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Retrieval practice is costly and is beneficial only when working
memory capacity is abundant
Yicong Zheng 1,2, Pengyuan Sun3 and Xiaonan L. Liu 4✉

Numerous studies have shown that learned information practiced by testing is better retained than that practiced by restudying
(the testing effect). However, results are inconsistent regarding the effect of working memory (WM) capacity on the testing effect.
Here, we hypothesize that the effect of WM only emerges when task demands challenge WM capacity. We manipulated WM
demands by pretraining 30 undergraduate participants in a multi-session visual search task before an associative learning task
involving a test/restudy manipulation. The results revealed that, while participants with higher WM capacity showed a consistent
testing effect, the benefit of testing only emerged in participants with lower WM capacity when learning familiar stimuli (low WM
demands). We simulated the results using a modified source of activation confusion (SAC) model, which implemented a dual-
process account of the testing effect. The results suggested that the testing effect only emerges when WM capacity is adequate for
both processes.
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INTRODUCTION
Testing can not only be used to assess studying but also improve
learning and enhance later retention, a phenomenon widely
known as the testing effect (refs. 1–4, see5 for a meta-analytic
review). The prototypical paradigm of the testing effect1 involves
an initial learning phase, a practice phase, in which half of the
learned items are studied again (i.e., restudy) and the other half
tested (i.e., retrieval practice), and a final test phase that evaluates
memory retention for all items. The typical finding is that in the
final test, items practiced in the test condition are recalled better
than those in the restudy condition.
While the testing effect has been shown to be a robust learning

technique in education6, it is less clear whether testing should be
uniformly applied in the classroom and whether testing helps
certain subpopulations more than others. Several studies have
suggested that the magnitude of the testing effect might be
affected by individual differences, such as working memory (WM)
capacity. For example, Tse & Pu7 found an interaction between
WM capacity and test anxiety, such that test anxiety only reduced
the testing effect in participants with lower WM capacity. In other
words, people with a lower WM capacity may benefit less from the
testing effect in certain scenarios. However, this effect was not
replicated by a study using a similar paradigm but different
materials that are in participants’ native language8. Indeed, there
is no consensus on how WM capacity affects the testing effect.
Several studies have found that WM capacity has no significant
relationship to the testing effect and the forward testing effect,
which refers to the effect that testing old information can improve
the learning of new information9–13.
One factor that might moderate the relationship between WM

capacity and the testing effect is whether feedback (i.e., correct
answer) is given after retrieving. For example, one study found
that participants with lower WM capacity benefits more from
retrieval practice than those with higher WM capacity, but this
effect only emerged when feedback was given14. Another study
found that older adults (usually with lower WM capacity) learned

better through restudying than through retrieval practice when
no feedback was provided; however, the testing effect emerged
when feedback was provided15. These studies suggest that WM
capacity only moderates the testing effect under more difficult
conditions (e.g., no feedback). The reason for the abovemen-
tioned inconsistent results might be that some experiments did
not challenge individuals’ WM limits, especially for those with
higher WM capacity.
Based on these results, we conjecture that the benefit of testing

is moderated by both available WM resources and WM demands
during retrieval practice. Specifically, prior research suggests that
the testing effect involves separate contributions from a retrieval
attempt process and a post-retrieval re-encoding process16–18.
Both processes consume WM resources (e.g., maintenance of
retrieval cues, active search for targets, and maintenance of
retrieved information;19,20). When WM demands of the task are
high, participants with lower WM capacity may have used all
available WM resources after the retrieval attempt process and
thus benefit little from the re-encoding process. In contrast, when
WM demands are low, even participants with lower WM capacity
may benefit from both processes.
In this study, in addition to measuring individual WM capacity,

we manipulated WM demands by varying the frequency of novel
stimuli through three weeks of pretraining in an adaptation of
the training paradigm from Reder et al.21. Reder et al.21 showed
that in an associative learning task, high-frequency (HF) stimuli
required fewer WM, and low-frequency (LF) stimuli required
more WM resources to form new associations. In the fourth week,
participants learned randomly formed associations of HF or LF
stimuli and practiced through retrieval practice or restudy
(Fig. 1). We predict that if WM resources are abundant, the
testing effect will emerge regardless of the WM demands of the
stimuli. In contrast, for participants with limited WM capacity,
the testing effect will only emerge when WM demands are low.
Beyond the experiment, we simulated the two processes
involved in retrieval practice16–18 by adapting the source of
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activation confusion (SAC) model22, which assumes that learning
and retrieving new information in long-term memory consumes
WM resources from a limited pool.

RESULTS
The testing effect is modulated by the interaction between
frequency and WM capacity
We examined the testing effect as a function of individual WM
capacity and stimulus frequency. Individual WM capacity scores
were calculated using the d’ values (d0 ¼ ZHit � ZFalseAlarm) of the
2-back and 3-back tasks. The 1-back blocks were not included
because participants only needed to compare the current
stimulus with the immediately preceding one, and the accuracy
was close to 100%. We fitted three mixed-effects logistic
regression models (Table 1): a main-effect model, a model with
two-way interactions, and a model with a three-way interaction.
In our models, the fixed effects were Frequency (HF vs. LF),
Condition (test vs. restudy), WM capacity, and interactions. The
random effect was the participant-specific intercept. The main-
effect model revealed a significant testing effect (b= 0.23,
z= 2.29, p= 0.022) and a significant main effect of WM capacity
(b= 0.51, z= 2.32, p= 0.020). Accuracy was higher for partici-
pants with higher WM capacity. Importantly, the results revealed
a three-way interaction between Condition, Frequency, and WM
capacity (b=−0.83, z=−2.44, p= 0.015).
Follow-up analyses revealed a significant testing effect in the

main-effect model (b= 0.48, z= 2.43, p= 0.015), but no significant
two-way interaction effect in HF associations (Table 2). In contrast,
there was a significant Condition by WM interaction in LF
associations (b= 0.61, z= 2.55, p= 0.011, Table 3). As shown in
Fig. 2, participants with different WM capacities exhibited different
magnitudes of testing effects in LF associations. This pattern was
confirmed by a simple slopes analysis, which showed that
participants with higher WM capacity (+ 1 SD) exhibited a significant
testing effect (b= 0.50, z= 2.43, p= 0.015), whereas participants
with lower WM capacity (−1 SD) exhibited a trend towards a
negative testing effect (b=−0.22, z=−1.15, p= 0.249, Fig. 2).
Because there was no feedback in the test condition on Day 2,

one might wonder whether the effect of WM capacity was driven
by the possibility that participants with lower WM capacity might

have recalled fewer LF associations than HF associations. In
comparison, participants with higher WM capacity might have
recalled a similar amount of HF and LF associations. While we had
controlled this potential confound by applying the same learning
criteria for LF and HF associations on Day 1, to further exclude this
possibility, we performed the same regression while controlling
for the accuracy ratio between HF and LF associations during
retrieval practice (see Supplementary Notes for details). The results
exhibited the same pattern.

Fig. 1 Experiment procedure. Top panel: Example trials of the visual search task during the first three weeks. The presentation ratio of High
Frequency: Low Frequency was 15:1. Bottom panel: Procedure of the associative learning task, including the initial learning (left panel), the
retrieval/restudy practice (middle panel), and the final test (right panel).

Table 1. Regression coefficients of the main effect model (Model 1),
two-way interaction model (Model 2), and three-way interaction
model (Model 3).

Model Parameter b β z p 95% CI (β)

1 (Intercept) −0.77 0.39 −1.47 0.141 [0.11, 0.68]

Condition 0.23* 0.23 2.29 0.022 [0.03, 0.42]

Frequency 0.15 0.15 1.50 0.134 [−0.05, 0.34]

WM 0.51* 0.30 2.32 0.020 [0.05, 0.55]

2 (Intercept) −0.56 0.45 −0.96 0.336 [0.15, 0.75]

Condition −0.34 0.12 −0.83 0.405 [−0.15, 0.40]

Frequency 0.18 0.04 0.45 0.654 [−0.23, 0.31]

WM 0.44 0.26 1.78 0.074 [−0.03, 0.55]

Condition *
Frequency

0.23 0.23 1.14 0.255 [−0.16, 0.62]

Condition * WM 0.20 0.12 1.19 0.233 [−0.08, 0.32]

Frequency * WM −0.06 −0.04 −0.38 0.707 [−0.23, 0.16]

3 (Intercept) −0.12 0.45 −0.20 0.843 [0.14, 0.75]

Condition −1.27* 0.13 −2.27 0.023 [−0.14, 0.41]

Frequency −0.71 0.04 −1.30 0.194 [−0.23, 0.32]

WM 0.25 0.15 0.96 0.338 [−0.15, 0.45]

Condition *
Frequency

2.10** 0.20 2.65 0.008 [−0.19, 0.60]

Condition * WM 0.62* 0.36 2.56 0.011 [0.08, 0.64]

Frequency * WM 0.33 0.20 1.41 0.157 [−0.08, 0.47]

Condition *
Frequency * WM

−0.83* −0.49 −2.44 0.015 [−0.88, −0.10]

*p < 0.05; **p < 0.01.
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Modified SAC explained the relationship between WM and the
testing effect
To account for the effects of WM on the processes underlying the
testing effect, the SAC model22 was adapted, incorporating the
dual-process (retrieval attempt and post-retrieval re-encoding)
hypothesis of the testing effect16–18. A diagram of the modified
SAC model is shown in Fig. 3 to demonstrate how the modified
SAC predicts the final episodic memory strength given: 1)
condition (test/restudy), 2) frequency (HF/LF), and 3) WM
capacity (high/low).

In Fig. 4, both experimental and simulation results were broken
down into separate bars by a median split of WM capacity to
better illustrate the interaction between WM capacity, stimulus
frequency, and the testing effect. The simulation results captured
the critical patterns of the experimental results. Specifically, the
key finding of a WM capacity by condition interaction in LF
associations was replicated. Participants with lower WM capacity
showed no significant testing effect, but a trend toward a negative
testing effect in LF associations. In comparison, participants with
higher WM capacity consistently exhibited the testing effect.

DISCUSSION
The current study showed that the testing effect was moderated
by both individual WM capacity and WM demands, as determined
by the nature of the stimuli. Specifically, people with abundant
WM resources benefited from retrieval practice regardless of the
stimulus frequency. In contrast, people with lower WM resources
only showed the testing effect in HF associations and a trend
toward a negative testing effect in LF associations. We adapted
the SAC model22 based on the dual-process hypothesis of the
testing effect16–18 to account for our findings. The simulation
results exhibited the same pattern as the experimental results.
An important contribution of the current study is reconciling

the conflicting results regarding the effects of WM on the testing
effect7,9–13. The results demonstrated that retrieval practice is a
costly learning technique, but the bottleneck of WM only
emerges when WM demands challenge WM capacity. Specifi-
cally, our results suggest that one possible explanation for prior
studies that did not find an effect of WM capacity on the testing
effect is the lack of WM demands in the study design. For
example, the inconsistent findings of the anxiety by WM
capacity interaction between Tse & Pu7 and Tse et al.8 might
be reconciled by the current model. Specifically, if word pairs in
a foreign language7 required more WM resources than knowl-
edge facts in the native language8, individuals with lower WM
capacity would be expected to show a tendency of decreased
testing effect when learning word pairs in a foreign language
and the WM capacity effect may be signified by test anxiety.
Moreover, the current model can explain the results that older
participants only benefit from retrieval practice when feedback
was provided but learned better through restudying when no
feedback was provided15. One possibility is that feedback serves
as a WM aid that reduces WM demands, thus increasing the
testing effect for those with lower WM capacity. Future studies
may be conducted to examine the role of feedback in
participants with different WM capacities.
The study also shed light on the underlying mechanisms of the

testing effect. The results support the dual-process hypothesis of
the testing effect16–18. Specifically, if the testing effect involves
only the benefits of the retrieval attempt per se, memories should
be fully strengthened as long as the correct targets are retrieved.
Thus, the magnitude of the testing effect should be a function of
retrieval practice accuracy. Because both HF and LF associations
were learned to the same criteria, a single process account would
predict comparable magnitudes of the testing effect in HF and LF
associations. Moreover, because we controlled for individual
differences in the accuracy ratio between HF and LF associations
in retrieval practice, a single process account would predict no
moderating effect of individual differences. In other words, a
single-process account would not predict the three-way interac-
tion among WM capacity, frequency, and condition.
In contrast, the two-process hypothesis argues that, in addition

to the retrieval attempt process, participants also benefit from re-
encoding correctly retrieved information (Fig. 3). The current
results, including the three-way interaction, were fully replicated
by our simulation (Fig. 4), which implemented the dual-process
hypothesis in the well-established SAC model22. Simply put, the

Table 2. Regression coefficients of the main effect model (Model 1)
and two-way interaction model (Model 2) for HF associations.

Model Parameter b β z p 95% CI (β)

1 (Intercept) −0.60 0.49 −1.01 0.310 [0.17, 0.81]

Condition 0.35* 0.35 2.43 0.015 [0.07, 0.63]

WM 0.48 0.28 1.92 0.055 [−0.01, 0.57]

2 (Intercept) −0.85 0.49 −1.31 0.191 [0.17, 0.81]

Condition 0.87 0.34 1.52 0.129 [0.06, 0.62]

WM 0.59* 0.35 2.13 0.034 [0.03, 0.67]

Condition * WM −0.23 −0.14 −0.94 0.347 [−0.42, 0.15]

*p < 0.05.

Table 3. Regression coefficients of the main effect model (Model 1)
and two-way interaction model (Model 2) for LF associations.

Model Parameter b β z p 95% CI (β)

1 (Intercept) −0.79 0.52 −1.41 0.159 [0.24, 0.79]

Condition 0.12 0.06 0.84 0.400 [−0.08, 0.20]

WM 0.55* 0.32 2.30 0.021 [0.05, 0.60]

2 (Intercept) −0.13 0.52 −0.21 0.832 [0.24, 0.80]

Condition −1.26* 0.07 −2.26 0.024 [−0.07, 0.21]

WM 0.26 0.33 0.97 0.332 [0.05, 0.61]

Condition * WM 0.61* 0.18 2.55 0.011 [0.04, 0.32]

*p < 0.05.
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Fig. 2 Predictions of the final test accuracy based on the mixed-
effects logistic regression models. While all participants showed
the testing effect in HF associations, only participants with higher
WM capacity showed the testing effect in LF associations. The
shaded areas represent the 95% confidence intervals for the fitted
regression curves.
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critical assumption of the model is “trading” WM resources for
memory strengthening, such that people have their WM resource
pools of different sizes and improve memorization by spending
these resources. Because the re-encoding process occurs after the
correct answer is obtained, successfully recalled associations may
not be fully strengthened if WM resources are depleted during the

retrieval attempt. Thus, LF associations are less likely to benefit
from retrieval practice when challenging individuals’ WM capacity.
It is noteworthy that the power of this study is relatively small due

to the difficulty of recruiting participants for the month-long
experiment. We did not have an estimation of the effect size for the
key interaction between WM capacity, Frequency, and Condition.
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Fig. 3 Schematic diagram illustrating how the modified SAC model predicts the outcome of each condition in the current experiment.
We assume that both the retrieval attempt and post-retrieval re-encoding processes consume WM resources (brown and brown with
diagonal lines) from a limited WM pool (i.e., WM capacity (black frame)), resulting in left WM resources (blue) for future use. The post-retrieval
re-encoding process only strengthens the nodes when retrieval attempts are successful because no feedback is provided. The consumption
of WM negatively correlates with the Fribble frequency (HF for high frequency, LF for low frequency) and is used to strengthen the episode
node, as depicted in the final column. When the available WM resources (blue) are not sufficient for both processes (i.e., participants with
lower WM capacity learning LF associations), the associations cannot benefit from the post-retrieval re-encoding process, thus limiting the
overall testing effect.
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Therefore, the a priori power analysis was conducted to ensure
the sample size was adequate to detect the testing effect.
We conducted a sensitivity power analysis with the current sample
size using the summary-statistics-based power analysis23. The results
showed that for the critical three-way interaction, the current
sample size was adequate to detect a medium to large effect size
(r > 0.485) according to Cohen (1992). Future studies with a larger
sample size are needed to detect smaller effects.
In summary, the current study showed that the effect of WM on

the testing effect only emerges when the task challenges WM
capacity. The experiment and our simulation suggest that success-
fully retrieving the item does not guarantee that the memory is
more effectively strengthened than restudying the item. The testing
effect involves a post-retrieval process that further strengthens
memory. While this study supports the hypothesis that two
temporally distinct processes are involved in the testing effect, the
cognitive mechanisms underlying these processes remain unclear.
One possibility is that the two processes reflect learning in the
hippocampus and neocortex, as described in a recent biologically
realistic neural network model24. Future work may examine how the
two temporally distinct processes map onto learning mechanisms in
different neural networks.

METHODS
Participants
Thirty-five undergraduate students from Xiamen University
participated in the experiment. The sample size was determined
by an a priori power analysis using the summary-statistics-based
power analysis for mixed-effects modeling of nested data23. Based
on the t-value for the testing effect in our prior study, using the
same materials and a similar procedure25, 33 participants were
required to achieve 80% power. All participants had normal or
corrected-to-normal vision and spoke Chinese as their first
language. Two participants were excluded because of low
accuracy in the final test (below three standard deviations from
the mean). Two participants were excluded because of low
performance (d’ less than 1) on the 1-back task. One participant
was excluded due to data loss. All participant exclusions were
performed before running the data analyses and modeling. Thirty
participants were included in the final analyses and computational
modeling of the experiment. The final sample size achieved 77%
power. The study was approved by the Ethics Committee of
Xiamen University. All participants gave written informed consent
in accordance with the Declaration of Helsinki.

Materials
We used novel animal-like objects, named “Fribbles”26, as cues
to form associations. Each Fribble consists of a body and four
appendages, providing varying degrees of visual similarity
across objects. The use of Fribbles controlled for potential prior
experiences with the stimuli. Sixty-four Chinese nouns were
selected as targets from the Chinese Corpus database (http://
corpus.zhonghuayuwen.org/) and randomly paired with Fribbles
to form cue-target associations.

Procedure
The design was adapted from Reder et al.21 and lasted for 4 weeks
for each participant (Fig. 1). During the first three weeks,
participants were pretrained to familiarize themselves with the
Fribbles in a visual search task, with half of the Fribbles presented
more frequently than the other half. After the pretraining,
participants performed an associative learning task over three
consecutive days in the final week. After the initial learning on
Day 1, half of the associations were studied again, while the other
half were tested without feedback on Day 2. The final test of all

associations was conducted on Day 3. The procedure for each task
is described in detail below:

Visual search task. The participants completed a visual search
task to familiarize themselves with 64 Fribbles over nine sessions
over three weeks. Among all the Fribbles, half (32) were randomly
selected to be presented at high frequency (HF), while the other
half (32) were presented at low frequency (LF). Each trial showed a
target Fribble, followed by three similar Fribbles that shared the
same main body. Participants were asked to indicate whether
the target Fribble was present (50% of the trials) or absent (50% of
the trials) from the three alternative Fribbles. The ratio between HF
and LF was 15:1 (i.e., 32 HF Fribbles were presented 15 times as
frequently as the 32 LF Fribbles). The interval between the two
sessions in the same week was 24–48 h.

N-back task. After the third training session each week, the
participants performed an N-back task in which stimuli were
drawn from Fribbles from the HF and LF conditions. In addition to
measuring WM capacity, this task allowed us to test our
hypothesis that more familiar stimuli consume fewer WM
resources. Each Fribble was shown for 2000 ms on the screen,
and participants were required to decide whether the current
stimulus matched the stimulus presented N pictures before. In this
task, N varied from 1 to 3 in different blocks. Half of the blocks
used Fribbles from the HF condition, and the other half used
Fribbles from the LF condition. There were four blocks for each of
the six conditions (2 frequency conditions × 3 N-back levels), and
each block contained 18 trials. The order of the blocks was
randomized for each participant.

Day 1 initial learning. On Day 1 of the final week, participants
performed an associative learning task in which 64 Fribbles (32
HF+ 32 LF) pretrained during the first three weeks were randomly
associated with 64 new Chinese two-character words. During each
trial, after the presentation of a fixation cross for 1000 ms, a Fribble
and a word were simultaneously displayed on the top and bottom
of the screen, respectively, for 8000ms. After learning all of the
associations, the participants were tested on the associations for
multiple rounds. During the test trial, participants were cued with
a Fribble and asked to type the two-letter initials of the associated
words. Feedback was provided after the participants entered their
answers. An association was dropped from subsequent testing
rounds if it was correctly recalled in two consecutive rounds. The
testing rounds ended after all the associations were dropped. This
procedure ensured that all associations were learned to the same
degree after Day 1.

Day 2 restudy/retrieval practice and Day 3 final test. On Day 2
(24 h after Day 1), participants first studied all of the associations
again, in the same format as the Day 1 learning, to refresh their
memory. After the refresh phase, half of the associations (16
HF+ 16 LF) were assigned to the test condition, while the other
half (16 HF+ 16 LF) were assigned to the restudy condition.
Participants were tested on or restudied assigned associations in
randomized and intermixed order. In a test trial, after a 1000 ms
fixation cross, a Fribble was first shown in the center of the
screen for 4000 ms. The participants were then encouraged to
recall the associated word. On the next screen, the participants
were presented with the Fribble on the left and a question mark
on the right. Participants were asked to type the initial letters of
the associated word within 10 s. Feedback was not provided
after each trial. In a restudy trial, a Fribble and the target word
were presented simultaneously for 4000 ms. Participants were
asked to enter the initial letters of the target word within the
following 10 s. On Day 3 (24 h after Day 2), all 64 Fribble-word
associations were tested once in the same format as the test
trials on Day 2.
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Statistics
We used mixed-effects logistic regression27,28 to examine how
WM capacity and stimulus frequency influence the testing effect.
The mixed-effects logistic regression models were fitted using
the “lme4” package29 in the R Statistical Environment30. Simple
slopes analyses were performed following significant interactions
using the “interactions” package31.

Model simulation
Model description. The main idea underlying the SAC model22 is
that the components of episodic memory can be represented as
nodes in a localist network, and activation of one node will spread
to connected nodes. These nodes can be broadly categorized as
“concept” or “episode,” such that multiple concept nodes (e.g.,
contexts and items) can connect to a common episode note. The
strength of a memory trace is described as the base-level strength
and activation level, indicating the quality of the memory stored in
the brain and the level of current activation during retrieval,
respectively. Nodes activated by either proactive retrieval or the
spread of activation from connected nodes will have a high
temporary activation level, increasing the base-level strength.
Note that these two indices of memory strength decay over time.
In addition, the SAC model accounts for the interplay between

long-term memory and WM. Specifically, it hypothesizes that
individuals have limited WM resource pools, such that people with
higher WM will have more WM resources to use during various tasks
and vice versa. Furthermore, node operations (e.g., encoding and
retrieval) deplete WM resources, which are gradually replenished as
a function of time. Because the default recovery rate allows the WM
capacity pool to replenish fully in a few seconds, WM capacity in the
SAC model only affects memory formation at the trial level. This
assumption is consistent with the study showing that retrieval
practice does not compete for WM resources with subsequent
arithmetic tasks after a longer delay32. The familiarity of nodes
influences the usage of WM resources during operations. For
instance, if an item has never been seen before, encoding and
retrieving it will consume more WM resources than items that are
highly familiar to participants. Note that the core principles of SAC
directly link item familiarity to node strength (i.e., repeatedly
experiencing a node enhances familiarity and node strength).
Besides SAC principles, we incorporated three new assumptions.

Specifically, 1) we assumed that retrieval practice involves two
sequential processes: retrieval attempt and post-retrieval re-encod-
ing (of retrieved information). This assumption is supported by our
previous fMRI and EEG studies which have identified two temporally
distinct processes that contribute to the testing effect16–18. 2) We
used the default learning rate in the SAC model for the two
processes. According to the SAC model, in the critical condition that
WM resources are not adequate for both processes, memory
strengthening is determined by available WM resources but not the
learning rate. Therefore we used the same learning rate for
simplicity and consistency with the SAC model. 3) We assumed
that retrieval practice consumes extra WM resources that do not
directly strengthen memory, such as memory search that does not
lead to the correct target, as well as maintaining the retrieved
information. This assumption is proposed to account for the trend in
the current experiment that individuals with lower WM capacity
performed better in the restudy condition compared to the test
condition. The extra WM resource consumption was assumed to be
inversely proportional to the cue and target nodes’ base-level
strengths, following Eq. (1):

WMextra ¼ weð1=Bcue þ 1=BtargetÞ; (1)

Where WMextra is the requested extra WM resources, we is the
weighting parameter to be fitted, and Bcue and Btarget are the base-
level strengths of the paired cue fribble and the target word,
respectively.

Simulation procedure. All Fribbles and words in the experiment
were defined as concept nodes. Because we did not manipulate
the context of the experiment, we added a quasi-context node for
all associations for simplicity. The initial base-level strengths of the
64 fribble nodes (32 HF + 32 LF) were calculated by applying the
simulated familiarization procedure during the first three weeks to
the memory strength delay formula in SAC22. Specifically, we
discretized the 135 repetitions of HF stimulus presentations and 9
repetitions of LF stimuli over nine days across three weeks,
maintaining the HF: LF ratio at 15:1. After decaying, the initial
base-level strengths of the HF and the LF nodes were 0.91 and
0.46, respectively.
We simplified the simulation to include only Days 2 and 3 of the

final week because the same criteria of associative learning were
achieved on Day 1. Therefore, we assumed that the simulation
started by refreshing all of the associations once and then going
through randomly intermixed restudy/test trials as in the experi-
ment. Because there was no feedback provided for test trials, the
post-retrieval re-encoding process strengthened the episode node
only if the retrieval attempt was successful. After 24 h of decay, the
model was tested by performing a cued recall task.
The predicted accuracy for each trial was continuously trans-

formed from the activation level of the episode node using the
cumulative distribution function (CDF) of the normal distribution
specified by the mean θ and standard deviation σ. Both θ and σ
were estimated at the individual level. In addition, we fitted the we

value at the group level, which determined the extra WM cost
during retrieval, as specified in Eq. (1). The d’ values of the N-back
task were used as individual WM capacities in the model. First, we
looped through each possible we with a precision of 0.01. We used
this value and each participant’s WM capacity to estimate individual
θ and σ by minimizing the root-mean-square error between the
predicted accuracy and the observed accuracy across the four
conditions (2 frequencies × 2 conditions). Next, we averaged the θ
and σ values across participants to calculate the group-level root-
mean-square error between the predicted and observed accuracy
in these four conditions. The best we value was determined by
minimizing the group-level error. The averaged θ and σ corre-
sponding to the we were used to define the CDF. Except for the
three estimated parameters, all other parameters were inherited
from the SAC model22, as shown in Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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