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Inter-brain coupling reflects disciplinary differences in
real-world classroom learning
Jingjing Chen1,2, Penghao Qian3, Xinqiao Gao4, Baosong Li4,5, Yu Zhang 6✉ and Dan Zhang 1,2✉

The classroom is the primary site for learning. A vital feature of classroom learning is the division of educational content into various
disciplines. While disciplinary differences could substantially influence the learning process toward success, little is known about the
neural mechanism underlying successful disciplinary learning. In the present study, wearable EEG devices were used to record a
group of high school students during their classes of a soft (Chinese) and a hard (Math) discipline throughout one semester. Inter-
brain coupling analysis was conducted to characterize students’ classroom learning process. The students with higher scores in the
Math final exam were found to have stronger inter-brain couplings to the class (i.e., all the other classmates), whereas the students
with higher scores in Chinese were found to have stronger inter-brain couplings to the top students in the class. These differences
in inter-brain couplings were also reflected in distinct dominant frequencies for the two disciplines. Our results illustrate disciplinary
differences in the classroom learning from an inter-brain perspective, suggesting that an individual’s inter-brain coupling to the
class and to the top students could serve as potential neural correlates for successful learning in hard and soft disciplines
correspondingly.
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INTRODUCTION
Classroom learning, where many students learn together under
the guidance of a teacher in a classroom, is the primary site for
formal learning. Due to its practical importance for personal
development, classroom learning has drawn consistent attention
from the fields of education and psychology1–3. It has also been
considered an ideal starting point for real-world neuroscience for
its semi-controlled structures4.
A vital feature of classroom learning is the division of

educational content into various disciplines (e.g., Math, history,
physics, or language courses). It is widely acknowledged that
disciplinary differences could substantially influence classroom
learning. The “hard-soft” dimension is possibly one of the most
influential frameworks regarding disciplinary differences5. Hard
disciplines (e.g., math, natural science, and engineering) are
known for their relatively hierarchical, linear knowledge structure
and straightforward, uncontentious learning contents. Soft dis-
ciplines are usually associated with loose-structured, non-linear
knowledge and contents that require more constructive and
interpretative activity (e.g., history, philosophy, and language
courses)5–7. Differences in disciplinary knowledge between hard
and soft disciplines have been shown to influence teachers’
teaching objectives, which, in turn, influences what the most
optimal disciplinary learning process is for students8,9. For
instance, it has been proposed that students prioritize attending
to knowledge from teachers when learning hard disciplines over
their soft counterparts10. Nonetheless, it should be noted that
disciplinary differences in the successful learning process have
mainly been inferred based on indirect data such as expert
evaluation, retrospective self-reports, and learning outcomes7,10,11.
There is a dearth of empirical studies directly addressing the
learning process itself12.

The recently-developed inter-brain coupling analysis has
demonstrated its potential as a powerful tool to directly assess
the learning process. Unlike traditional neuroscience methods
which identify brain activities of interest in reference to a
parametric task condition (or contrasts between conditions), the
inter-brain coupling approach identifies brain activities of interest
in reference to the brain activities of others in the same task
condition13. Inter-brain coupling analysis was proposed based on
the findings that similar brain activities emerged across partici-
pants in the same naturalistic task (e.g., watching a movie or
listening to a story)14,15. It has been argued that similar brain
activities across participants could reflect the cognitive processing
related to the shared tasks, from low-level sensory processing to
high-level semantic or emotional processing16. Therefore, by
computing an individual’s inter-brain coupling (i.e., similarity) to
other people who share the same tasks, the inter-brain coupling
approach can circumvent the need for an explicit model of tasks
while still tracking the task-related responses13. This characteristic
of inter-brain coupling makes it ideal for studying the classroom
learning process where a parametric task design is difficult or even
impossible to achieve due to the complexity of the real-world
classroom.
Recent studies have shown that inter-brain coupling analysis is

able to investigate the learning process during typical learning
scenarios such as attending lectures, watching videos, or group
discussions4,17,18. More importantly, these studies have high-
lighted the importance of “student-class coupling” (i.e., the inter-
brain coupling between one student and all their other
classmates). Previous studies have suggested that shared brain
responses across classmates reflect the characteristics of shared
external stimuli in the classroom (i.e., courses given by teachers or
videos)4,19. Therefore, by computing the similarity between brain
activities of one student and that of all their other classmates,
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student-class coupling is expected to reflect the degree to which
students attend the course content4,18,19, thus characterizing
students’ learning process. Indeed, student-class coupling during
the learning process was found to positively correlate with
students’ engagement4, memory retention performance19, and
final exam scores18.
Moreover, it should be noted that the courses investigated in

these inter-brain studies to date belong to hard disciplines, such
as biology, computer science, and physics. Learning hard
disciplines requires the mastery of course content (e.g., the
application of fixed mathematical rules)7. Since student-class
coupling could reflect students’ engagement in the course
content, strong student-class coupling during classroom learning
is expected to lead to good learning outcomes in hard
disciplines4,18. Differences in learning goals for soft disciplines
may, however, result in differences in the most optimal learning
process for students to meet the expectations of their teachers.
For example, soft disciplines value personal construction and
creativity compared to hard disciplines7. Students’ engagement in
the course content (as reflected by student-class coupling) may
not necessarily associate with learning outcomes in soft dis-
ciplines, which might undermine the importance of student-class
coupling.
Student-expert coupling could be an alternative candidate to

evaluate whether a student’s learning process is optimal in soft
disciplines. In educational practice, an expert‐like mastery of
knowledge has been regarded as the target for students’ learning
and has been linked to good learning outcomes20. For example, a
recent functional magnetic resonance imaging (fMRI) study
recorded the neural activities of both students and experts during
the recap task and the final exam in a computer science course.
With inter-brain coupling analysis, students’ neural alignment
(coupling) to the experts were found to positively predict their
final exam scores18. While experts have been regarded as a well-
established exemplar for successful learning, top students
(students in a class with top learning outcomes) could also serve
as a possible reference for successful learning since good learning
outcomes have long been associated with an effective learning
process21. Moreover, since experts may learn qualitatively
differently due to a broader background knowledge compared
with novices18, the top-performing students with similar prior
knowledge about the to-be-learned content may be particularly
effective as an exemplar for the learning process starting as a
novice. Therefore, it may be conceivable to take student-top
coupling, i.e., the average inter-brain coupling from one student to
their top-performing peers of all the classmates during the
learning process, as a neural correlate to evaluate students’

learning process in soft disciplines. However, no inter-brain study
has addressed the issue.
The real-world classroom is expected to serve as an ideal site to

investigate the disciplinary differences in successful learning.
Compared to the conventional laboratory-based studies that have
mainly focused on strictly-controlled, parametric experimental
designs (i.e., based on contrasts across simplified learning tasks to
isolate targeted factors in disciplinary differences) remotely
resembling real-world learning13,22,23, classroom-based studies
have an advantage due to their high ecological validity since they
can directly reflect the complex and dynamic disciplinary learning
process that occurs on a daily basis. The recent development of
wearable electroencephalogram (EEG) devices has enabled
researchers to track students’ learning processes in real-
classroom settings24–27. For instance, EEG devices in the form of
a headband could support the easy acquisition of EEG data from
an entire class of students on account of their portability, usability,
low purchase, and running costs. Wearable EEG devices have been
proven to be effective in tracking students’ sustained attention,
situational interests, and engagement during their classroom
learning processes4,28,29. The ecologically naturalistic paradigm
with wearable neuroimaging technologies is expected to provide
insights into understanding the disciplinary differences “in the
wild” and offer a possible “fast lane” to apply neuroscience
findings into educational theoretical construction and practical
application25,30.
Therefore, the present study investigated disciplinary differ-

ences in the successful classroom learning process. A class of
students from grade 10 from a high school in Beijing volunteered
to join the study. Wearable EEG headbands with two dry
electrodes covering Fp1/2 were chosen to record students’ brain
signals during their regular Math and Chinese sessions in the
classroom throughout one semester (as demonstrated in Fig. 1).
Math and Chinese (the native language in China) were chosen as
representative courses for the hard discipline and soft discipline,
respectively, as they are two of the most important compulsory
courses before college in China.
As shown in Fig. 2, inter-brain coupling analyses were

conducted to assess students’ classroom learning process using
the total interdependence (TI) method4,17,31. Specifically, student-
class coupling (the inter-brain coupling between one student and
all their other classmates) and student-top coupling (the inter-
brain coupling between one student and their top peers) were
computed, and the associations between student-class/top
coupling and the learning outcomes for Math/Chinese courses
were explored. Since student-class coupling has been reported to
be positively correlated with the learning outcomes in different

Fig. 1 Experiment paradigm. a An illustration of the experimental setup of students wearing an EEG headband on their forehead with a
reference electrode at the right ear lobe during their regular classroom learning; b an illustration of the recorded EEG signal during a session;
EEGs were recorded at Fp1 and Fp2 for all the students for 40min during a session.
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hard disciplines (e.g., biology, computer science, and chemistry)
and has been proposed to reflect the students’ engagement in the
course content4,18,19, we hypothesized that student-class coupling
could be a potential neural correlate to characterize the optimal
learning process during Math courses as a typical hard discipline.
Accordingly, student-class coupling was expected to be associated
with the learning outcomes for Math courses. For Chinese as a
typical soft discipline, however, due to the differences in learning
requirements with its hard counterpart7, the engagement in the
course content (as reflected by student-class coupling) may not be
sufficient to support a good learning outcome. Rather, the
personal construction and interpretation of top students could
be a better reference to reflect an effective Chinese learning
process7,21. Hereby, it is plausible to consider student-top coupling
as a promising candidate to be associated with the learning
outcomes for Chinese courses. As soft disciplines have not been
sufficiently addressed in previous inter-brain studies and student-
top coupling has not been previously studied, the hypothesis
regarding Chinese learning and student-top coupling is explora-
tory in nature. In particular, the student-top couplings were
computed by varying the number of top students to evaluate the
reliability of possible findings. The students’ final exam scores for
Chinese and Math were taken to indicate their learning outcomes
at the end of this semester. Pearson’s correlation analysis between
inter-brain patterns and learning outcomes was conducted to
identify the inter-brain correlates of successful classroom learning,
with nonparametric permutation tests further verifying the
correlation (see more details in the “Nonparametric permutation
tests” section). Correlations were regarded as significant only if
both Pearson’s p and permutation p were smaller than 0.05. No
clear hypothesis regarding the specifically involved frequency
band was formulated due to limited evidence. Therefore, four
frequency bands: theta (4–8 Hz), alpha (8–13 Hz), low-beta

(13–18 Hz), and high-beta (18–30 Hz) were analyzed. Any dis-
covery would advance our understanding of the neural mechan-
ism behind the successful disciplinary learning process in the
classroom.

RESULTS
Theta-band student-class coupling reflects successful
classroom learning for Math
Theta-band student-class couplings during Math sessions were
found to be positively correlated with the final exam scores for
Math (Fig. 3c, d), suggesting theta-band student-class coupling
could serve as a neural correlate of successful disciplinary learning
in Math. The students with better learning outcomes in Math were
found to have stronger inter-brain couplings to other classmates
(r= 0.339, Pearson’s p= 0.0498, uncorrected for multiple compar-
isons, same below, n= 34). The permutation test also showed that
the correlation between theta-band student-class couplings and
original Math learning outcomes was significantly higher than the
ones generated by the 5000 shuffled versions (see the distribution
in Fig. 3d, permutation p= 0.024, uncorrected for multiple
comparisons, same below). All the permutation p values are listed
in Supplementary Table S1.
No significant correlations between theta-band student-top

couplings and Math scores were found, with the number of top
students included in the calculation of student-top couplings
varying from 2 up to 6. Additionally, no significant correlations
were observed between theta-band inter-brain couplings and the
final exam scores for Chinese, neither in student-top couplings nor
in student-class couplings (Fig. 3a, b; student-top coupling:
r= 0.178, Pearson’s p= 0.347, permutation p= 0.279, n= 30, top
students’ number= 4; student-class coupling: r= 0.110, Pearson’s
p= 0.534, permutation p= 0.258, n= 34).

Fig. 2 A schematic illustration of the inter-brain coupling analysis. a Computations of pairwise total interdependence (TI) matrix for each
pair of students for each session, at the frequency bands of theta, alpha, low-beta, and high-beta. The TI values were then normalized within
each session and averaged across sessions to obtain an inter-brain coupling value for each pair of students. b Student-class coupling was
obtained by averaging TI values over all possible pairwise combinations between one student and the rest of the class. c Student-top coupling
was computed by averaging TI values over all possible pairwise combinations between one student and all the top students in the class,
except for this student himself/herself if the student was one of the top students. Here, N is the number of students, K is the total number of
sessions.
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Alpha-band student-top coupling reflects successful
classroom learning for Chinese
Alpha-band student-top coupling during Chinese sessions was
significantly correlated with the final exam scores for Chinese,
suggesting alpha-band student-top coupling could serve as the

neural correlate of successful disciplinary learning in Chinese
(Fig. 4a). The students with better learning outcomes in Chinese
were found to have stronger inter-brain couplings to the top-
performing students (r= 0.433, Pearson’s p= 0.017, n= 30, top
students’ number= 4). The permutation showed that the

Fig. 3 Correlations between theta-band student-top/class coupling and an individual’s final exam score for Chinese and Math. a Scatter
plots between theta-band student-top couplings (left, top students’ number= 4) and theta-band student-class couplings (right) and the final
exam scores of Math. b Correlation r values as a function of the number of top students included in the calculation of student-top couplings.
c Scatter plots between theta-band student-top couplings (left, top students’ number= 4) and theta-band student-class couplings (right) and
the final exam scores of Chinese. d Correlation r values as a function of the number of top students included in the calculation of student-top
couplings. The violin plots showed the distribution of correlation r values generated by the 5000 shuffled versions, the black line indicated the
95th percentile of the distribution, and the blue line indicated the mean value of the distribution. The star indicates a significant correlation
when both Pearson’s p and permutation p were smaller than 0.05. The colored lines in (b) and (d) represent the trend of how correlation values
changed with the number of top students. The color was chosen according to the corresponding discipline (pink for Chinese and blue for
Math). Note that the top students themselves were not included in the correlation analysis.
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correlation between original alpha-band student-top couplings
and Chinese learning outcomes was significantly higher than the
ones generated by the 5000 shuffled versions (permutation
p= 0.005; Fig. 4b). The correlation remained significant or
marginally significant when the number of top students
included in the calculation varied from 2 to 6 (Pearson’s p

values range from 0.017 to 0.061; permutation p values range
from 0.005 to 0.020).
No significant correlations between alpha-band student-class

couplings and the final exam scores of Chinese were found
(r= 0.077, Pearson’s p= 0.665, permutation p= 0.322, n= 34).
Moreover, no significant correlations were observed between

Fig. 4 Correlations between alpha-band student-top/class coupling and an individual’s final exam score of Chinese and Math. a Scatter
plots between alpha-band student-top coupling (left, top students’ number= 4) and alpha-band student-class coupling (right) and the final
exam score of Chinese. b Correlation r values as a function of the number of top students included in the calculation of student-top couplings.
c Scatter plots between alpha-band student-top couplings (left, top students’ number= 4) and alpha-band student-class couplings (right) and
the final exam scores of Math. d Correlation r values as a function of the number of top students included in the calculation of student-top
couplings. The violin plots showed the distribution of correlation r values generated by the 5000 shuffled versions, the black line indicated the
95th percentile of the distribution, and the blue line indicated the mean value of the distribution. The star indicates a significant correlation
when both Pearson’s p and permutation p were smaller than 0.05. The cross indicates a marginal significance. The colored lines in (b) and (d)
represent the trend of how correlation values changed with the number of top students. The color was chosen according to the
corresponding discipline (pink for Chinese and blue for Math). Note that the top students themselves were not included in the correlation
analysis.
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alpha-band inter-brain couplings and the final exam scores of
Math, neither in student-top couplings nor in student-class
couplings (Fig. 4c, d; student-top coupling: r= 0.266, Pearson’s
p= 0.156, permutation p= 0.186, n= 30, top students’
number= 4; student-class coupling: r= 0.195, Pearson’s
p= 0.270, permutation p= 0.130, n= 34).

Frequency-specificity of outcome-related inter-brain coupling
The correlation results between students’ inter-brain couplings
and their learning outcomes in the four frequency bands
(theta, alpha, low-beta, and high-beta) were summarized in Fig.
5 to demonstrate the frequency-specificity of outcome-related
inter-brain couplings. Inter-brain coupling in the theta and
alpha bands was found to correlate with the final exam scores
(as shown above) significantly. In contrast, the inter-brain
coupling at the low-beta and high-beta bands failed to reach
significance.
With the observed positive correlations between the inter-brain

couplings and the corresponding discipline-specific learning
outcomes, a further exploratory analysis was conducted to test
whether these observations are discipline-specific. The correla-
tions were re-calculated by computing the correlation between
inter-brain couplings during Math sessions and the final exam
scores of Chinese and vice versa. Details of the analysis can be
found in the Methods sections. As shown in Fig. 6b, theta-band
student-class couplings during Chinese sessions were significantly
correlated with the final exam scores of Math (student-class
coupling: r= 0.345, Pearson’s p= 0.045, permutation p= 0.023,
n= 34). No other correlations reached a significant level.

Single-brain features fail to reflect successful learning
Additionally, we conducted similar correlational analyses between
single-brain EEG features and the final exam scores to test
whether single-brain features could also evaluate the learning
process. The relative power of the four frequency bands from each
student was taken as the single-brain EEG features. As shown in
Fig. 7, no significant correlations with the disciplinary final exam
scores were found here (Fig. 7b; the highest correlation for
Chinese in the theta band: r=−0.180, Pearson’s p= 0.307,
permutation p= 0.848, n= 34; Fig. 7d; the highest correlation
for Math in the high-beta band: r=−0.141, Pearson’s p= 0.425,
permutation p= 0.782, n= 34).

DISCUSSION
The learning processes of grade 10 students while taking a soft
(Chinese) and a hard (Math) discipline in their real classroom were
recorded by wearable EEG devices for a full semester. By using
their final exam scores to measure learning outcomes, students
with higher Chinese scores were seen to have stronger inter-brain
couplings to the top students during the Chinese classes, whereas
students with higher Math scores were seen to have stronger
inter-brain couplings to other classmates during both the Chinese
and the Math courses. Moreover, the inter-brain couplings showed
different dominant frequencies for the two disciplines. While the
outcome-related inter-brain coupling for Math was found in the
theta-band, the importance of the alpha-band was highlighted in
Chinese. Our results demonstrate the feasibility of inter-brain
coupling to evaluate students’ learning processes for both soft
and hard disciplines. More importantly, the present study provides

Fig. 5 The summary of correlations between inter-brain couplings and learning outcomes. Correlation r values between inter-brain
couplings and the final exam scores at the theta, alpha, low-beta, and high-beta bands for (a) Chinese and (b) Math. Bars with a lighter color
indicated student-top-coupling-based correlations (top students’ number= 4), and bars with a darker color indicated student-class-coupling-
based correlations. Stars indicated a significant correlation when both Pearson’s p and permutation p were smaller than 0.05.
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insights into understanding disciplinary differences ‘in the wild’
from an inter-brain perspective.
The correlation between individuals’ student-class coupling and

their learning outcomes for Math verified and extended previous
findings of neural mechanisms underlying the learning process. By
investigating hard disciplines such as physics, biology, and
computer science, recent studies have demonstrated student-
class coupling as a useful tool to evaluate the learning
process18,19,32. Our results for Math, another hard discipline, are
in line with these studies, where student-class coupling was also
found to be correlated with students’ learning outcomes. More-
over, after decomposing data into different frequency bands, our
results extended previous findings by showing the importance of
the frontal theta-band activity during real-classroom learning.
Frontal theta activity has been reported to reflect cognitive
processes such as cognitive control33, sustained attention34, and
working memory35, and has been found to increase in arithmetic-
related tasks36. During the learning of hard disciplines, the
emphasis on the development of a capacity to master and apply
the accepted scientific viewpoints would require the students to
align with the course material6. Hereby, the theta-band brain
activity shared across classmates could reflect students’ contin-
uous engagement with the course content. Then, theta-band
student-class coupling could imply the extent to which each
student attended the course content4,19, or the extent to which
each student interpreted the course content18. Therefore, better
Math learning outcomes are associated with stronger inter-brain
couplings to other classmates in the theta band.
The positive correlation between alpha-band student-top

coupling during the Chinese sessions and the students’ Chinese
final exam scores provides evidence of the critical neural
correlates of successful learning in soft disciplines. The distinct
frequency band (alpha) compared to Math (theta) suggests that
successfully learning Chinese and Math relies on substantially
different cognitive processes. Despite the lack of evidence from
the neuroscience field on soft-discipline learning, the frontal
alpha-band activity could be related to the inhibition of stimulus-

driven attention34,37 and was involved in tasks with high internal
processing demands such as creative ideation38,39 and imagina-
tion40. At the same time, student-top coupling rather than
student-class coupling was reflective of the learning outcomes
in Chinese, highlighting the neural activities of top students as
exemplars for successful learning in soft disciplines. Although the
top students might have different internal interpretations of the
course content, they could share similar temporal dynamics of the
interpretation process. For instance, while learning an ancient
poem, two top students could immerse in the aesthetic
experience simultaneously when imagining different scenarios in
their minds. Note that EEG recording techniques used in our study
are beneficial for capturing the temporal dynamics of the learning
process rather than the fine-grained representation of the learning
content. Taken together, it is reasonable to assume that the
temporal dynamics of the frontal alpha activity shared across top
students might represent an internal processing state for
interpretation construction based on the course content, which
is critical for learning Chinese. Moreover, unlike the responses to
external stimuli (course content), this internal state may not
necessarily be shared across classmates, which may have led to
positive results of student-top couplings rather than student-class
couplings.
It should also be noted that the non-significant correlation

between student-top couplings and the learning outcomes for
Math does not necessarily undermine the potential importance of
top students for successful Math learning. On the one hand, the
correlation coefficients between the Math-session student-top
couplings and the Math final exam scores still reached a positive
value of >0.2 at the alpha band (Fig. 4d). On the other hand, it may
be that the course content was not challenging enough for the
top-performing Math students, since classroom teaching was
designed to meet the needs of the majority of the class41–43.
Consequently, top-performing Math students may lose interest in
the lecture material and be less inclined to focus on lectures44,
thereby eliminating any correlations that might have been
observed otherwise. By contrast, teaching soft disciplines such

Fig. 6 The discipline-specific analysis results. The correlations were re-calculated by computing the correlation between inter-brain
couplings during Chinese sessions and the final exam scores of Math (a) and vice versa (c). b Scatter plots between theta-band student-class
coupling during Chinese sessions and the final exam scores of Math. Bars with a lighter color indicated student-top-coupling-based
correlations (top students’ number= 4), and bars with a darker color indicated student-class-coupling-based correlations. The stars indicated a
significant correlation when both Pearson’s p and permutation p were smaller than 0.05.
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as Chinese emphasizes constructive and interpretative activity,
which is expected to be similarly challenging for students at
different proficiency levels.
By computing the correlation between theta-band student-class

couplings during the Chinese sessions and learning outcomes for
Math, we explored whether our findings on theta-band student-
class couplings were discipline-specific. As the theta-band
student-class couplings during both Chinese and Math sessions
were found to be associated with the learning outcomes for Math,
this observation might imply a discipline-general role of the theta-
band student-class couplings. Although previous studies have
mainly focused on one discipline per study, student-class coupling
has been reported to be able to characterize students’ learning
processes in different disciplines, including biology, chemistry, and
computer sciences4,18,19. Together with our theta-band results, it
would be reasonable to consider the theta-band student-class
couplings in the present study could reflect the students’
capabilities (cognitive control, sustained attention, working
memory, etc.) to control themselves and engage in the course
content that could support discipline-general learning. The theta-
band student-class couplings in Chinese sessions could reflect the
students’ general capabilities and therefore be informative of their
learning outcomes for Math, a typical hard discipline6. Never-
theless, the non-significant correlation between theta-band
student-class coupling (during both the Chinese and Math
sessions) and the Chinese final exam scores might suggest a
relatively loose link between students’ capabilities supporting the
course content engagement and the Chinese learning outcomes
due to the nature of the soft discipline7,10. This piece of result
echoed a previous study reporting a more important contribution
of the students’ studiousness and continuous engagement in

learning Math than German45. Notably, no significant correlation
was found between the student-“Chinese-top” couplings during
the Math sessions and the learning outcomes for Chinese and vice
versa. It was possible that the top-performing students mainly
exhibited discipline-specific optimal learning processes only in
their corresponding disciplinary courses. In other words, the top-
performing students might serve as a discipline-specific reference
to represent effective learning in their corresponding disciplines
rather than a general reference across disciplines. Therefore, the
student-top couplings in the present study were only related to
discipline-specific learning outcomes. Together, these results
provide more insights into the discipline specificity of the inter-
brain couplings.
In the present study, the “hard-soft” dimension was used to

investigate how disciplinary differences manifested in the class-
room learning process from a neuroscience perspective. While
disciplinary differences were observed as reflected by distinct
inter-brain coupling patterns, our findings also indicated that
some cognitive processes might be shared across the learning
process of these two disciplines. Therefore, in addition to Chinese
and Math, more disciplines would be needed to clarify the
discipline-specific and discipline-general process thoroughly dur-
ing real-world classroom learning46. Moreover, considering that
the “hard-soft” dimension is contentious47, a deeper under-
standing of the commonalities and differences among disciplines
from a neuroscience perspective might also provide insight to
help us re-consider the framework of disciplinary differences.
Several limitations must be noted in the present study

investigating the disciplinary differences in students’ successful
learning process in real-classroom settings. First, the present
ecologically valid paradigm posed a challenge to strictly-

Fig. 7 Correlations between single-brain features and learning outcomes. The correlation between the single brain’s relative frequency
power in the theta, alpha, low-beta, and high beta band with an individual’s final exam scores of Chinese (a) and Math (c). No significance was
found in any of the frequency bands. b Scatter plots between relative power in the theta band and the final exam scores of Chinese (the
highest correlation for Chinese). d Scatter plots between the relative power in the high-beta band and the final exam scores of Math (the
highest correlation for Math).
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controlled contrasts between disciplines. Multiple factors (e.g.,
learning contents, learning goals, and learning difficulties) could
lead to distinct inter-brain coupling patterns in soft and hard
disciplines. While this is how disciplinary differences manifest in
everyday learning processes, future work will be needed to clarify
the unique contributions of these factors. Second, while the
present effect sizes in the range of 0.1 to 0.2 (the correlation
between inter-brain couplings and learning outcomes for Chinese:
r2= 0.187; for Math: r2= 0.115) are in general comparable to
neuroscience studies in a variety of fields (e.g., perceptual
decision-making48, working memory49, social interaction50, etc.),
they were relatively small as compared to recent inter-brain
studies on learning that have reported r2 values varying from 0.1
to 0.6. The relatively small effect sizes in the present study could
be attributed to a number of factors, such as the noisy real-
classroom environment, the limited recording channels, and
frontal coverage, etc. The development of portable EEGs with
larger coverage areas or portable functional near-infrared spectro-
scopy (fNIRS) devices51 to support daily longitudinal real-
classroom recordings in the near future. Third, the reported
significant correlational results were based on uncorrected p
values. Although a multiple comparison correction considering
the number of frequency bands, the number of top students, as
well as the two disciplines would make these results less
significant, the results were not likely to be spurious correlations:
(1) The correlations between alpha-band student-top couplings
and Chinese final exam scores remained significant with the
number of top students varying from 2 to 6, suggesting a robust
phenomenon. Specifically, performing an FDR (False Discovery
Rate) correction52 in the condition with the strongest correlation
(top students’ number= 4, Fig. 4b) yielded a corrected significant
p value of 0.04 with both the disciplines (2, Chinese and Math) and
frequency bands (4, theta to high-beta) considered. While the
results could be insignificant when taking the number of top
students into consideration, such a practice could be too strict and
further method development with an idea similar to the well-
established cluster-based permutation tests widely applied in the
field of neuroscience for identifying robust significant results are
expected53; (2) In addition, the comparison between the obtained
correlation coefficient and the corresponding permuted null
distribution could provide another indirect support for the validity
of the Math result. Specifically, the absolute difference (r
difference= 0.341) between the true correlation coefficient
(r= 0.339) and the mean value of the null distribution
(r=−0.002) is comparable to the Chinese results (r differences
ranged from 0.309 to 0.388 with the varying number of top
students). It should also be noted that, whereas the mean value of
the null distribution was around zero for the correlations between
theta-band student-class couplings and Math final exam scores,
the mean values were well above zero (e.g., ranging from 0.132 to
0.217 for the theta-band correlations between student-top
couplings and Math scores, Fig. 3d), providing another evidence
for the effectiveness of the nonparametric permutation tests.
Therefore, the moderately-significant correlations are believed to
reflect non-random, reliable findings.
In conclusion, the present study investigated the disciplinary

differences in students’ real-world classroom learning by record-
ing their brain signals with wearable EEG devices. Our results
demonstrated the potential of using inter-brain coupling to
evaluate students’ learning processes for both soft and hard
disciplines. More importantly, the present study provides empirical
evidence of disciplinary differences from a neuroscience perspec-
tive, advancing our understanding of how disciplinary differences
manifest in the everyday learning.

METHODS
Participants
Thirty-six grade 10 students (sex: 16 females; age: 15–16 years old)
from the same class (37 students in total. One student chose not
to participate in the present study) from a high school in Beijing
wore a headband EEG device during their regular Math and
Chinese lessons for one semester. Two students were omitted
from the analysis due to the consistently poor contact of EEG Fp1
electrodes throughout recordings (>85% of epochs were
removed, see more details in the “Data preprocessing” section).
Therefore, a total of 34 students were included in the classroom
learning EEG analysis. Among these students, 22 of them were
involved in another task session at the end of the semester, in
which they were asked to join an eye-close/open task for EEG
signals validation.
The study was conducted in accordance with the Declaration of

Helsinki, and the protocol was approved by the ethics committee
of the Department of Psychology, Tsinghua University
(THU201708). All the participants and their legal guardians gave
their written informed consent.

Procedure and data recording
In the present study, a dual-channel headband with dry electrodes
was used to record EEG at Fp1 and Fp2 over the forehead at a
sampling rate of 250 Hz (Brainno, SOSO H&C, South Korea). The
reference electrode was placed on the right ear lobe with a
ground at Fpz. The EEG headbands have previously been used in
various tasks, including sudoku games54, movie-watching55, real-
world surgeries56,57, and foreign language learning58. In these
studies, EEG signals recorded by the headband were able to
detect concentration state during sudoku games54 and classify the
“known/unknown word” when reading texts on the screen58. The
headband was also used in an inter-brain coupling study during
movie-watching in which increased inter-brain coupling among
participants was observed when emotional-aroused or informative
scenes appeared55. In addition, this EEG headband was used to
monitor the intraoperative real-time stress in degenerative lumbar
spine surgery56. Different frequency bands of EEG signals covering
the theta, alpha, and beta band have been used in these studies.
Together, these studies validated the effectiveness of this head-
band in monitoring EEG signals in a real-life context.
Moreover, the present study conducted an additional eye-

closed/open task to further test the signal quality of the headband
in the classroom environment. The eye-closed/open task was
chosen since the reduction in alpha-band power comparing the
eye-closed and eye-open task is a reliable physiological phenom-
enon observed in most people59. Therefore, the eye-closed/open
task has been widely used for the data quality validation of EEG
devices60. Here, students were required to open and close their
eyes for 2 min respectively when sitting in their classroom; then,
we found a spectral peak in the alpha range in the eye-closed
condition compared to the eye-open condition as expected
(Supplementary Fig. S1). Previous studies together with the
validation task in the present study demonstrated the validity of
the EEG headbands.
The data collection lasted for 4 months to cover the whole

semester. For each month, students’ EEG signals during Chinese
sessions and Math sessions were recorded for 1 week (one session
or two sessions per day) following the regular curriculum. The
total number of sessions was 39, with 19 sessions for Chinese and
20 sessions for Math. Before Chinese or Math sessions began,
students wore headbands with the help of experimenters, and the
headbands were taken off after each session. Each session lasted
for 40 min. There was one Chinese session where EEG devices
failed to record any data due to technical issues. A total of
18 sessions for Chinese and 20 sessions for Math were included in
the following analysis.
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During the Chinese and Math sessions, the learning content was
taught according to the arrangement of the school. The Math
sessions include the introduction to planar vectors, cubic
geometry, plural, statistics, and probability; the Chinese sessions
include reading ancient and modern poems, essays, and novels
and the introduction to writing.
Besides wearing the EEG headbands, the students participated

in their classes as usual. Their final exam scores in Chinese and
Math were taken as indicators of their learning outcomes. No pre-
tests were organized before the start of the study. Compared with
the specially-designed quizzes usually used in laboratory-based
studies, final exams were expected to boost ecological validity as
they were derived from the highly-developed evaluation system in
daily educational practice. The final exams covered the contents of
the whole semester. Both exams were scored out of 100. The
median of the students’ Math scores was 73, ranging from 33 to
95, and the median of the students’ Chinese scores was 69,
ranging from 40 to 79. The scores were sufficiently diverse to
characterize students’ differences in learning outcomes. These
scores were normalized to [0, 1] using a min-max transformation
for the following analysis.

Data preprocessing
Since EEG data were recorded in a regular classroom environment
and students were instructed to attend Chinese and Math sessions
as usual, more artifacts were expected compared to conventional,
highly-controlled laboratory settings. In the present study, there
were three types of prominent artifacts: (1) a high value indicating
signal saturation possibly due to losing contact with the
headband; (2) slow drifts related to extensive head or body
movements; (3) ocular artifacts related to eye movements.
The recorded EEG data were segmented into non-overlapping

30-s epochs for preprocessing61,62. As shown in Supplementary
Fig. S2, ratios for saturated samples per epoch illustrated a two-
tailed distribution that most epochs containing saturated samples
for less than 10% or more than 90%. Therefore, 50% was chosen
as a threshold empirically. One epoch would be rejected if it
contained saturated samples for more than 50%. The remaining
epochs were then processed to remove the slow drifts with the
NoiseTools toolbox63 under Matlab (MathWorks, USA). The
removal of the slow drifts was achieved by using the nt_detrend-
ing() function. By estimating the position of the glitch, this
function could perform a weighted polynomial fit and achieve a
better fit to the non-glitch parts. The processed epochs were
further band-pass filtered between 0.1 Hz and 40 Hz with 1-s zero-
padding at both ends. Afterward, the ocular artifacts were
attenuated with the MSDL (multi-scale dictionary learning) tool-
box, which was efficient in ocular artifacts removal for single-
channel EEG signals64. Epochs were decomposed into neuronal
and non-neuronal sources with dictionary learning. Then, the
coefficients of non-neuronal sources were set to zero to achieve
artifact reduction with the seq_MSDL() function. Supplementary
Figs. S3 and S4 illustrated representative examples before and
after the artifacts rejection procedure. Finally, epochs were
rejected automatically if any samples in any channels exceeded
a ± 150 μV threshold. With the above preprocessing procedure,
57.2 ± 1.85% epochs were retained per student, ranging from 31.2
to 76.7%. The data retention rate was comparable with previous
EEG studies in classroom settings4,17. The number of retained
epochs per session per student was shown in Supplementary Fig.
S5.

Data processing
The total interdependence (TI) method has been employed in the
present study to calculate the inter-brain coupling4,17,31. Recent
inter-brain studies have validated the efficiency of TI methods in
tracking individuals’ engagement and valence levels in naturalistic

scenarios such as a classroom and a concert hall4,65. TI was
estimated by computing the magnitude squared coherence using
the Welch method when clean 30-s epochs were available at the
same moments from both students. For Xi , a 30-s epoch from a
certain student i and Xj , an overlapping epoch from another
student j, TI value was calculated as follows:

TIXi ;Xj ¼ � 2
f s

XM

m¼1

lnð1� C2
Xi ;Xj

m4fð ÞÞ4f (1)

4f ¼ f s
2ðM� 1Þ (2)

Here, CXi ;Xj ðÞ is the magnitude squared coherence calculation, f s
is the sampling rate, M is the number of desired frequency points
in the interval between 0 and the Nyquist frequency f s

2. The 4f is
the frequency resolution. Theta, alpha, low-beta and high-beta TI
were computed by summing the coherence values within 4–8 Hz,
8–13 Hz, 13–18 Hz, and 18–30 Hz, respectively.
TI for one pair of students for each session was obtained by

averaging TI values across all epochs and the two recording
electrodes. A minimum of six artifact-free common epochs for
paired students were included for further analysis. The lower limit
was empirically chosen to get a comparable minimum data
amount for each pair of students with the previous studies4,17. In
total, 96.6% of TI values for each pair and each epoch remained for
the following analysis. A N � N pairwise TI matrix (N is the number
of students) could be obtained for each session. TI values within
the matrix were then normalized to [0,1] for each session,
following the practice in previous studies4,17. Then, the matrixes
were averaged across K sessions to obtain an averaged inter-brain
coupling for each pair of students for a specific discipline (K ¼ 18
for Chinese and K ¼ 20 for Math).
Then, student-class coupling for student i was obtained by

averaging TI values over all possible pairwise combinations
between the student i and the rest of the class. Student-top
coupling for student i was computed by averaging TI values over
all possible pairwise combinations between the student i and the
top students except themselves if included. Therefore, for each
student, there would be a student-class coupling value and a
student-top coupling value as indicators of disciplinary learning
process for the whole semester for each frequency band. Please
refer to Fig. 2 for the schematic illustration of the inter-brain
coupling analysis.
Furthermore, Pearson’s correlations between individuals’

student-class coupling (or student-top coupling) and their
corresponding learning outcomes were calculated for soft and
hard disciplines separately. For student-class coupling, all students
were included in the correlation analysis. For student-top
coupling, however, the top students themselves were not
included during the correlation analysis between student-top
couplings and learning outcomes. For example, if individuals’
student-top coupling was computed with the top NE students,
then the top NE students’ coupling values, as well as their learning
outcomes, would be removed, leaving ðN � NEÞ out of the N
students for conducting correlations. Note that the top students
included in this analysis differed in different disciplines. For the
correlation analysis between student-top couplings during Chi-
nese sessions and learning outcomes for Chinese, the top students
are students who had top performances in Chinese and vice versa.
The effect of top students’ number on the relationship between
student-top couplings and learning outcomes was analyzed to
evaluate the reliability of possible findings.
Then, a further exploratory analysis was conducted to test

whether the possibly-existing correlations between the inter-brain
couplings and the corresponding disciplinary learning outcomes
are discipline-specific. Specifically, as discussed in the Introduction
section, top-performing students in a specific discipline may serve
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as an exemplar for the optimal disciplinary learning process.
Therefore, for possibly-existing results in the student-top cou-
plings, we explored whether the role of exemplar for top-
performing students was discipline-specific by re-computing the
correlation between student-“Chinese-top” coupling during Math
sessions and the final exam scores of Chinese and vice versa. For
student-class coupling, as the ‘class’ (i.e., all other classmates) are
the same for Math and Chinese sessions, the discipline-specificity
of student-class coupling was investigated by switching the
disciplinary scores (i.e., computing the correlation between
student-class couplings during Math sessions and the final exam
scores of Chinese and vice versa).
Additionally, we conducted similar correlational analyses

between single-brain EEG features and the final exam scores for
comparison. The relative power of each frequency band of interest
(theta, alpha, low-beta and high-beta) was obtained by dividing
the power in the 1–40 Hz band after a fast Fourier transform for
each 30-s epoch. Then, values of the relative power of each
frequency band of interest were averaged across all epochs and all
sessions within each discipline for each student as the single-brain
EEG features. Finally, Pearson’s correlations between individuals’
single-brain EEG features and corresponding learning outcomes
were calculated separately for soft and hard disciplines.

Nonparametric permutation tests
We conducted nonparametric permutation tests to further verify
the correlation between inter-brain coupling and learning out-
comes. In the permutation for student-top coupling, we randomly
selected N students out of all the students in the class rather than
the real top N students. The student-“top” coupling was re-
calculated according to this new selection, and Pearson’s
correlation analyses between the student-“top” coupling and
learning outcomes in Chinese were re-conducted. A null distribu-
tion of the correlation between student-top couplings and
learning outcomes was yielded by 5000 permutations. The
statistical significance of the original correlation was assessed by
comparing it with values generated by the 5000 shuffled versions.
For student-class coupling, however, since there is only one way
to select the reference students (i.e., all the other students), the
final-exam scores for each student were randomly disrupted and
re-assigned to students in the permutation. We then re-analyzed
the correlation between student-class coupling and disrupted
scores. The statistical significance was also assessed by comparing
the original correlation values with those values generated by the
5000 shuffled versions. The parametric and nonparametric tests
together are expected to provide a more comprehensive
assessment of the results66,67: correlations were regarded as
significant only if both Pearson’s p and permutation p were
smaller than 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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