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No guts, no glory: underestimating the benefits of providing
children with mechanistic details
Aaron Chuey1✉, Amanda McCarthy2, Kristi Lockhart2, Emmanuel Trouche3, Mark Sheskin2,4 and Frank Keil2

Previous research shows that children effectively extract and utilize causal information, yet we find that adults doubt children’s
ability to understand complex mechanisms. Since adults themselves struggle to explain how everyday objects work, why expect
more from children? Although remembering details may prove difficult, we argue that exposure to mechanism benefits children via
the formation of abstract causal knowledge that supports epistemic evaluation. We tested 240 6–9 year-olds’ memory for concrete
details and the ability to distinguish expertise before, immediately after, or a week after viewing a video about how combustion
engines work. By around age 8, children who saw the video remembered mechanistic details and were better able to detect car-
engine experts. Beyond detailed knowledge, the current results suggest that children also acquired an abstracted sense of how
systems work that can facilitate epistemic reasoning.

npj Science of Learning            (2021) 6:30 ; https://doi.org/10.1038/s41539-021-00108-5

INTRODUCTION
College-level science and engineering courses routinely simplify
causal mechanisms, employing idealizations like frictionless
surfaces, ideal gases, and perfectly inelastic interactions. Educators
often extend these simplifying practices to children by eliminating
mechanistic details altogether in favor of isolated facts, high-level
functions, methodology, and the nature of science1–3. After all,
mechanistic details seem far beyond children’s grasp, given that
most adults cannot recognize, let alone provide, simplified
explanations for how everyday objects work, despite their
confidence otherwise4,5. For example, regular adult bicycle users
in the United Kingdom appeared to know surprisingly little about
how bicycles actually work, often endorsing drawings where the
chain went around both the front and rear wheels6. Yet, omitting
discussions of the “guts” that explain how things work contradicts
children’s ability to reason abstractly about causal systems as well
as their early information-seeking behaviors7.
Even infants selectively explore in order to learn about the

causal structure of their environment8,9. More broadly, young
children selectively attend to patterns of cause and effect10 as well
as properties that afford useful interventions on systems11,12.
Children’s information-seeking preferences also guide their usage
of language. Children as young as three repeatedly request details
about cause and effect through “why” and “how” questions13–16,
behaviors that appear to be driven in part by a desire for
mechanistic information17. Likewise, children’s own explanations
tend to focus on causal relationships and can improve their
memory for causal information18–20. Together, these findings
suggest that from an early age, children actively seek causal
information and are sensitive to the causal properties and
affordances of objects.
Children’s interest in causal information not only enriches their

own knowledge, it also influences how they reason about
knowledge in other minds. Children as young as six view those
possessing mechanistic knowledge as having broader, deeper,
and more generalizable knowledge21,22. While the representations

underlying such epistemic inferences are currently unclear, the
way that children generalize mechanistic knowledge selectively
within, but not across, domains (e.g., knowing how a clock works
implies knowledge of machines but not of flowers) suggests they
are able to represent causal properties shared among
related kinds.
Children themselves reason mechanistically by the early

elementary school years23. Exposure to mechanisms could
contribute to the formation of such representations, even if the
mechanisms themselves are forgotten. For example, young
children acquire a “meta-knowledge” of the relative causal
complexity of devices and biological systems, despite near total
ignorance of how these systems actually work24. Beyond
complexity, children also appear to acquire other kinds of
intuitions about the broad causal patterns implicit in mechanistic
descriptions. Here we ask whether children acquire three casual
intuitions about internal combustion engines via exposure to
mechanistic details: the transient but necessary containment of
fluid, the synchronized operation of parts, and the decentralized
control of parts. In addition to abstracting away from concrete
details, these kinds of mechanistic representations often persist in
memory longer25–27. Ironically, presenting richly detailed causal
mechanisms might promote learning of higher-level causal
patterns that endure in memory, while the very details from
which they were abstracted decay.
Recent work has begun to examine the impact of causally

focused instruction on children’s abstract knowledge. In one
study, a group of eight- and nine-year-old students were taught
about a complex topic, atomic–molecular theory, over the course
of ten weeks28. Instead of focusing merely on what atoms and
molecules are, an instructor taught children how and why certain
materials, and by extension the atoms and molecules that
compose them, possess certain properties. At the end of the
weekly sessions, children’s abstract understanding of atomic
theory and their curiosity for scientific topics drastically improved.
Thus, following a relatively short period of causally focused
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instruction on atomic theory, children as young as eight were able
to explain patterns in the periodic table in terms of electron-shell
structures and could predict bonding sequences between novel
configurations of atoms and molecules. Even more strikingly,
children’s knowledge persisted for at least a year with no
additional instruction.
In another set of studies29, four- and five-year-olds attempted to

turn on a fan by manipulating a simple circuit, while a parent or
experimenter provided mechanistic or nonmechanistic answers to
their questions. Children who received mechanistic information
were not only more likely to activate the fan, but also to succeed
on a second task involving a novel circuit. These results suggest
that informal exposure to mechanistic information aids children’s
ability to reason abstractly about how a circuit system works and
to generalize that knowledge to similar systems.
Although these studies demonstrate the impact of mechanistic

information on children’s abstract knowledge and reasoning
ability, they involved extended, child-centered dialog that varied
with each child. In real-world contexts, young children are often
passive viewers of mechanistic information, unable to ask
sequences of how-and-why questions or receive feedback from
others. Moreover, previous work has not attributed a particular set
of causal abstractions to children nor systematically measured
them. Can specific causal abstractions be measured in tightly
controlled experimental settings without tailored interactions
between teacher and student, thereby ensuring information is
shared with all participants uniformly? Further, can children even
form such abstractions from only brief exposure to mechanistic
information?
We addressed these questions by showing children a short

video designed to teach college-level adults about a complex
device—an internal combustion engine. The video shows more
than one hundred discrete parts, and, over the course of seven
minutes, thousands of distinct causal relations between those
parts. Afterward, we measured children’s memory for concrete
information explicitly mentioned in the video as well as their
understanding of abstract causal patterns implicit (but not
explicitly stated) in the video. We assessed children’s causal
abstractions by asking children to select which of two individuals
was a “real” car engine expert. Crucially, one individual provided a
statement that aligned with an abstract aspect of how a car
engine works (e.g., when one part goes faster, all the other parts
have to go faster too), while the other espoused a plausible
alternative (e.g., when some parts go faster, other parts have to
slow down). Therefore, children’s success on this task depends on

whether they represent a particular abstract causal property of car
engines. We compared performance between children who did
not view the video, those who viewed the video and were
immediately tested, and those who viewed the video but were
tested a week later.
The ability to infer abstract patterns from rich mechanistic

information and apply this knowledge a week later might seem
highly implausible for children: it contrasts sharply with science
curricula recommended for young children by even the most
ambitious interpretations of the Next Generation Science Stan-
dards30. It also contradicts adults’ intuitions. To demonstrate this
contradiction, we asked adults to estimate the earliest age at
which a majority of children would understand a video about a
variety of topics ranging from simple to complex.
We recruited 41 adults via Amazon Mechanical Turk who

participated for pay. None were excluded. In total, 22 video topics
were chosen that covered a broad range of content, including
videos explicitly aimed at young children (e.g., Teletubbies) and
adults (e.g., Game of Thrones), see Fig. 1 for a full list of items.
Participants were shown a series of items and asked to rate “at
what age a majority of children would understand a video about/
an episode of [topic]” on a scale of 0–18 years. Participants
repeated this procedure for each item, order-randomized. Of all 22
items, adults rated a video of how a car engine works as requiring
the highest age to understand, at over 12 years (M= 12.32, SD=
3.57), eclipsing videos about other complex or adult-oriented
topics such as the industrial revolution, Game of Thrones, and how
a computer works.
However, young children’s sustained interest in mechanism

suggests that adults’ pessimistic assessment may be misguided,
especially given children’s impressive ability to evaluate others’
knowledge based on their causal understanding31. We therefore
expected to find lasting cognitive benefits of presenting mechan-
istically complex events to young children. We tested children
aged 6–9 years. While children of this age can reason about those
who possess mechanistic knowledge, they have received minimal
formal education on mechanisms and possess little mechanistic
knowledge themselves30. Therefore, in addition to being well
under the age at which adults expect them to be able to
understand how a car engine works, 6–9-year-olds’ performance
in the current study is less likely to be influenced by knowledge
they already possess compared with older children and adults.
We predicted that children who viewed the video would

remember mechanistic details, such as the names and movement
of parts. We also expected their memory of those details to decay

Fig. 1 Adults’ average age of understanding judgements. Bars depict adults’ mean ratings at which age a majority of children would
understand a video about a variety of topics.
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over time. Most critically, we predicted that children who viewed
the video would acquire knowledge of relevant abstract causal
patterns compared with control children who had not viewed the
video, even though these patterns were never directly commu-
nicated to them. We further predicted that children would retain
this abstract knowledge a week after watching the video.

RESULTS
See supplementary materials for a comprehensive analysis.

Detailed mechanistic knowledge
To analyze children’s performance in the part names and
movement tasks, we fitted a linear regression to the data; the
number of items correct was the dependent variable, while
condition (immediate test, delayed test, and control) and age (in
months) were predictors. We used Bonferroni-adjusted post hoc
comparisons to compare performance between conditions.
Children in the immediate test condition (M= 4.37, SD= .82)
remembered engine-part names marginally better than those in
the delayed test condition (M= 4.02, SD= 1.00), t(174)= 2.08, p
= 0.079, who performed better than their counterparts in the
control condition (M= 1.92, SD= 1.03), t(174) = 12.46, p < 0.001.
Memory for part names improved with age, t(174) = 3.21, p=
0.002. In the part-movement task, memory was comparable in the
immediate (M= 3.12, SD= 0.90) and delayed test conditions (M
= 2.77, SD= 1.29), t(174) = 1.63, p= 0.21, while delayed test
participants performed better than those in the control condition
(M= 1.95, SD= 1.32), t(174)= 3.81, p < 0.001. Memory for part
movement was consistent across ages, t(174)= 0.79, p= 0.43.

Abstracted causal knowledge
To analyze children’s general performance in the expert-detection
task, we fitted a linear regression to the data; the number of items
correct was the dependent variable, while condition and age were
predictors. We used Bonferroni-adjusted post hoc comparisons to
compare performance between conditions. Children in the
immediate test condition (M= 4.07, SD= 1.21) were better at
detecting car-engine experts relative to those in the delayed test
condition (M= 3.5, SD= 1.11), t(174) = 2.43, p= 0.048, who in
turn were better than those in the control condition (M= 2.67, SD
= 1.31), t(174) = 6.50, p < 0.001. This pattern becomes more
pronounced with age: as age increases, the difference in expert-
detection performance between the immediate and delayed test
conditions and control condition widens, t(174)= 4.37, p < 0.001,
and t(174)= 2.69, p= .008, respectively. Importantly, these pat-
terns are driven by both better performance with age in the
immediate and delayed test conditions and poorer performance
with age in the control condition. This suggests that the younger
children in our sample performed at or near chance across
conditions, while older children identified the expert worse than
chance at baseline and better than chance following the video.
To analyze children’s acquisition of specific abstract concepts,

we fitted the data to a mixed-effects logistic-regression model.
Expert choice (1 if correct, 0 if incorrect) was the dependent
variable, while condition and abstract concept (synchronicity,
decentralized control, and containment) were predictors; partici-
pants were fit as random intercepts. We generated 95%
confidence intervals (CIs) via the effects package (Fox, 2003) to
compare performance in each condition to each other. Because
children’s performance on the task varied significantly with age,
we generated two separate models: one fitted to the data from 6-
to 7-year-olds and the other fitted to the data from 8- to 9-year-
olds.

Synchronicity
Across both age groups, children in the immediate test condition
performed significantly better on synchronicity items than those
in the control condition: predicted 95% CI [0.74, 0.93] compared to
[0.43, 69] for 6, 7-year-olds, and [0.82, 0.97] compared with [0.34,
0.59] for 8, 9-year-olds. However, only 8, 9-year-olds performed
significantly better in the delayed test condition than the control
condition a week later: [0.65, 0.87] compared with [0.43, 0.69] for 6,
7 year-olds and [0.67, 0.87] compared with [0.34, 0.59] for 8, 9
year-olds.

Decentralized control
In all, 8, 9 year-olds, but not 6, 7 year-olds, in the immediate
condition performed significantly better on decentralized control
items than those in the control condition: [0.32, 0.58] compared
with [0.41, 0.66] for 6, 7 year-olds, and [0.54, 0.78] compared with
[0.18, 0.41] for 8, 9 year-olds. Neither age group in the delayed test
condition performed significantly better than controls: [0.22, 0.46]
compared with [0.41, 0.66] for 6, 7 s, and [0.36, 0.61] compared
with [0.18, 0.41] for 8, 9 s.

Containment
Neither age group in the immediate or delayed conditions
performed significantly better on containment items compared
with those in the control condition: [0.39, 0.65] and [0.44, 0.69]
compared with [0.32, 0.58] for 6, 7 year-olds, and [0.49, 0.73] and
[0.42, 0.67] compared with [0.28, 0.53] for 8, 9 year-olds (Fig. 2).

DISCUSSION
As predicted, children learned the names and movement of car-
engine parts from the seven-minute video. However, contrary to
our expectations, children remembered these details a week later,
demonstrating impressive long-term retention of mechanistic
details. Both immediately after viewing the video and a week later,
children became better at detecting car-engine experts, with the
older children in our sample showing the most improvement.
Importantly, successfully choosing the expert in the current task
relies on concepts implied but never explicitly mentioned in the
video, suggesting that children retained an understanding of the
underlying causal patterns in addition to mechanistic details. The
current study tested three specific features: the containment of
fluid, the synchronization of part movement, and the decentra-
lized nature of how a car engine’s parts are controlled. All three
depend on causal relations between engine subcomponents, and
abstract away from particular relations and subcomponents to
characterize how a car engine works as a whole.
Importantly, children in our sample did not uniformly acquire

these abstract concepts. Children of all ages appeared to abstract
synchronicity from the video, with older children retaining that
knowledge a week later. Older, but not younger, children also
abstracted decentralized control from the video, although that
knowledge did not appear to persist after a week. Finally, there
was not strong evidence that older or younger children acquired
an abstract understanding of containment from the video at all.
Future research is needed to uncover factors that make some
causal abstractions more difficult to acquire than others.
Beyond being useful for understanding the mechanism at hand,

how else might an understanding of causal patterns benefit
learners? The expert-detection task itself suggests an enhanced
ability to infer and evaluate the knowledge of others. Indeed,
despite possessing little mechanistic knowledge themselves,
children as young as six can use others’ mechanistic knowledge
to distinguish between informants21 and make inferences about
the limits of those informants’ knowledge22. An understanding of
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the causal mechanisms shared by classes of things, such as
vehicles being propelled by engines, may guide these abilities.
The benefits of mechanistic exposure may also extend beyond

the realm of adjudicating information sources. By helping learners
focus on the most causally relevant patterns in a domain,
mechanistic exposure could empower relearning of the same
content or generalize to learning in the same high-level subject
area29. This in turn could aid learners in grouping entities that
share key causal patterns, even if they differ superficially32,33. In
addition, an understanding of underlying causal patterns could
support the categorization of new entities and the induction of
newly learned properties to known ones based on their under-
lying causal features34,35. Future research could investigate how
exposure to mechanistic details shapes children’s reasoning about
concepts and categories beyond their ability to reason about
expertise.
While mechanistic exposure clearly improved older children’s

ability to detect expertise, several factors limit the generalizability
and conclusions of the current study. First, because children also
acquired concrete knowledge (e.g., about part names and
movement) from the video, their subsequent improvement in
expert detection might not be the result of causal abstractions
formed while watching the video, but rather from their still-
present concrete knowledge during the expert-detection task
itself. While the first interpretation implies that children auto-
matically abstracted causal patterns from mechanistic instruction,
the second suggests they did so on an ad hoc basis when a need
for such abstractions arose. Future research could tease these
possibilities apart by using more complex mechanisms where
concrete details are more difficult to remember, or by increasing
the time duration between initial exposure and testing.
Second, the current study does not attempt to measure exactly

how abstract children’s car-engine representations have become
beyond the information presented in the video. The expert-
detection task was designed not to repeat verbatim any of the
language used in the video so that children who watched the
video could not identify the car-engine expert purely due to
verbal memory. However, some degree of verbal similarity
between the video and the correct car engine expert was
unavoidable (e.g., “squeeze the gas” vs “hold the gas in for a little
bit”). In addition, the current study only measured the influence of
mechanistic exposure on children’s ability to reason about others’
knowledge and expertise. Therefore, the granularity of children’s
abstract causal knowledge and full range of benefits it provides
also require further study. Nonetheless, prior work demonstrates
that providing explanations to children or encouraging them to

self-explain can focus their attention on causally relevant, as
opposed to superficial, details of causal systems and improve
their ability to intervene on them18,19,36. Future work could
investigate how exposure to mechanistic explanations about a
causal system influences children’s abilities to intervene on that
system and on other systems with underlying similarities (e.g.,
steam engines). Such investigations would enable researchers to
probe how abstract children’s mechanistic representations are,
how they generalize to other systems, and what other abilities
they support.
Third, the current study focuses on a single mechanical system,

an internal combustion engine, and a small subset of causal
patterns underlying its operation (e.g., synchronicity, containment,
and decentralized control). The findings of the current study may
therefore not smoothly generalize to other mechanisms, particu-
larly those within other domains such as biology (e.g., how a
kidney works) or economics (e.g., how inflation works) that
children encounter in the classroom and elsewhere. Mechanistic
exposure appears to cause children to reason differently about the
complexity of human hearts37, although more systematic studies
are needed to determine the precise abstractions involved.
Nonetheless, the relatively short time span of the current
intervention (around 7min) suggests that more comprehensive
interventions have the potential to more radically shift children’s
intuitions.
Despite the perceived hurdles of learning how objects work,

elaborate levels of mechanistic detail may nonetheless be
pedagogically powerful. Exposure to a system’s inner workings
provides insights into more general causal principles explaining
how that system works or operates. Among other uses, these
abstractions can be employed to evaluate the knowledge of
others, even when one possesses little knowledge themselves. We
find that children as young as eight who saw a video about how
car engines work were reliably better able than controls to use
abstract principles to detect “real” car-engine experts. The
knowledge children acquired from a seven-minute video endured
over time and influenced performance in a completely novel task
a week later. Yet, the vast majority of adults surveyed thought the
children we tested would be far too young to learn anything of
importance from the video. In contrast, children not only learned a
surprising amount, but were notably engaged. Out of the 120
children who watched the video, none elected to stop midway
through, and many self-reported that they found the video to be
interesting, often to their parents’ surprise.
We suggest that early exposure to complex causal systems can

provide children with both concrete knowledge and abstract

Fig. 2 Expert-detection task performance by age and condition. Ribbons are 95% confidence intervals.
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system-level knowledge deployable when reasoning about others’
knowledge. Instead of being overwhelmed and discouraged by
the multitude of details, children are often fascinated by complex
mechanisms. Yet, many classrooms set students up to fail by only
assessing their memory of these details rather than the skills they
enhance. These incomplete assessments of students’ abilities can
give the impression that complex mechanisms are simply out of
most learners’ reach38. Instead of sparing children encounters with
these mechanisms altogether, we should recognize children’s
early ability to take advantage of the flood of information with an
eye for what they are actually gaining from it.

METHODS
Participants
All research conducted was approved by the Yale University IRB and
adhered to all ethical regulations regarding human subjects. In total, 180
children (Mage= 95 months, range: 6:0–9:11, 96 males) participated in the
initial study. Given the logistics of scheduling and completing two study
sessions exactly one week apart, we determined that this was the largest
feasible sample-size recruitment efforts could support. A post hoc power
analysis, conducted via simulation using the SimR package in R39,
confirmed that the current sample size had ample power to detect an
effect of condition on expert-detection performance, 95% CI [0.92, 0.95].
Children took part via TheChildLab.com online platform40, where
researchers engaged in online videoconferences with participants on a
web-enabled device. The study stimuli were presented as a PowerPoint
presentation shared within the videoconference. Participants were
sampled from a pool of recruited families and completed two online
sessions. Before the study sessions, families were provided with informa-
tion about the study. In lieu of written consent, parents provided verbal
consent for their child to participate, which was recorded; children also
provided verbal assent during the study session. In total, 14 participants
who failed to attend the second session were excluded with replacement.
Estimated household incomes were obtained for each family based on
their zip code. A broad distribution of income levels participated ($13,468–
$200,001), with the mean income level ($72,545) being lower than the
national average when the study was conducted ($89,930).

Materials
To teach children how a car engine works, we modified a video designed
for skilled-trade instruction at the adult level by dubbing over the video
with mechanistic explanation and commentary about an internal
combustion engine. To measure concrete knowledge about a car engine,
we used screenshots of the inside of a car engine to test participants’
memory of the names and movement of individual parts (see supple-
mentary materials).
To measure children’s abstract causal knowledge, we presented children

with pairs of informants (blue- or green-colored silhouettes) who each
provided a statement about how car engines work, after which children
were asked to pick the car-engine expert. The stimuli tested their
understanding of three core features of car engines: decentralized control,

containment, and synchronicity. These features abstract away from specific
pieces of information presented in the video and concern the operation of
car engines in aggregate. Importantly, none of these features were ever
explicitly mentioned in the video, although they could in principle be
inferred from the descriptions provided in the video. Decentralized control
refers to the absence of a central causal agent (e.g., a motherboard) that
singularly controls each part within a car engine; instead, each part causes
another part(s) to move in a decentralized fashion. Containment refers to
the way that fluid moves and is manipulated inside car engines; gasoline
and air are deliberately trapped and manipulated instead of moving freely
throughout. Finally, synchronicity refers to the way car engine parts move
in relation to each other. Instead of moving independently at different
speeds and rates of change, car engine parts move in unison because they
mutually determine each other’s movement. Two pairs of statements (one
true, one false) were generated for each concept, yielding six pairs of
statements in total. For each pair, one statement correctly described how a
car-engine works (mean word count= 15), while the other described an
opposing, yet intuitive alternative (mean word count= 17). Neither
statement reused language from the car-engine video, see Table 1 for a
full list of the expert-detection items.
Procedure: Sixty participants were each assigned to one of three

conditions: immediate test, delayed test, or control1. The ages of the
children in the three conditions did not differ (ps > 0.7) The immediate-test
condition measured acquisition of concrete and abstracted knowledge
directly after watching the video. Children first viewed the video and
afterward completed four sets of test questions.
In the understanding section, we first asked children “do you think the

video was easy to understand or hard to understand,” followed by asking if
it was kind of easy/hard or very easy/hard. We then asked children “how
much do you think you learned from the video; do you think you learned a
small amount or a large amount,” followed by asking if it was a kind of
small/large amount or a very small/large amount.
In the part names section, children were shown a picture of a car engine

with a given part highlighted. Below the image, the names of three parts
were depicted in blue, yellow, and green, respectively, one name was
correct, while the other two were car-part names not mentioned in the
video. Children were told “here are three things this part could be called. Is
it called the [name 1] in blue, the [name 2] in yellow, or the [name 3] in
green?”. Children repeated this procedure for each of five parts (belt,
pistons, camshaft, crank, and valves), order counterbalanced.
In the expert-detection section, children were told, “in this new activity,

you’re going to hear two people say something about a car engine, but
only one of them really knows about car engines and is a car engine
expert. The other one is just guessing. So your job is to listen to what each
person says and tell me which one you think is the real car engine expert.”
Children were then shown pairs of silhouettes, one in blue and one in
green. The experimenter then read a statement from each one (see Table
1) and asked children, “so who do you think is the real car engine expert,
the blue one or the green one?”. This procedure was repeated for all
six items.
In the part-movement section, children were asked about how

individual parts within the engine moved. First, an experimenter told the
child “I’m going to ask you about how the parts in a car engine move. It’s
ok if you don’t remember, just try your best!” Children were shown an
image of a car-engine part (the target), with three additional parts and

Table 1. Expert detection task stimuli.

Abstract Concept Expert Non-expert

Decentralized Control (1) In an engine, the speed of most parts is controlled by the
parts right next to them.

In an engine, there is one part that is connected to most of
the other parts and controls how fast they go.

Decentralized Control (2) Each part in the engine makes a different part move. There is one part in the engine that makes most of the other
parts move.

Containment (1) The valves are important because they hold the gas in for
a little bit.

The valves are important because they clean the bad stuff out
of the gas.

Containment (2) For a car engine to work well, sometimes air needs to be
trapped inside the engine.

For a car engine to work well, air has to flow in and out of the
engine without stopping.

Synchronicity (1) The belt is important because it helps the parts in the
engine move together at the same speed.

The belt is important because it keeps the parts in place when
the engine vibrates.

Synchronicity (2) In an engine, when one part goes faster, all the other parts
have to go faster too.

In an engine, when some parts go faster, other parts have to
slow down to save energy.
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their names in blue, green, and yellow squares below. Children were asked
“which part makes the [target] move? Do you think it’s the [part in blue] in
blue, the [part in yellow] in yellow, or the [part in green] in green that
makes the [target] move?” Children repeated this procedure for four parts
(camshaft, crank, valves, and belt), order counterbalanced.
The delayed-test condition measured children’s retention of detailed

mechanistic information and abstracted causal patterns after one week.
Participants in this condition watched the video and were then asked the
first set of test questions (understanding). Then one week later,
participants completed the part names, expert detection, and part-
movement questions during a second online session.
In the control condition, participants completed one online session. This

study measured children’s baseline performance, without viewing the
video, on part names, expert detection, and part movement. We had
initially planned on using a partial control condition in which children only
completed the expert-detection task, but given children’s strong
performance on the part names and movement tasks in the immediate
and delayed-test conditions, we later switched to a complete control
condition where participants completed the same measures as the two
other conditions. Because children’s expert judgments were the same in
both control conditions, we report here only the full control (data and
analysis for the partial-control condition can be found in the supplemen-
tary materials).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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