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A dual-process model for cognitive training
Julia Ericson1✉ and Torkel Klingberg 1✉

A key goal in cognitive training research is understanding whether cognitive training enhances general cognitive capacity or
provides only task-specific improvements. Here, we developed a quantitative model for describing the temporal dynamics of these
two processes. We analyzed data from 1300 children enrolled in an 8 week working memory training program that included 5
transfer test sessions. Factor analyses suggested two separate processes: an early task-specific improvement, accounting for 44% of
the total increase, and a slower capacity improvement. A hidden Markov model was then applied to individual training data,
revealing that the task-specific improvement plateaued on the third day of training on average. Thus, training is not only task
specific or transferable but a combination of the two. The models provide methods for quantifying and separating these processes,
which is crucial for studying the effects of cognitive training and relating these effects to neural correlates.
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INTRODUCTION
For more than a century, a central question in cognitive
psychology has concerned when, how and to what extent
cognitive training transfers to nontrained tasks1. However, we
still lack mathematical models to describe the processes occurring
during cognitive training2,3.
In an attempt to clarify this issue, cognitive transfer has been

categorized as either “near” or “far”2,4. Near transfer refers to
improvement on the trained task or tasks very similar to it. Such
improvement could be the result of implicit processes, including
perceptual improvements with training5 or automatization of
stimulus-response rules6. Improvements on the trained task could
also be due to explicit strategies, such as associating numbers in
working memory (WM) with long-term memories, which leads to
large, rapid improvements in the trained task but does not transfer
to other tasks7. Far transfer, on the other hand, refers to
improvement of a more general capacity. Capacity does not
necessarily mean general intelligence (g) but could refer to a
broader ability such as flexibility, attention, inhibitory ability,
visuospatial WM capacity, or spatial ability. Such improvements,
although not synonymous with g, are still useful for a wider range
of nontrained tasks2,3,8. However, a weakness of the near/far
categorization is that this division is often imprecise or arbitrary.
Confirmatory factor analysis (CFA) is one possible method for
characterizing and quantifying transfer9–12.
Studying the temporal dynamics of cognitive training is another

approach to separate different underlying processes. For example,
in motor skill training, the study of temporal dynamics has led to
the identification of two separate learning processes that occur at
different timescales13. First, fast improvement, which is related to
increases in striatal activity, has been linked to the development of
task-specific routines. Second, a slower reorganization of the
motor cortex emerges after weeks of training14. Similar results,
with a distinction between striatal and cortical involvement, have
been reported in associative learning studies15.
Temporal dynamics have also been utilized to identify different

phases of mathematical skill acquisition. Tenison and Anderson16

fitted a piecewise continuous power function to mathematical
learning performance data using a hidden Markov model (HMM).
At each time point, the HMM evaluates the probability of

transitioning from one learning phase to the next, where each
phase has a distinct intercept and learning rate. Tenison and
Anderson found 3 mathematical skill acquisition phases. Impor-
tantly, the 3 phases were identified only when the HMM was fitted
to individual training data, while only one phase was observed at
the group level. This finding highlights the importance of
analyzing temporal dynamics at the individual level, as averaging
may provide a false impression of smoothness17–19.
Temporal dynamics have thus been used to identify different

learning phases, reflecting distinct neural processes, in motor,
associative and mathematical learning, but it has not yet been
applied to cognitive training. In this study, we hypothesized that
cognitive training involves at least two different processes: a task
specific improvement and a capacity improvement which
generalizes to other cognitive tasks. We aimed to identify these
processes in two ways: (1) factor analysis of training performance
combined with repeated tests of transfer tasks; (2) HMM analysis
of the finer temporal dynamics of individual training curves.
We included data from 1300 children, ages 9 to 11, who

participated in 40 days of WM training. The training tasks were
mainly spatial WM tasks such as Grid20 (Fig. 1a). They also
completed 5 testing sessions (T1–T5) of 3 transfer tasks (Fig. 1b).
The first task was the odd-one-out21 (OOO), which did not share
any perceptual similarities with the trained visuo-spatial tasks, but
still relied on visuo-spatial WM capacity. The second task was
following instructions22 (FI). In this task, children were given a
verbal instruction of how to move objects on the screen. We
hypothesized that spatial WM representations are important also
for verbal instructions23,24. The third task, Math, was an arithmetic
task of addition under time pressure. Since spatial representations
are important for mathematics25–28, and WM training has
previously been shown to improve mathematical performance
and learning12,29, we expected an improvement here too.

RESULTS
Confirmatory factor analysis
First, we used CFA to examine whether the improvement on Grid
could be separated into one task-specific (TS) process and a more
general capacity (Cap) process which transfers to other types of
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cognitive tasks (Fig. 2). Performance data from Grid and the 3
transfer tasks were entered into a factor model, which was tested
for strict longitudinal measurement invariance; that is, the factor
loadings, task intercepts and residual variances should remain
constant through all measurement sessions.
Strict measurement invariance is necessary for a meaningful

comparison of latent factors at different points in time30.
Nevertheless, some intercepts and residual variances can be
allowed to change if there is a valid reason. Here, we did not
expect task-specific improvements in the transfer tasks, as these
tasks were only performed on a few occasions, while we did
expect task specific changes in the trained task. Thus, Grid was
exempted from the invariance criteria.
As hypothesized, the model showed strict measurement

invariance when the intercept and residual variances for Grid
were excluded from the constraint, while the test failed if they
were included. The root-mean-square error of approximation
(RMSEA) was 0.036, and the comparative fit index (CFI) was 0.984
for the model with free intercept and residual variances for Grid.
Even though Grid did not show strict measurement invariance
throughout the whole training period, we investigated if either
strict or strong measurement invariance would hold during parts
of the period. Strong measurement invariance implies that only
the intercepts need to be constant, but the residual variances can
vary. This analysis showed that Grid could be included in the
constraint for strong measurement invariance from T2 to T5
without significantly reducing the fit (RMSEA= 0.038, CFI= 0.982).
As a comparison, strong measurement invariance did not hold
when the constraint was placed only on T1 to T2 (RMSEA= 0.051,
CFI= 0.969). Strict measurement invariance did not hold for any
period.
The final model (Fig. 3a)—with strict measurement invariance

for the transfer tasks, strong measurement invariance for Grid
between T2 and T5, and weak measurement invariance for Grid
between T1 and T2—suggested two things. First, the transfer
improvements were driven by Cap alone while the improvement
on Grid was a combination of both Cap and TS. Second, Cap
increased continuously throughout the training period while TS

increased only between T1 and T2 (Fig. 3b). This result is also
consistent with the behavioral data (Fig. 3c).
Using the final model, we estimated individual Cap and TS

values for each subject. By fitting a line through Cap, we measured
the rate of capacity improvement for each subject. The average
R-squared value for the regression of Cap was 0.90. Moreover, we
defined the task-specific improvement for each subject as the TS
difference between T2 and T1.

Multivariate latent growth curves
The CFA model showed that the average capacity increase was
linear, but to show that this also applies to individuals, the
capacity improvement on Grid should correlate with the
improvements on the transfer tasks as well31. To investigate these
correlations, we modeled the improvement on the 4 tasks as
latent growth curves, with one curve representing each task. The
latent growth curves of the transfer tasks were modeled as linear
functions with an intercept and a slope. For Grid, the previous CFA
suggested that the improvement needed two components—a
linear function and a step function to capture the increase
between T1 and T2. Thus, the latent growth curve of Grid also
included a step function in addition to the intercept and slope
(Fig. 4a).
All correlations between the latent factors were estimated in

one model. The data fitted the model well (RMSEA= 0.034,
CFI= 0.987). Moreover, we observed significant correlations
between the slopes of the trained task and two of the transfer
tasks (Fig. 4b), OOO (0.53 ± 0.17) and FI (0.43 ± 0.13), validating our
hypothesis that the slope of Grid was related to the slopes of OOO
and FI. Conversely, no significant correlation between the slope of
Grid and the slope of Math (−0.04 ± 0.10) was observed; thus, we
cannot determine if the improvement in Math was actually driven
by the improvement in the Grid task using this method.

Fitting individual learning curves to daily training data
The CFA model, which was based on sparsely collected transfer
measures, suggested that training improvement included two

Fig. 1 The training and transfer tasks. a The trained task (Grid). A sequence of red light bulbs light up on the robot and the task is to
remember the order of the sequence and then reproduce it. b The 3 transfer tasks (Odd One Out, Following Instructions and Math). In Odd
One Out, the child is shown a sequence of cues. Each cue includes 3 shapes of which one is odd, as shown in the figure. The task is to
remember the position of the odd shape for each cue in the sequence. In Following Instructions, a sequence of verbal instructions are given
asking the child to move specific items on the screen (e.g., “Click on the green eraser, then drag the black crayon to the yellow box”, which
would be a trial on level 3). In Math, arithmetic problems with 4 answer choices are displayed on the screen. The child answers by pressing the
arrow-key on the keyboard corresponding to the position of the correct answer choice on the screen.

Fig. 2 CFA model with one latent capacity factor (Cap) and one task-specific intercept (TS) for Grid. The model includes the 3 transfer tasks
(Math, FI, and OOO) as well as the trained task (Grid). Note that the model also includes correlations between the same task at different time
points; however, these correlations were excluded from the figure to reduce clutter.
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different processes: task-specific improvement and capacity
improvement. Capacity improvement was present throughout
the training period, while task-specific improvement occurred
between T1 and T2. Next, we assumed that these processes would
also be reflected in the individual learning curves of the trained
task Grid. We therefore developed a mathematical model, fitted to
the daily performance data on Grid, which could: (1) reflect this
dual-process improvement, (2) correlate with the CFA measures,
and (3) provide more detailed information about the temporal
dynamics of these processes.
The CFA model suggested not only a two-factor model but also

two different phases. The first phase included both task-specific
improvement and capacity improvement, while the second phase
included only capacity improvement. Mathematically, the CFA
results can be described by a piecewise linear function with the
following two phases:

Phase 1 : y ¼ βcapt þ βTSt þ α (1)

Phase 2 : y ¼ βcapt þ ΔTS þ α (2)

where βcap is the capacity improvement rate, βTS is the task-
specific improvement rate, and y is the performance. ΔTS is the
total task-specific improvement at the point where the model
transitions from phase 1 to phase 2 and α is the initial
performance level before training.
To fit the piecewise linear model, we used an HMM16. An HMM

is a probabilistic graphical model where the state of the system is
hidden but a variable related to the hidden state can be
measured. In this case, the observed measurement is the
performance y on each day, and the hidden state is the current
phase. The HMM assumes that the variable observed at time t
depends only on the hidden state at t, and that the hidden state at
t depends only on the hidden state at t–1 (Fig. 5a).
To estimate the most likely state at each time point, 3

probabilities are needed. First, we need to determine the
probability of an observation given a hidden state. This
probability, which is calculated based on Eqs. (1) and (2), is
included in Method. Second, the probability of transitioning

between phases must be obtained. We call the probability of
transitioning from phase 1 to phase 2 τ, meaning that the
probability of remaining in phase 1 is 1–τ. Furthermore, the
probability of returning to phase 1 from phase 2 is 0 (Fig. 5b).
Third, we need to know the probabilities for starting in either of
the hidden states. Here, we assumed that phase 1 is always the
starting phase. The probability parameters were optimized using
expectation maximization32. We fitted one learning curve for each
of the 1300 subjects. Figure 6a shows examples of two learning
curves.
Next, we correlated the parameters βcap and ΔTS with the two

individual parameters extracted from the CFA model. We found
that ΔTS in the HMM was significantly correlated with TS in the CFA
model (r= 0.78, p < 10−5, Table 1) and slightly correlated with Cap
(r= 0.21, p < 10−5). βcap in the HMM was correlated only with Cap
in the model CFA (r= 0.45, p < 10−5) and not with TS (r= -0.01,
p= 0.72). Thus, the improvement rates based on the daily training
data were consistent with the CFA estimates. Moreover, the
median day for transitioning was day 3.05, with quartiles of 2.13
and 5.18 (Fig. 6b). The transition day density plot in Fig. 6b has a
second peak at training day 9 (day 10 in total). This is due to the
constraint placed on the transition day (see Method) and does not
imply that the distribution is bimodal. Finally, Fig. 6c compares the
average performance and the average model fit
(βTS ¼ 0:269; βcap ¼ 0:013; α ¼ 5:497; τ ¼ 0:481).

Simulations
To test the reliability of the model, we fitted it to simulated data
where the true parameters for each subject were known. We
investigated whether the estimations were biased and assessed
the size of the prediction errors. A total of 1000 simulated subjects
with parameter values sampled from uniform distributions were
used. Gaussian noise was added to the performance y, and the
noise level on each day was approximated according to the
average estimated noise level in the real data on that day. The
biases for the 3 parameters were −0.00039 for βcap, 0.092 for βTS
and −0.14 for α. The respective root-mean-square errors (RMSE)
were 0.0069 for βcap , 0.22 for βTS and 0.39 for α. The bias in the

Fig. 3 Results from the CFA. a Final loadings from the CFA model. The task-specific intercepts of the transfer tasks were all zero. b The change
in the latent capacity and task specific intercept for Grid as well as the total combined improvement on Grid (1.28*Cap + TS). c The average
improvement on Grid and the transfer tasks, standardized with the respect to T1 performance for each task ((PerformanceTi - MT1)/SDT1).
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transition day was −0.37 days, with an RMSE of 0.58. In 88% of the
cases, the model predicted the transition day within one day of
the true transition day. In 94% of cases the transitions were
predicted within two days of the true transition day.

DISCUSSION
Here we aimed to identify and quantify the different processes
that occur during WM training and to characterize the time
dynamics of these processes. First, a factor analysis confirmed our
hypothesis that there are two different processes occurring
simultaneously during training: (1) an early task specific improve-
ment reaching a plateau, and (2) a slow, linear improvement of a
capacity which generalized not only to a non-trained spatial WM
task, but also to a verbal WM task and a test of mathematics.
Secondly, we used an HMM to describe the temporal dynamics

of individual training performance more precisely. This analysis
indicated that the task-specific improvement in average occurred
during the first 3 days, after which it plateaued. However, there
was an inter-individual variability in the timing of when the task-
specific improvement reached the ceiling. Simulation studies
showed that the HMM was able to identify this point within a day
in 88% of cases. In contrast to task-specific improvement, the
capacity improvement increased linearly throughout the 8 weeks
of training. The task-specific and capacity improvements esti-
mated by the HMM were significantly correlated with the
estimates obtained from the CFA model.
Importantly, the task-specific improvement was identified only

when analyzing individual learning curves and was not apparent
in the average performance data, which had a considerably
smoother appearance (Fig. 6c). This result is consistent with
previous research, which has highlighted that averaged data can
create smoothing effects that do not accurately reflect individual
trajectories16–18.
The capacity factor loaded both on the trained task and on the

3 transfer tasks: OOO, FI, and Math. Improvements on these
transfer tasks are consistent with findings in prior studies that
used the same WM training method and compared the outcome
to active33,34 or passive control groups35. In the study by Bergman-
Nutley and Klingberg35, the effect size was 0.69 for FI, 0.60 for
OOO and 0.44 for Math, which are slightly larger than our effect
sizes of 0.48 for FI, 0.46 for OOO and 0.37 for Math.
So, what mental ability could the capacity factor correspond to?

Grid and OOO are both visuospatial tasks, but visuospatial
representations are also important for cognition when stimuli
are presented verbally23,24, as in our FI task. For example, the
subjects could translate the verbal instructions to a spatial
representation of planned movements. Similarly, visuospatial
WM representations are an integral part of mathematical reason-
ing26, and training on visuo-spatial WM training improves
mathematical performance in the average population12,29 (but
see also36). We therefore speculate that the capacity factor we

identified corresponds to a general visuospatial WM capacity,
which is important for many cognitive tasks.
Two processes that operate at different time scales have already

been proposed as a model for motor learning13. Early striatal
activation has been linked to rapid development in task-specific
routines, which was then followed by slower cortical changes14. A
similar mechanism could apply to cognitive training. Here,
imaging studies have identified activation in both the striatum
and frontoparietal cortex37–40. For example, Kühn et al.39 observed
a rapid increase in activity in the left striatum during n-back
training that was present in both the training and active control
groups. Striatal volume has also been shown to predict early
improvement during video game skill acquisition41. This suggests
that striatal activity increases could be related to task exposure
and automatization of stimulus-response rules, generating the
task-specific increase observed in our study.
Frontoparietal activity is correlated with WM capacity40,42–44

and cortical plasticity in this network could underly a capacity
improvement. In general, cortical plasticity is known to be a slow
process operating on a time scale of weeks or months45.
Moreover, many cognitive training studies in both humans and
macaques have found slow neural changes that are present
throughout the whole training period, even when most of the
behavioral improvement occurs in the beginning of the training
period37,46,47. The two processes that we identified could thus
have different neural correlates and correspond to an early striatal
phase related to the task-specific improvement, and a slower
cortical phase underlying the change in capacity.
There are several limitations of the current study. Only 3 transfer

tasks were used, and it is possible that additional transfer tasks
would have revealed more than one latent factor. Likewise, a
longer training period could potentially yield more than two
phases48. Furthermore, it is unclear to us why there was not a
significant correlation between the latent slopes of Math and Grid
in our latent growth models. A non-linear model for individual
Math improvements, a model capturing delayed improvement, or
a larger dataset49, might be necessary.
The relatively high number of repetitions may raise concerns

regarding test-retest effects in the transfer tasks. However, we do
not believe this is the case for several reasons. First, the subjects
took the transfer tests twice before training, and the first attempt
was discarded from the analysis, to minimize test-retest effects.
Second, the strict longitudinal measurement invariance in our
model should ensure that no test-retest effects occur during
training50. Third, we compared the capacity increase in our CFA
model to the increase in the controlled study by Bergman-Nutley
and Klingberg35 and found that the CFA model gave a more
conservative estimate.
A limitation with CFA is that the models depend on various

assumptions. In our case, a model with completely free intercepts
for the trained task would have suggested that the task specific
improvement peaked at T2, followed by a small decrease rather

Fig. 4 Results from the multivariate latent growth curve model. a The multivariate latent growth curve model. The figure shows only one
transfer task. However, all transfer tasks were included in the model. b Heatmap of correlations between the slopes in the model. *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001.
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than a plateau. This would not have changed the conclusions
significantly: the capacity factor of the CFA would still increase
linearly, the transition day would still be day 3, and the capacity
factor of the CFA would still be significantly correlated with the
capacity slope of the HMM. However, it seems implausible that the
subjects would get worse with practice after a few days. We
therefore do not think that this decrease is an actual reduction in
skill, but perhaps a decreased motivation for the trained task, or
random noise. Thus, we chose the most conceptually plausible
model, with a fixed intercept from T2.
In summary, the HMM and the CFA model both identified a

fast, task-specific improvement and a transferable capacity
improvement, which was slower but constant throughout the
training period. Altogether, these time courses resembled
logarithmically shaped training curves. In the future, we believe
that the proposed models may be useful for elucidating neural
processes associated with task-specific and capacity changes.

METHOD
Participants
We used data from 1667 children, age 9 to 11 (577 9-year-olds, 631
10-year-olds and 459 11-year-olds), collected on Cogmed between
2016 and 2019. The data were anonymous, where data for each child
were marked with an index which could not be connected with the
identity of the child. No data other than age and task performance
was recorded. Ethical approval for the study design was obtained
from the Swedish Ethics Review Agency. The Swedish Ethics Review
Agency explicitly waived the requirement for informed consent as all
data was anonymous and did not contain any personal or sensitive
information, and the children were not exposed of any possible
harm. Furthermore, the children were not recruited for the research
study specifically but underwent the Cogmed training program for
their own benefit.

Behavioral data from cognitive training
The cognitive training software used here was Cogmed (https://
www.cogmed.com), which includes 12 closely related WM tasks
practiced over 8 weeks. The training sessions were 25 min long
and scheduled for every weekday, except for 6 days, which
were set aside for transfer testing. No training was done on
weekends. The training was adaptive, such that the children
always worked at a level close to their capacity limit. To increase
variability, 8 of the 12 tasks were practiced in each session. Grid,
which was included in 22 sessions, was practiced the most and
therefore, it was used as the trained task for the subsequent
analyses.
Transfer testing was performed on days 1, 2, 10, 20, 30, and 40.

Data from day 1 was discarded as this was a preparatory session
allowing the children to familiarize themselves with the tasks,
which was necessary for the non-supervised testing format. The
transfer test on day 1 was then omitted, and day 2 was referred to
as Testing Day 1 (T1).

The daily performance for each training task was defined as the
highest level reached during a session. For Grid, the level
corresponded to the number of items in the presented sequence.
For the transfer tasks OOO and FI, the level was also defined as the
sequence length, where the level increased until the child had
answered two questions incorrectly at the same level. The
previous level became the final score for the test session. During
the math test, the participants had one minute to answer as many
problems as possible, and the number of correctly answered
questions was used as the final score.
Of the 1667 children, 366 children had missed 6 or more tests,

which corresponded to two full test sessions. These were excluded
from the analysis. Other missing data points were imputed using
the k-nearest neighbor approach, where the mean value of the 35
nearest neighbors was used to impute the missing value.

Factor analysis
For the factor analysis, the data of each task were standardized
with respect to the mean and standard deviation of the
performance on that task at the first time point (T1). The analysis
was implemented in R using the package Lavaan51 and models
were fitted using the robust maximum likelihood estimator (MLM).
The cut-off values for the fit of all models was set to CFI= 0.95 and
RMSEA= 0.0652.

CFA
We employed CFA to examine the temporal evolution of the latent
factor and the intercept of the trained task. The latent factor was
constructed from 3 transfer tasks and the trained task. To establish
a scale for the model, we fixed the sum of the 4 factor loadings to
4 and the sum of the 3 transfer task intercepts to 0 at each time
point. However, we did not include the intercept of the trained
task in this constraint as we were interested in examining changes
specific to that task.
We then tested the model for longitudinal measurement

invariance, which implies 3 successively stricter constraints placed
on the model. First, weak measurement invariance tests if the factor
loadings can be fixed across time. Second, strong measurement
invariance tests if the intercepts can be fixed. Finally, strict
measurement invariance tests if the residual variances can be fixed.
Here, we also constrained the task covariances such that cov(T1,
T2)= cov(T2, T3)= cov(T3, T4), cov(T1, T3)= cov(T2, T4)= cov(T3,
T5), and cov(T1, T4)= cov(T2, T5). For invariance, the increase in the
RMSEA was required to be less than 0.015, and the decrease in the
CFI less than 0.010 in each step53.
In the weak measurement invariance test, all four tasks had

constrained factor loadings. In subsequent steps, we assumed that
task-specific effects could impact the intercepts and residual
variances of the trained task, so these parameters were initially not
constrained. We then examined whether strict or strong
measurement invariance would also apply to the trained task,
both over the entire training period and within subparts.

Fig. 5 Hidden Markov model. a The dependencies of the observed variables y and hidden states x. b The transition probabilities between
the hidden states x.
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From the final model, we extracted the predicted factor values for
each participant to calculate the individual improvements as
estimated by the model.

Latent growth models
We utilized a latent growth model to examine the correlation of
improvements on an individual level (Fig. 4a). The factor loadings
from the linear functions and the step function were fixed while all
other variables were estimated, including task intercepts, task
variances and covariances, and factor variances and covariances.
To ensure that the model converged, we assumed that the Grid
residual variance was constant. This was necessary as the model
was unable to differentiate the residual variance of the Grid task at
T1 from the variances of the Grid intercept and step factor.

Piecewise linear model
We fitted the piecewise linear learning curve using an HMM. Here,
we assumed that the learning trajectory of Grid could be
described using the following function with two consecutive

phases:

Phase 1 : y ¼ βcapt þ βTSt þ αþ w (3)

Phase 2 : y ¼ βcapt þ ΔTS þ αþ w (4)

where w is white noise with a standard deviation of σ. The
probability of observing a certain performance y on day t is

p xtð Þ ¼ Nðβcapt þ βTSt þ α; σÞ (5)

if t is in phase 1 and

p xtð Þ ¼ Nðβcapt þ ΔTS þ α; σÞ (6)

if t is in phase 2. Here, xt is the phase on the given day. The
probability of transitioning from phase 1 to phase 2 is calculated
as

pðxtjxt�1Þ ¼ τ: (7)

Therefore, ΔTS ¼ βTS
τ . The probability of the transition occurring

on day t can be expressed as

p trans ¼ tð Þ ¼ ð1� τÞt � p x ¼ 1ð Þ � τ � p x ¼ 2ð Þ: (8)

Hence, the probability of being in phase 1 at time t is

p xt ¼ 1jy1; ¼ ; yNð Þ ¼ ΣNn¼tpðtrans ¼ nÞ (9)

while the probability of being in phase 2 is

pðxt ¼ 2j y1; ¼ ; yNÞ ¼ Σt�1
n¼1p trans ¼ nð Þ: (10)

These phase probabilities for each time point are then used in
the expectation maximization algorithm32 to optimize the model
parameters in an iterative process. Each iteration includes two
steps. First, the phase probabilities

pðxjy; θkÞ (11)

Fig. 6 Results from the hidden Markov model. a Example of the piecewise linear model fitted to two different subjects. The dotted line
marks the transition between phase 1 and phase 2. b A density plot of the estimated transition days for the population. c The averaged
training data for the whole population and piecewise linear model with average parameter values.

Table 1. Pearson correlation between individual capacity and task-
specific improvement extracted from the CFA model and HMM,
***p ≤ 0.001.

CFA HMM

Task-specific Capacity

Task-specific 0.78*** −0.01

Capacity 0.21*** 0.45***
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are calculated, where θk represents the model parameters at
iteration k. Next, the parameters θ are optimized to maximize the
expected value of the observed sequence y and phase x with
respect to pðxjy; θkÞ:
θkþ1 ¼ argEpðxjy;θkÞ½logpðx; yjθkÞ� (12)

The iterations continue until the model converges. The
maximization step was performed using the function minimize
in the Python package SciPy.
The transition day was constrained by the results of the CFA

model such that the latest allowed transition day was day 10. This
impacted 4.5% of the population which had a transition day above
10 days without the constraint in place. After parameter fitting,
one participant was also removed since their βcap value was
approximately 10 times larger than the standard deviation of the
population.

Simulations
To validate our optimization algorithm, we simulated 1000 subjects
using the piecewise linear model, and the parameters were
sampled from a uniform distribution between 2.0 and 4.0 for α,
0.8–1.6 for βTS and 0.01–0.1 for βcap. The transition day was
sampled to occur between days one and ten. Zero mean Gaussian
noise was added to the final performance y for each subject and
day. The noise level varied from day to day to reflect the noise
level in the data set on the given day. Thereafter, we derived the
original parameter values of each subject using the HMM.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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