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Schooling substantially improves intelligence, but neither
lessens nor widens the impacts of socioeconomics and genetics
Nicholas Judd 1,2✉, Bruno Sauce 3 and Torkel Klingberg 1

Schooling, socioeconomic status (SES), and genetics all impact intelligence. However, it is unclear to what extent their contributions
are unique and if they interact. Here we used a multi-trait polygenic score for cognition (cogPGS) with a quasi-experimental
regression discontinuity design to isolate how months of schooling relate to intelligence in 6567 children (aged 9–11). We found
large, independent effects of schooling (β ~ 0.15), cogPGS (β ~ 0.10), and SES (β ~ 0.20) on working memory, crystallized (cIQ), and
fluid intelligence (fIQ). Notably, two years of schooling had a larger effect on intelligence than the lifetime consequences, since
birth, of SES or cogPGS-based inequalities. However, schooling showed no interaction with cogPGS or SES for the three intelligence
domains tested. While schooling had strong main effects on intelligence, it did not lessen, nor widen the impact of these
preexisting SES or genetic factors.
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INTRODUCTION
Inter-individual differences in intelligence predict a variety of
important life outcomes, such as life satisfaction, mortality, and
educational achievement (EA)1–3, showing correlations higher
than 0.7 with achievement4,5. There has been considerable
controversy on the source of these differences. Decades of
research have shown intelligence to be highly associated with
genetic differences (heritability estimates around 0.6) but also
impacted by experiences and context (called here “environmental
factors”)6–12.
Schooling is an important environmental factor, having a large

impact on intelligence in children13–15. This has been shown in
longitudinal studies controlling for prior intelligence16 and in
studies evaluating the cognitive effects of policy changes
regarding compulsory schooling17. A third method to evaluate
the impact of schooling (called regression discontinuity designs)
exploits the fact children are put in a grade based on an arbitrary
age cut-off, and allows us to separate the effect of chronological
age from months of schooling18. Studies using this method also
replicate the findings that schooling affects intelligence19,20. Thus,
many lines of research provide converging evidence that school-
ing can change abilities often thought to be “fixed”, such as fluid
intelligence and working memory, with estimates of one year of
additional schooling benefitting cognitive abilities somewhere
between 1 to 5 IQ points, or 0.07 to 0.3 SD13,19,21. What is less clear
is how the impact of schooling interacts with the environments
that children experience and with their genetic predispositions—
in other words, do school settings amplify preexisting differences
(i.e., “rich-gets-richer”), or conversely, weaken existing differences
between children (i.e., “catch up”).
Much of a child’s environment is captured by socioeconomic

status (SES), a summary measure usually comprised of household
income, parental education, and neighborhood quality22. While
commonly implicated in initial differences in intelligence, SES has
also been found to widen existing differences throughout
development23–25. Recently, research on SES has been criticized

for neglecting the role of genetics—as parents not only hand
down environments but also genes26,27. For example, a genetically
informed twin study found a strong genetic influence on SES and
its association with intelligence28. While there is a large body of
research looking at how preexisting SES differences interplay with
years of schooling29, none of these previous studies have
incorporated genetics.
Fortunately, genome-wide association studies (GWAS) with

extremely large sample sizes and the viability of polygenic scores,
have made it possible to incorporate genetically informative
measures into a study. A polygenic score is an index that
combines thousands/millions of DNA regions (each with only a
tiny effect on the trait of interest) and gives a value to each
individual representing their genetic propensity. Relevant to us
here, a multi-trait cognitive polygenic score (cogPGS) was recently
shown to predict 7–10% of the variance in cognitive perfor-
mance30. This and similar polygenic scores correlate moderately (r
~0.3) with SES31,32, but little is known about their unique
contributions to different domains of intelligence. And even less
known if, or how, they interplay with schooling.
Gene-by-environment (GE) interplay is often proposed as an

explanation of how intelligence can show high heritability
alongside malleability33–36. To date, there are only a few studies
on GE interplay using polygenic scores. Of these studies, most
have focused on SES as the environmental variable of interest and
none have used the environmental variable of schooling, which is
particularly relevant to intelligence. Unfortunately, GE-interplay
results with SES have been inconsistent for educational achieve-
ment/attainment—some positive, negative, or null37–41. While
there is a high correlation between educational achievement and
intelligence, educational achievement is a broader concept
thought to also include personality characteristics such as
consciousness and openness to experience42,43. Furthermore, we
are not aware of any research examining if schooling moderates’
genetic effects on intelligence.
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Schooling, SES, and genetics thus represent three substantial
contributors to intelligence, but it is unclear to what extent their
contributions are (1) unique and (2) interact with one another. In a
sample of 3rd to 5th grade children, we estimated the unique
contributions of a year of schooling, SES, and cogPGS on
crystallized intelligence (cIQ), fluid intelligence (fIQ), and working
memory (WM). We chose these domains of intelligence since they
are particularly important for educational outcomes4,16,44. WM was
included since WM has shown to be heavily impacted by
schooling21, malleable45, and potentially relevant for GE-
interplay46. Our main aim was to examine if GE-interplay is
present for these domains of cognition. Specifically, we tested if
the effect of (1) schooling or (2) SES is moderated by cogPGS, and
(3) a three-way interaction between schooling, SES, and cogPGS.
These interactions allowed us to test if schooling enhances or
compensates for preexisting genetic and environmental inequity.

RESULTS
We included data from 6567 children (mean age= 9.88, range
8.92–11.00; Supplementary Table 1) recruited by the ABCD
consortium to be representative of the United States in sex, race,
ethnicity, SES, and urbanicity47. SES was defined as the first
component of a probabilistic PCA, capturing 65% of the variance
in total household income, highest parental education, and
neighborhood quality. Due to modeling constraints, we had to
exclude 1,086 children that were missing DNA data. This group
had significantly lower SES (Cohen’s d=−0.23, p < 0.001). SES and
cogPGS were positively correlated with each other and each
cognitive domain (Fig. 1 and Supplementary Fig. 4).

Schooling, SES, and cogPGS effect on cognition
To examine the effect of schooling on cIQ, fIQ, and WM
development, we used a regression discontinuity design over
grades 3 to 5, while controlling for age, sex, cogPGS, SES, and 20
ancestry-based principal components (Eq. 2, Supplementary
Tables 3–5).
We found that schooling had a significant effect (all p’s < 0.001)

for each cognitive domain we examined (cIQ: β= 0.13, fIQ:
β= 0.10, WM: β= 0.09). One year of schooling (i.e., 10 months)
contributed 0.22 SD, 0.14 SD, and 0.14 SD to the development of
cIQ, fIQ, and WM, respectively (Fig. 2). Notably, the ratio of 1 year
of schooling to 1 year of chronological age differed depending on

the domain. As expected, schooling affected cIQ (ratio= 1.1) more
than fIQ (ratio= 0.54). Interestingly, WM, a subtask of fIQ, had the
highest ratio of 2.2, indicating for this age range, 1 year of
schooling had double the effect of 1 year of chronological age.
There were no significant differences between the schooling
coefficients for cIQ, fIQ, or WM (|Z| < 1.96).
Sex had a significant effect for each cognitive domain, with

females performing better in fIQ (β= 0.09, p < 0.001) yet worse in
cIQ (β=−0.05, p= 0.023) and WM (β=−0.08, p < 0.001). CogPGS
and SES both showed independent significant effects (all p’s <
0.001) for cIQ, fIQ, and WM. The effect sizes of cogPGS (β= 0.16)
and SES (β= 0.29) were the largest for cIQ. CogPGS showed
similarly sized effects for fIQ (β= 0.09) and WM (β= 0.09), yet SES
had a slightly higher effect for WM (β= 0.22) than fIQ (β= 0.18).

SES subcomponents
The analysis above showed that our combined measure of SES
had effects on cIQ, fIQ, and WM. Since research has shown that
different subcomponents of SES could relate differently to
intelligence48–50, we also performed an analysis of each sub-
component. All components were significant (pFDR < 0.001) for
each cognitive domain. cIQ showed the largest effects for parental
education (β= 0.26), family income (β= 0.22) and neighborhood
quality (β= 0.11). In a similar fashion to the SES composite, WM
had slightly larger effect sizes than fIQ for parental education (WM:
β= 0.19; fIQ: β= 0.17), family income (WM: β= 0.17; fIQ: β= 0.14),
and neighborhood quality (WM: β= 0.08; fIQ: β= 0.06).

Sibling analysis
Gene-environment correlations can inflate the estimation of
cogPGS on phenotypes33,51,52. Therefore, we conducted a post
hoc sibling analysis (families= 392, n= 792) to estimate within
(βw) and between (βB) family effects of cogPGS on cIQ, fIQ, and
WM. Within-family effects (βw) are less confounded by the shared
environment since the transmission of alleles is random, giving
each sibling an equal probability of inheriting any given allele. Yet,
there is no variance within families for SES and very little for
schooling therefore, the sibling analysis is limited to genetics
(cogPGS). We found cIQ’s within-family effect (βw= 0.08, pFDR=
0.009) to be roughly half of the between-family effect (βB= 0.15,
pFDR= 0.009). For fIQ we found a significant within-family effect
(βw= 0.08, pFDR= 0.013), yet the between-family effect was not
significant (βB= 0.10, pFDR= 0.074). For WM, neither the within-
family (βw= 0.04, pFDR= 0.235) nor the between-family (βB= 0.10,
pFDR= 0.066) effects were significant.

Gene-by-environment interplay
There were no significant interactions for any of the cognitive
domains (Eqs. 3 and 4; Supplementary Tables 3–5). This included
our two-way interaction terms of interest (i.e., schooling-cogPGS,
schooling-SES, and cogPGS-SES) and the three-way interaction

Fig. 1 Corrected correlation plot. A correlation plot showing the
relationships of our variables of interest, colored values indicate
p < 0.001. These values are corrected for genetic PC’s (see
Supplementary Fig. 4 for more variables).

Fig. 2 Main effects for cognition. Independent effects of 1 year of
age, 1 year of schooling, cogPGS, and SES from mixed-effects
models predicting cIQ, fIQ, and WM (Eq. 2). All results are significant
for predicting their respective cognitive domain (Supplementary
Tables 3–5). Bars reflect 95% frequentist confidence intervals.
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term (i.e., schooling-cogPGS-SES). This null result held when we
added principal component interactions with schooling, cogPGS,
and SES for each model53. We, therefore, carried out post hoc
Bayesian null hypothesis testing using region of practical
equivalence (ROPE) boundaries with 95% highest-density intervals
(HDI) for the two-way interaction terms of interest (Fig. 3, Eq. 3).
We used weakly informative priors, centered around zero, for the
two-way interaction terms (see Methods). Crucially, we used two
ROPE boundaries in standard units of 0.05 and 0.02. This was done
for two reasons, (1) a lack of consensus in the field on a minimal
effect size of interest and (2) schooling representing a cumulative
process54–56.
Almost all interaction terms were entirely within a ROPE

boundary of 0.05 (Fig. 3). This means that with a 95% probability,
the interaction effect was less than 0.05 SD, adding evidence for
the null hypothesis (Supplementary Table 8). The two exceptions
were the schooling-cogPGS interaction (Fig. 3b, c), where 95%
were slightly outside the 0.05 boundary for fIQ (3%) and WM (5%).
However, most of the terms have a substantial part of their
distribution overlapping with the ROPE boundaries of 0.02. This
means we cannot confirm nor disprove the null hypothesis for a
maximal effect size of interest of 0.02 SDs.

Post hoc g analysis
A single-factor confirmatory factor analysis fit the cognitive tasks
well (RMSEA= 0.03 & CFI= 0.987; Supplementary Fig. 2). We then
extracted factor scores (g) and used them as the dependent
variable. The standardized effect of schooling on g was 0.136 SD
(pFDR < 0.001)—a similar magnitude as fIQ and WM’s effects.
Mirroring the other cognitive domains, no two- or three-way

interactions were significant following FDR correction (Supple-
mentary Table 6).

Post hoc European ancestry analysis
CogPGS has less accuracy in non-European populations therefore,
we conducted a post hoc reanalysis in the full model (Eq. 4) for
each cognitive variable, including only those children whose
genetic ancestry 4-means clustered on the first two principal
components57,58. This subsample was less representative of the
United States with substantially higher SES (Cohen’s d= 0.80.,
p < 0.001). The results from that analysis stayed generally the same
as the analysis of the full population (Supplementary Table 7),
both in terms of effect sizes on the main results and the lack of
significance on the interaction terms. In reference to the full
sample, there was a slight increase in the size of the effect from
CogPGS (β range= 0.005–0.020), yet this was followed by larger
decreases from SES (β range=−0.046 to −0.080).

DISCUSSION
Schooling showed substantial and independent effects for each
intelligence domain tested: cIQ, fIQ, and WM. In line with previous
research, we found the raw effect of schooling on cIQ to be larger
than for fIQ, though this difference was not significant13. This was
also true for the relative influence of schooling compared to the
effect of chronological age, as that ratio for cIQ was almost double
that of fIQ (1.1 vs 0.54), showing almost near equal influences per
year of schooling and age. Surprisingly, WM had the highest ratio
(2.2), with the effect of schooling being more than double that of
age. While this is in agreement with a previous study in younger

Fig. 3 Interaction effects for cognition. The estimated interaction effects of schooling-SES, schooling-cogPGS and cogPGS-SES on a cIQ,
b fIQ, and c WM from a hierarchical Bayesian mixed-effects model. All values are in standard units. Dark blue shading indicates the 95%
highest-density interval’s (HDI) of the estimates posterior distribution. The gray band represents a region of practical equivalence (ROPE) of
0.02 SD’s, while the dotted lines indicate a ROPE boundary of 0.05 SD’s. Most of the interaction terms are fully within a 0.05 SD ROPE boundary
providing evidence for the null hypothesis at this boundary, yet none fully lie within a ROPE boundary of 0.02 SD’s (Supplementary Table 8).
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children21, it should be interpreted with caution as the WM
measure comprised of only one task59.
As expected, SES and cogPGS were highly correlated with each

other, highlighting the need to isolate the independent effects of
each. Both had large, independent effects on cIQ, fIQ, and WM. In
a follow-up analysis, we estimated the contribution of each SES
component separately. Notably, all SES components were
significant for each intelligence domain, with the effects from
parental education and income being similar in size while
neighborhood quality was roughly half.
A child’s SES is not independent of their cogPGS31, which makes

it difficult to support causal inferences of these factors as well as
interpret the interaction between them (i.e., the endogeneity
problem)60. This gene-environment dependence can cause
spurious gene-environment interactions41,61. Our sibling analysis
sheds light on this issue. We found the within-family effect of
cogPGS to be roughly half of the between-family effect for cIQ, in
line with the literature51,52. This indicates the presence of passive
genotype-environment correlations—whereby parents create
family environments consistent with their genotypes, which in
turn facilitate the development of their children’s intelligence.
Since we only had data from 392 families, a lack of statistical
power is most likely the reason for our null findings for fIQ and
WM. While our cogPGS estimate in the full sample should be
interpreted with caution, previous research has shown SES to be
the major source of these between-family effects51,62.
Predominant theories of GE-interplay imply a positive sign—

genetically endowed cognition influences one’s proximal environ-
ment, and that environment, in turn, influences one’s cognition in
continuous, reciprocal interactions, such as the multiplier theory34,
the transactional model35 and the bioecological model36. In line
with this, a meta-analysis on twin research found the heritability of
intelligence to increase with higher SES in the United States63. But
this effect is far from consistent. The same meta-analysis did not
replicate this finding on data collected outside the United States.
Furthermore, a large twin study found negative and null results for
heritability by SES interaction regarding mathematics and reading
in Florida64. Two studies using a similar polygenic marker to ours
did not find evidence of GE-interplay for EA65,66, yet a study with
130,000 adults in the UK found a very small negative interaction of
SES with neighborhood quality for fIQ and EA40. Crucially, the
standardized effect size of this interaction was (β < 0.02 SD)—
translating to less than a third IQ point throughout one’s entire life
—in turn having no practical effect for the individual.
We did not find any significant interaction between schooling

and SES or cogPGS. One strength of our design is that schooling is,
in principle, independent from cogPGS and SES. We are not aware
of any other research looking at GE-interplay with schooling. A
recent study did find low PGS children in high-SES schools to
continue with mathematics much longer than genetically similar
children in low-SES schools39. However, we see their result as
more relevant to inform a cogPGS-SES effect rather than the gene-
by-schooling interaction.
We expected our interaction terms to either compensate or

accelerate preexisting differences. Schooling, for example, could
increase (i.e., Mathew’s effect) economic/genetic inequality or
lessen these differences between children (i.e., catch-up effect).
The Coleman Report, a seminal study with more than half a million
students and over 3000 schools in 1966, controversially concluded
schools did not contribute to widening achievement gaps
between children29. Conversely, there is some evidence that
schooling might lessen socioeconomic disparities between
children (i.e., a catch-up effect) for cognitive skills67.
Our study indicates schooling to not be a major driving force for

either increasing or decreasing differences due to SES or cogPGS.
Yet, we emphasize caution in interpreting these null effects as our
range of schooling (3rd–5th grade) was limited, and Bayesian
analysis showed that an effect of less than 0.02 SD could not be

ruled out (Fig. 3). Since any interaction effect with schooling could
accumulate—that is, continue to increase each year—a very small
(<0.05 SD) effect size could be of practical relevance54,55. For
example, an interaction with schooling as small as 0.02 SD could
accumulate over five years to 0.1 SD or roughly 30% of the largest
SES main effect (i.e., cIQ= 0.29). This is, of course, a simplistic
scenario assuming no counteracting mechanisms, yet it illustrates
how very small effect sizes can become consequential68,69. In
contrast, cogPGS–SES’ interaction is a lifelong effect and does not
have the potential to accumulate in the same way. However, our
sample had a slightly lower SES (Cohen’s d=−0.23) than the
average for the United States, therefore, we cannot rule out an
interaction at the lower tail of the SES distribution.
One limitation of this study is that the 1.1 million individuals

used to estimate the cogPGS are heavily biased towards those of
European descent and from higher SES areas30,70. This means our
results regarding genetics should only be generalized to white
populations. Furthermore, GWAS methods cannot detect certain
types and sizes of GE interactions since they are intended to
detect additive effects71. Another consideration is how to interpret
findings with multi-trait GWAS’s—in our case cognitive ability,
mathematics, and educational attainment—since one of the
supplementary phenotypes could be driving the results72. The
extent of this issue depends on (1) the relative sample size
differences between the GWAS included and (2) the genetic
correlation of these traits. In our case, there are sample size
differences between educational attainment and cognitive ability,
yet the very high (r ~ 0.75) genetic correlation between these
traits most likely mitigates this issue73. Lastly, a strength of our
study is that we controlled for ancestry-based genetic PCs in the
full model, rather than just correcting cogPGS. While this means
SES’s relationship with cognition is controlled for population
stratification, it also brought the limitation that we had to exclude
subjects without DNA, resulting in the average level of SES
increasing.
We found that schooling causes relatively large increases in

children’s intelligence. The two years of schooling (3rd to 5th
grade) caused a larger difference in intelligence than either SES or
cogPGS. However, schooling did not change the rank order of
individuals’ intelligence. This was shown by the lack of significant
two-way interactions between Schooling, SES, and cogPGS,
although our power to detect potentially meaningful small effects
for schooling was limited. Intriguingly, we did not find any
interaction between SES and cogPGS, this means that children’s
genetic differences do not matter more, or less, for intelligence
dependent upon their SES background.

METHODS
We used data from the Adolescent Brain Cognitive Development
(ABCD) study, which was reviewed and approved by the central
institutional review board at the University of California, San
Diego. Written parental informed consent, along with child assent,
was obtained for all participants. Part of the sample included
siblings, along with non-representative amounts of monozygotic
and dizygotic twins47,74. To correct this, we randomly selected one
child per family. We also excluded children that reported ever
repeating a grade, as this would bias our statistical analysis. This
resulted in a total of 6567 children between grades three and five
enrolled in regular private or public schooling.

Behavioral and demographic measures
Since recruitment was continuous throughout the year, this
allowed us to measure schooling in months. We excluded summer
vacation (15 June until 15 August) from our schooling variable by
coding children recruited during summer as having the last month
of schooling from the previous grade. This resulted in a variable
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with 10 months of schooling per year. Chronological age was also
measured in months to preserve anonymity.
Our endogenous variables were working memory (WM), fluid

(fIQ), and crystallized intelligence (cIQ) from the NIH toolbox
cognition battery75. These tasks have been shown to have good
reliability and validity59,76,77. cIQ consisted of a picture vocabulary
task and an oral reading recognition task. fIQ consisted of five
tasks; pattern comparison processing speed test, a list-sorting WM
test, a picture sequence memory test, a flanker task, and a
dimensional change card sort task. One of the fluid tasks, list-
sorting WM, was used as our WM measure. We used the sum
scores provided by the NIH toolbox, rather than latent factors, to
facilitate comparison with other studies. All outliers were brought
to the fence (Tukey/Boxplot Method). Variables were then
standardized to a mean of zero and a standard deviation of one.
SES was defined as the first principal component from a

probabilistic PCA of total household income, highest parental
education, and neighborhood quality. We used a probabilistic PCA
because of the decent amounts of non-overlapping missing data
in parental income (n= 474, ~7%) and neighborhood quality
(n= 263, ~4%). Children missing more than one of the three
measures were excluded (n= 45). Parental education was
recorded to reflect middle school or less (1), some high school
(2), high school graduate (3), some college/associates degree (4),
bachelor’s degree (5), a master’s degree (6), or professional degree
(7). Our measure of neighborhood quality was the area depriva-
tion index calculated from the American Community Survey using
the address of primary residency78. The SES composite and each
subcomponent were standardized with a mean of zero and a
standard deviation of one.

Genetic measures
Genotyping was done by the ABCD study and the data provided
to us. Saliva samples were collected at the baseline visit the
genotyping was performed using the Smokescreen array79,
consisting of 646,247 genetic variants.
Quality control (QC), imputation, and genetic PCA were

performed by the National Bioinformatics Infrastructure Sweden
(NBIS), as a service contracted by us. Before imputation, SNPs were
excluded if they had high levels of missing data (SNP call rate
<98%), departed from Hardy–Weinberg equilibrium as calculated in
the lfa R package (sHWE) (P < 1 × 10−6), or had minor allele
frequencies (MAF) <1%. Moreover, individuals with an absolute
autosomal heterozygosity >0.2 or more than 2% missing genotypes
were excluded. These filtering steps resulted in a cleaned dataset of
10,069 individuals and 430,622 variants. Subsequently, haplotypes
were pre-phased with SHAPEIT2. Genetic markers were imputed
using the IMPUTE4 software. As the reference population, we used
the 1000 Genomes haplotypes—Phase 3 integrated variant set
release in NCBI build 37 (hg19) coordinates. This is a mixed, multi-
ethnic population dataset consisting of 2504 samples and 5008
haplotypes from populations of Europeans, Africans, East Asians,
Southern Asians, and Americans (https://mathgen.stats.ox.ac.uk/
impute/1000GP_Phase3.html). One of the main advantages of this
imputation approach is that it provides better concordance in
diverse human populations (for more information, see refs. 80,81).
After imputation, genotypes with an INFO score <0.3 or a MAF
<0.001% were excluded. The final number of SNPs after imputation
was 40,637,119 in a total of 10,069 individuals.
To check for outliers and to control for population structure,

principal components of SNPs were obtained using the principal
component analysis (PCA) module as implemented in RICOPILI.
First, SNPs were pruned to ensure that there is little linkage
disequilibrium between SNPs (R2 < 0.2, 200 SNPs window: plink –
indep-pairwise 200 100 0.2). The LD pruning was repeated until
100 K SNPs were reached. Then, the resulting SNPs go into the

PCA. We used the first 20 principal components (PCs) from that
genetic PCA as covariates in our main analyses.
With the SNPs QCed and imputed, our group then created

polygenic scores for cognitive performance (here called “cogPGS”)
for each participant using PRSice-282. This was calculated by the
sum of effect sizes of thousands of SNPs (weighted by how many
of the effect alleles were present in each individual) that were
discovered by a large genome-wide association study on
educational attainment, mathematical ability, and general cogni-
tive ability30. That study has available all effects sizes and p values
of their SNPs on the website of the Social Science Genetics
Association Consortium (https://www.thessgac.org/data). We used
the data available by the consortium from a multi-trait analysis of
GWAS83, which, in our case, represents a joint polygenic score
focused on a GWAS of cognitive performance and complemented
by information from a GWAS on educational attainment, a GWAS
on the highest-level math class completed, and a GWAS on self-
reported math ability. This joint analysis is ideal because pairwise
genetic correlations of these traits were high30. Furthermore, these
GWAS had hundreds of thousands of individuals, and such a large
sample size allows new studies to detect effects in samples of a
few hundred individuals with 80% statistical power30.
For the creation of cogPGS in our samples, we performed

clumping and pruning to remove nearby SNPs that are correlated
with one another. We used the SNPs below the original threshold
of P < 5e-5 from the GWAS as we wanted to use the full GWAS
sample (limited SNP release due to anonymity concerns). After
adopting a clumping sliding window of 250 kb, with the linkage
disequilibrium clumping set to r2 > 0.25, this resulted in 5255 SNPs
for our dataset. Finally, we normalized the polygenic scores
(mean= 0, sd= 1).

Statistical analysis
We used random intercept mixed-effects models to predict the
effect of schooling from our three cognitive variables of interest
(i.e., fIQ, cIQ, and WM); Y denotes these outcome variables. Every
model included a random intercept per collection site (j) to
account for the clustering of individuals (i). Models were fit using
maximum likelihood estimation with the R package lme4 (v.
1.1–27.1)84,85. All results are reported in standard units (mean= 0,
SD= 1), unless specified otherwise. P values on all models were
derived using Satterthwaite’s degrees of freedom method with
the lmerTest package (v. 3.1-3)86, with an alpha level of 0.05.
We broke the equation into four steps to more clearly convey

the identification assumptions behind our estimands87. A fuzzy
regression discontinuity design (Eq. 1) was used to isolate the
effect of one year of schooling from chronological age. This causal
inference method is one of the best to isolate the effect of
schooling, yet it relies on two critical assumptions: (1) age-based
allocation rule and (2) linearity of the within-grade regression.
Previous research has shown that, in practice, violation of these
assumptions does not substantially bias the schooling or age
coefficient18,88. Data collection was continuous throughout the
school year therefore, we correct for months of schooling rather
than grade, yet our instrument (age-based grade allocation) is on
the level of grade. We included post hoc sensitivity checks using
grades 3–5 and comparing the two most frequent, grades 4 and 5,
for Eq. 1 (Supplementary Table 9a, b). Lastly, we also compared
the schooling coefficients using a z-test on the difference between
the coefficients. This method sums the standard error from the
coefficients as error variance, assuming no correlation between
the coefficients, thereby being conservative89. We used an
absolute z-value of 1.96, corresponding to an alpha level of 0.05.

yij � α0 þ β1ðAgeijÞ þ β2ðSchoolingijÞ þ γ0j þ ϵij (1)

We then add a fixed effect for cogPGS and SES, while
controlling sex and 20 genetic principal components (Eq. 2). β*
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represents 20 fixed effects for each principal component. This
model allowed us to estimate the causal effect of one year of
schooling, along with estimating the independent effects of
chronological age, sex, cogPGS, and SES. Crucially, schooling is the
only exogenous variable. It is important to highlight that by
adding 20 genetic principal components to the model, we are
controlling all variables for population stratification, most notably
SES’s relationship with intelligence.

yij � α0 þ β1ðAgeijÞ þ β2ðShoolingijÞ þ β3ðSESijÞ þ β4ðcogPGSijÞ
þ β5ðSexMaleijÞ þ β�ð20PCijÞ þ γ0j þ ϵij

(2)

In Eq. 3, we were interested in determining if schooling
interacted with cogPGS (i.e., β6) or SES (i.e., β7). To properly isolate
schooling’s interaction effects and avoid spurious results, we
included interactions of no interest with age (i.e., β8 and β9). We
were also interested to see if SES interacted with cogPGS (i.e., β10),
yet we emphasize caution in interpreting this term as any
interaction found could be spurious due to endogeneity between
SES and cogPGS41,90. We refer to these interactions as GE-
interplay, highlighting that they could be caused by gene-by-
environment interaction (GxE) and/or gene-by-environment cor-
relation (rGE). rGE refers to the fact that genotypes and
environments are not randomly distributed, while GxE is an
interaction in the classical sense whereby the environment (or
genotype) interacts with the other91. Due to schooling’s exogen-
ous nature, a significant interaction would be most likely due to
GxE, yet this is not the case for an interaction between SES and
cogPGS which could be the result of either GxE or rGE.

yij � α0 þ β1ðAgeijÞ þ β2ðSchoolingijÞβ3ðSESijÞ þ β4ðcogPGSijÞ
þ β5ðSexMaleijÞ þ β6ðSchooling ´ cogPGSijÞβ7ðSchooling ´ SESijÞ
þ β8ðAge ´ cogPGSijÞ þ β9ðAge ´ SESijÞ
þ β10ðcogPGS ´ SESijÞ þ β�ð20PCijÞ þ γ0j þ ϵij

(3)

Lastly, we were interested in the presence of a three-way
interaction between schooling, SES, and cogPGS (Eq. 4, β11). To
accomplish this, we added a three-way interaction term, which
was then compared, using a likelihood-ratio test to Eq. 3.

yij � α0 þ β1ðAgeijÞ þ β2ðSchoolingijÞ þ β3ðSESijÞ þ β4ðcogPGSijÞ
þ β5ðSexMaleijÞ þ β6ðSchooling ´ cogPGSijÞ
þ β7ðSchooling ´ SESijÞ þ β8ðAge ´ cogPGSijÞ
þ β9ðAge ´ SESijÞ þ β10ðcogPGS ´ SESijÞ
þ β11ðSchooling ´ cogPGS ´ SESijÞ þ β�ð20PCijÞ þ γ0j þ ϵij

(4)

SES subcomponents
In cases of significant SES composite findings, we also reported the
results for each SES subcomponent separately. This was done for
two reasons: (1) research showing specific SES measures to relate to
intelligence more than others, and (2) call in the literature to treat
SES measures independently48–50. We considered the entire
subcomponent analysis a family, therefore, p values were corrected
using a false discovery rate (FDR) for the number of terms tested.

Post hoc sibling analysis
To estimate the within and between-family effect cogPGS on cIQ,
fIQ, and WM we conducted a sibling analysis using the procedure
described by Selzam and colleagues 201951. This allowed us to
estimate the within-family direct genetic effects (βw) and the
between-family genetic effects (βB). For families to be included in

the analysis they needed to have at least two non-identical
siblings. We considered the entire sibling analysis a family;
therefore, p values were corrected using false discovery rate
(FDR) for the number of terms of interest tested. SES has been
shown to largely explain between-family effects therefore cogPGS
in our main analysis is, to some extent, controlled for these
between-family effects51,62.

Post hoc g analysis
We fit nine cognitive tasks into a single-factor solution using
confirmatory factor analysis with the Lavaan package in R
(Supplementary Fig. 2)92. This included all the tasks from the
NIH toolbox cognition battery along with the overall score on a
WM nback task and the total raw score from matrix reasoning on
the Wechsler Intelligence Scale for Children. A single factor
solution fit the data well (RMSEA= 0.03 and CFI= 0.987) when
correlated covariances were added between the two crystallized
tasks, the two WM tasks, and a cluster of three tasks sharing similar
attributes (Flanker, Pattern comparison & Card sorting). We then
extracted factor scores and fit them to Eqs. 1–4 while using FDR
correction for multiple comparisons.

Post hoc European ancestry analysis
CogPGS has limited prediction accuracy in non-European sam-
ples57. We therefore, subsetted the data using 4-means clustering
on the first two principal components (n= 3751), resulting in the
exclusion of 43% of the sample58. The proportion is equal to the
full ABCD sample, which is representative of the United States. Yet
this subsample had significantly higher SES (Cohen’s d= 0.80.,
p < 0.001). All variables were (re)standardized to this population
with a mean of 0 and an SD of 1. We then fit Eq. 4 on this subset
for cIQ, fIQ, WM, and g and used FDR correction on the p values
(Supplementary Table 7).

Bayesian hierarchical modeling
To have a better understanding of our results, we conducted
Bayesian mixed-effects models of Eq. 3 with the brms package (v.
2.15.0)93 using Markov Chain Monte Carlo sampling with 10,000
iterations (1000 warmup) in 15 chains. We set weakly informative,
normally distributed priors for our terms of interest, keeping the
default non-informative priors unless otherwise specified. For cIQ
age (β1) and schooling (β2) had normally distributed priors with a
mean of .20 and a standard deviation (SD) of 0.15. CogPGS (β4)
had a prior with a mean of 0.15 and an SD of 0.1, while SES (β3)
had a larger mean of 0.25 and an SD of 0.2. All two-way interaction
terms (β6-10) had two-tailed priors with a mean of zero and an SD
of 0.1. Gender and the 20 PCs had default flat priors. For fIQ and
WM we set identical priors; these were a mean of 0.15 and an SD
of 0.15 for age (β1) and schooling (β2). CogPGS (β4) had a prior
with a mean of 0.1 and an SD of 0.1, while SES (β3) was double that
with a mean of 0.2 and an SD of 0.2. All two-way interaction terms
(β6-10) had identical priors to cIQ, along with flat priors for gender
and each principal component. We also fit Eq. 4 to test the null of
the three-way interaction term where priors were identical to Eq. 3
while the three-way term (β11) had a mean of 0 and an SD of 0.1.
Notably, our results for the interactions in Eqs. 3 and 4 did not
meaningfully change in comparison to flat priors.
We then computed the 95% highest-density intervals (HDI) of

the posterior distributions for our three interaction terms of
interest (β6, β7, β10, β11) for cIQ, fIQ, and WM. Crucially, we used
two ROPE boundaries in standard units of 0.05 and 0.02. This was
done for two reasons, (1) a lack of consensus in the field on a
minimal effect size of interest, and (2) schooling representing a
cumulative process. Since the schooling interaction terms (β6, β7,
β11) are cumulative, they could warrant a smaller minimal effect
size of interest than the cogPGS-SES’ interaction54–56. We then
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calculated the percentage of the estimated 95% HDI lying within
our ROPE boundaries, giving us the probability of the null
hypothesis. If 95% of the estimates' posterior distribution lies
within ROPE boundaries, the null hypothesis can be confirmed as
any probable effect is considered too small to be meaningful.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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