from the school with higher prior math
achievement demonstrated significantly better inventive produc-
tion than those from the school with lower prior math
achievement. While an effect size of nearly .5 is considered large,
it should be examined in relation to the overall difference
between schools. To put it into context, the effect size difference
between Schools A’s and B’s students on their inventive
production (d= 0.48) was less than a quarter of their pre-
existing difference in their prior math achievement (d= 2.12, see
Sample section above). These results seem to suggest that
inventive production may not depend as strongly on general
prior math achievement as one would expect. However, it is

Table 2. Descriptive statistics for seventh-grade students’
performance in ratios unit in Schools A and B.

School A
(n= 36)

School B
(n= 76)

Measure Max M SD M SD

Ratios-pretest (topic-specific prerequisite
knowledge)

10 8.60 0.85 8.89 1.53

No. of RSMs 9 6.83 1.44 6.16 1.38

Ratios-posttest 10 7.82 1.36 6.59 1.75

Table 3. Descriptive statistics for eighth-grade students’ performance
in variance unit in Schools A and B.

School A
(n= 69)

School B
(n= 36)

Max M SD M SD

Variance-pretest (topic-specific
prerequisite knowledge)

10 8.16 1.82 8.35 1.36

No. of RSMs 9 5.23 1.50 5.19 1.49

Variance-posttest 10 6.00 2.02 5.45 2.12
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important to note that the topic-specific prerequisite knowledge
was similar across schools. Thus, while there were broad
differences in prior math achievement, these differences were
smaller about prerequisite concepts, which may explain the
smaller difference in inventive production.
Second, we found that the association between inventive

production and learning from PF was much stronger than that of
pre-existing differences in prior math achievement in both topics.
Prior math achievement was not associated with posttest scores in
the variance unit, and was associated with posttest in the ratios
unit, though to a much lesser degree. Topic-specific prerequisite
knowledge had no association with learning on both posttests
results. We explain both findings.
Weak-to-no association between prior math achievement and

inventive production. Sinha and Kapur (2021) address that engaging
students in preparatory problem-solving allows them to maximally
activate their knowledge and generate new suboptimal solutions,
which in turn prepare them for the following subsequence of direct
instruction. Our findings can take this claim one step further and
suggest that students’ prior math achievement does not play a critical
role in their execution in inventive production. While the two schools
differed significantly in their prior math achievement, results from the
study on the two topics revealed that students were able to generate
and design a similar number of RSMs for each unit. This supports our
conjecture that students who were vastly different in their general
prior math achievement were not as different in their inventive
production as one would expect, given the prior math achievement
differences. While Lembke and Reys29 and Heirdsfield30 appeared to
have similar findings, theirs were anecdotal and descriptive. Our
study not only demonstrates but also produces empirical evidence to
support this. Thus, the answer to Research Question 1 is that while
there is some association between prior math achievement and
inventive production, this is not nearly as strong as one may expect.
Student groups who are very different in their prior math
achievement were much closer in their inventive production.
This result is somewhat surprising, as inventive production

depends on general prior knowledge, and the two schools had very
different mathematical backgrounds. Why did the superior math
knowledge of students in School A not help them to be much more
inventive during the generation process? One possible explanation
could be that mathematics instruction simply does not require
students to be inventive or generative, and therefore, students of
different prior math achievements have had similar opportunities to
practice (and develop expertise in) inventive production. Alterna-
tively, prior math achievement requires different properties of
knowledge compared with inventive production. Students who are
excellent problem solvers possess a highly-organized, easily
accessible knowledge base that allows them to search the solution
space efficiently, automatically triggering possible solution paths60.
However, when engaging in inventive production, students are
unable to apply the same strategy, as these require engagement in
divergent search and generating solutions outside students’ scope
of expertise. Another explanation could be that it is hard for
students to use their formal math knowledge to generate solutions
to novel challenges. The transfer is often rare, and without
appropriate prompting, students may have failed to transfer their
knowledge. However, the PF activity was designed to activate
general prior knowledge16.
Finally, an important feature of PF is that progress can be made

using intuitive ideas and can be evaluated using the given data15.
The more formal knowledge of students in School A may have
been less relevant to this kind of task. However, as students in
both schools covered similar curricula (albeit at different levels),
also students in School B had access to the same knowledge
resources that fed into their invented methods.
Inventive production was more strongly associated with

learning from PF than pre-existing differences in math achieve-
ment. Mixed results were addressed in the literature review

related to the association between inventive production and
learning from PF. The results of this study are not in alignment
with Loibl and Rummel33 and Hartmann et al56. works, who found
no association between inventive production (tested by the
number and quality of RSMs) and learning from PF. However, our
study is similar to other studies that have associated inventive
production and learning from PF outcomes22,52,54. Our results
revealed that invention production had a very strong relationship
with learning from PF; that is, the greater the number of RSMs
generated, the better the learning from PF outcomes. Further-
more, the number of RSMs was by far the main factor influencing
learning from PF outcomes of the factors that were measured in
the current study; prior math achievement had only a small effect
(in the topic of ratios) or no effect (in the topic of variance) on
learning outcomes.
Topic-specific prerequisite knowledge, too, did not have any

significant effect on learning from PF. This result is in alignment
with Hartmann’s et al. study56. Results of their study show that
there was only a significant difference between VF (VF: observing
other students’ failing to solve a problem) and PF conditions for
students who had a certain amount of topic-specific prerequisite
knowledge. While topic-specific prerequisite knowledge did not
affect the post-test performance in the PF condition.
These results validate an important characteristic of PF that has

not until now been examined: the degree to which students
benefit from these learning activities does not depend as much on
their prior math achievement as it does on what they generate
during the initial problem-solving. Put differently, the criticism
that suggests that only students who succeed in the inventive
production activity, namely inventing correct RSMs, learn is
inaccurate—not only that all students fail to generate the correct
solution, but also learning from PF does not depend as much on
topic-specific prerequisite knowledge or prior math achievement.
The question which could be raised is why inventive production

is strongly associated with math learning in PF instruction? we
propose several interdependent mechanisms. First, as mentioned
earlier, engaging in inventive production may be better at
activating and differentiating relevant general prior knowledge,
provided students are able to use their priors to generate sub-
optimal or even incorrect solutions to the problem61–64. Thus,
knowledge activation prepares learners to learn from subsequent
instruction34,35. Second, general prior knowledge activation may,
in turn, afford more opportunities for students to: (a) notice the
inconsistencies in and realize the limits of their general prior
knowledge61,65,66, and (b) compare and contrast student-
generated solutions and correct solutions during subsequent
instruction, thereby helping students to attend to and better
encode critical features of the new concept19,63. Finally, besides
the cognitive benefits, problems such as the ones given during
the generation and exploration phase may also have affective
benefits of greater learner agency, as well as engagement and
motivation to learn the targeted concept67,68.

Limitations
One limitation of our study has to do with the population, the
topics studied, and the teachers. The study contrasted high- and
medium-level schools related to students’ prior math achievement
and thus may not extend to the lower end of the spectrum or to
other topics. Different teachers taught in the two schools, this also
could be one limitation of our study. However, the instruction
phase was similar in both groups. The fact that the effects are very
consistent across schools suggests that it is not teachers (random
effect) but rather instruction.
Another limitation stems from within-school variability. While

the generation phase took place in groups, students’ prior math
achievement was measured individually using the PSLE. It is
possible that the lack of correlation between PSLE scores and the
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number of RSMs is due to the fact that weak group members were
credited with RSMs that were developed by high-ability group
members.
However, it is important to emphasize that in relation to prior

math achievement, the within-school variability (and hence,
within-group variability) was much lower than between-school
variability. Future work should further investigate the effect of
group composition on the number of RSMs. In addition, the PSLE
results indeed reflect different aspects of knowledge (e.g.,
familiarity with math concepts, problem-solving, attitudes towards
math, etc.). It is thus somewhat unclear what explains the
association between high PSLE scores and a high number of
RSM. Yet, the study found only weak associations and only one
topic. Thus, PSLE scores, while a composite of different math-
ability aspects, does not offer a strong explanation for the
variability of RSMs.
Finally, because students worked in groups during the initial

problem-solving phase, there is a clear nesting of the data. Ideally,
we would have liked to have used multi-level modeling. However,
we did not have a large enough number of groups to reliably
estimate the parameters. Therefore, in such instances, to test for
the independency of data obtained in group settings, Kenny,
Kashy, and Bolger69 suggest the calculation of intra-class
correlations (ICC) to test for consequential non-independence.
Because the ICC for group members’ individual posttest scores
was not significant in both topics of the study, it was acceptable to
analyze learning from PF outcomes on an individual level.

CONCLUSION
Constructivist instruction offers many intriguing benefits in the
form of deep conceptual understanding through authentic
problem-solving. However, a common concern is that only better
students benefit from such instruction. Here we studied in-depth
one type of constructivist instruction, Productive Failure. Our
findings suggest that there is potential for activities that require
inventive production to narrow the achievement gap one would
expect due to initial differences in prior math achievement. We do
not claim that our findings will hold true more generally, much
less speak to the problem of the achievement gap in other
countries. What we do have evidence for is that starting with
students with significantly different prior math achievements, we
were able to demonstrate how engaging them in inventive
production was able to reduce the gap between them in the
learning of mathematical content. Our findings offer exciting
opportunities in that student from different backgrounds can
achieve similarly high learning from PF gains. They show that built
correctly, instruction can help narrow the social gap and give
opportunities to all learners to develop math expertise. As
educators and researchers, it is our obligation to further explore
this promise.
Overall this study makes several contributions. Theoretically, it

contributes to the literature on PF as it emphasizes the critical
role which inventive production can play in narrowing the gap
between students with diverse math backgrounds. Findings
showed that productive invention (creating more RSMs to a
given problem) promotes learning regardless of prior math
achievement. Prion math achievement is not associated with
inventive production. Furthermore, this study contributes to the
vicarious learning literature by showing the association between
exposure to RSMs at the group level with learning at the
individual level. Pedagogically, this study suggests facilitating PF
learning environments that emphasize and give more space to
inventive production to encourage students to activate their
prior knowledge and create more RSMs for the problems. This
kind of emphasis may significantly contribute to promoting math
learning.

METHODS
Participants
One hundred and twelve seventh-grade students and 105 eighth-
grade students from two mainstream, coeducational public
schools in Singapore participated in this set of studies. The
medium of instruction throughout the Singapore school system is
English. Students at these schools typically come from middle-
class socioeconomic backgrounds. The two schools, hereinafter
referred to as Schools A and B. As mentioned earlier in this paper,
students from School A achieved significantly higher PSLE scores
and PSLE math grades than students from School B. Thus,
students from School A have better prior math achievement
compared to students from School B. The methods were
performed in accordance with relevant guidelines and regulations.
IRB approval of the National Institute of Education, Singapore, for
this research was obtained; and the procedures duly followed.
Written informed consent to take part in the study was obtained
from parents and oral consent from children, who acknowledged
that they were free to withdraw at any time without penalty.

Data collection
Pretest. (1) Ratios-pretest consisted of eight items: three items on
speed, three items on the rate of change, and two items on
average speed (see supplementary materials); (2) variance-pretest
consisted of four items: two items test prerequisite concepts of
central tendencies and 2 items related to distributions (see
Supplementary materials).

Group work artifacts and discussions. The artifacts that were
generated by the groups were used to evaluate their inventive
production, as detailed below. Each group of students was given
blank sheets of A4 paper for their group work. All group
discussions were captured in audio and transcribed by a research
assistant

Posttest. (1) Ratios-posttest included five items that targeted
students’ ability to identify and use relevant critical features and
information to solve problems at average speed (see Supplemen-
tary materials). (2) Variance-posttest included six items that target
students’ ability to identify and use relevant critical features and
information to solve problems on variance (see Supplementary
materials).

Data analysis
Pretests. Solutions of the pretests were scored as incorrect (0
points), incomplete solutions with correct representational and
strategy deployment (1 point), partially correct solutions that
demonstrated correct representational and strategy deployment
but computational errors (2 points), or fully correct (3 points).
Although several students in the ratios pretest was able to solve
speed and rate of change items, none of them were able to solve
the two average speed items, which evidenced the fact that the
concept was indeed novel to them. Hence, the two items on
average speed were not included in the pretest composite score.
To allow for ease of comparison, the composite pretest score
(maximum of 18 points in ratios pretest and maximum of 12
points in variance pretest) was scaled (linearly) to have a
maximum of 10 points.

Inventive productive. To determine the total number of RSMs
generated by each group, we analyzed the group work artifacts
and the discussion transcripts using the analytical scheme that
Kapur and colleagues have developed and reported on18,32.
Briefly, the RSMs identified in the group work artifacts were used
to segment the group discussion into smaller episodes. For
example, if the group work artifacts revealed that the group used
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ratios to solve the problem, then the relevant episode from the
discussion in which the group discussed the ratios method was
identified. An episode started with the first proposal of a new RSM
and ended when the group either abandoned it or moved on to
another RSM. Segmenting of a discussion into episodes was
simplified by the fact that there were generally clear transitions in
the discussions when a group moved from one RSM (e.g., ratios) to
another (e.g., algebra). Analysis was focused solely on RSMs, and
episodes of non-task behavior and social talk were not included in
the analysis. This process was repeated for all PF groups.

Posttests. Similar to the pretest data analysis, posttests solutions
were scored in the same manner as incorrect (0 points), partially
correct (1 or 2 points), or fully correct (3 points). For ease of
comparison, the composite score on the posttest (maximum of 15
in ratios-posttest, and maximum of 18in variance-posttest) was
scaled (linearly) to have a maximum of 10 and formed the
dependent variable in our analyses.

Validity and reliability
The pretests and the posttests were designed according to
Singapore’s national curricular and mathematical content stan-
dards for both units. The pretest and posttest were reliable
measures of students’ knowledge, with Cronbach (ratios: pretest,
α= 0.72; posttest, α= 0.77; variance: pretest, α= 0.78; posttest,
α= 0.78). Two experienced raters independently scored students’
solutions with inter-rater reliability Krippendorff’s alpha (ratios:
0.95 in the pretest and 0.87 in the posttest; variance: 0.98 in the
pretest and 0.96 in the posttest). All disagreements were resolved
via discussion with the first author. For inventive production, two
raters independently segmented the group transcripts into
episodes and coded the episodes into RSM type. The inter-rater
reliabilities (Krippendorff’s alphas) for segmenting transcripts into
episodes and coding of the episodes were 0.94 and 0.97 (ratios
unit) and 0.94 and 0.95 (variance unit), respectively for this study.
The pre-and post-tests provide scores at the individual level.

However, the inventive production measure provides input at the
group level. We chose to keep this measure for two reasons. First,
from a theoretical perspective, we sought to quantify the number
and diversity of solutions with which students engaged. As shown
before, students may learn from VF as much as they learn from
failing on their own56. Moreover, these solution approaches
emerged from the group discussion and cannot be attributed to
any individual member. Thus, the group-level variable is a good
approximation of the solutions with which each group member
engaged. Second, from an applied perspective, given the size of
the groups, we did not find a relevant statistic (such as HLM) that
could model the nesting of individual learners within groups. That
being said, analysis at this level may create a dependency
between data points within groups. To test for the independency
of data obtained in group settings, Kenny, Kashy, and Bolger69

suggest the calculation of ICC to test for consequential non-
independence. The ICC of posttests scores was not significant,
allowing us to analyze learning from PF outcomes on an
individual level.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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