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Applying federated learning to combat food fraud in food
supply chains
Anand Gavai 1,2, Yamine Bouzembrak 2,3✉, Wenjuan Mu2, Frank Martin 4, Rajaram Kaliyaperumal5, Johan van Soest6,7,
Ananya Choudhury7, Jaap Heringa 8, Andre Dekker 7 and Hans J. P. Marvin2,9

Ensuring safe and healthy food is a big challenge due to the complexity of food supply chains and their vulnerability to many
internal and external factors, including food fraud. Recent research has shown that Artificial Intelligence (AI) based algorithms, in
particularly data driven Bayesian Network (BN) models, are very suitable as a tool to predict future food fraud and hence allowing
food producers to take proper actions to avoid that such problems occur. Such models become even more powerful when data can
be used from all actors in the supply chain, but data sharing is hampered by different interests, data security and data privacy.
Federated learning (FL) may circumvent these issues as demonstrated in various areas of the life sciences. In this research, we
demonstrate the potential of the FL technology for food fraud using a data driven BN, integrating data from different data owners
without the data leaving the database of the data owners. To this end, a framework was constructed consisting of three
geographically different data stations hosting different datasets on food fraud. Using this framework, a BN algorithm was
implemented that was trained on the data of different data stations while the data remained at its physical location abiding by
privacy principles. We demonstrated the applicability of the federated BN in food fraud and anticipate that such framework may
support stakeholders in the food supply chain for better decision-making regarding food fraud control while still preserving the
privacy and confidentiality nature of these data.
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INTRODUCTION
To ensure safe and healthy food, all actors in food supply chains are
collecting large amounts of food quality data (including food fraud)
at the various production stages. Implementation of technologies
such as drones1, mobile devices2 and Internet of Things (IoT)3 urge
the implementation of Artificial Intelligence (AI) solutions in the food
supply chain including food safety4,5. AI will play a key role in the
digital transformation of the food supply chains in particularly in the
exploitation of these vast data sources and to support the
implementation of a holistic approach to ensure truly sustainable
food systems6. It was demonstrated for food safety and food fraud
that the AI method Bayesian Network (BN) is suitable to implement
the holistic approach in which data from different origins and nature
are integrated4,7,8. BNs provide transparent and interpretable
probabilistic models that can handle uncertainty, incorporate prior
knowledge, and make principled decisions, offering a powerful
alternative to unexplainable machine learning algorithms4,9,10.
However, the impact of these technologies depends critically on

data sharing and integration, which is one of the biggest
challenges within the food supply chain11,12. Different data
owners have different interests and priorities that hinder the
incentive to share data. Data collected in the context of food
safety and food fraud can be politically sensitive and considered a
competitive advantage13, but there is also a cost associated with
collecting this data. Nonetheless, there is a strong shared interest
among stakeholders in food safety compliance and to prevent
food fraud. It is also desirable that clear guidelines for data sharing

be agreed upon. To this end, extensive negotiation among data
owners is usually required to resolve issues of ownership,
confidentiality, and management of the data11. Agreement is
particularly difficult when many supply chain actors with
conflicting interests are involved (e.g., competitors, control
authorities, and manufacturers, etc.). An additional challenge in
data sharing is that data must be described with metadata using
ontologies so that it can be found by specific search engines.
However, aside from FOODON14, few food safety and food fraud
ontologies are publicly available to date, making the adoption of
data sharing and integration technologies difficult. Evidence of
solving these issues can be found in literature using federated
learning (FL). In a federated environment, data never leave the
physical location of the data owners. Instead, the algorithm (i.e.,
model) moves between these locations (i.e., data stations) and
collects parameters from the data at the data station’s physical
location. One of the main advantages of this approach is that the
federated infrastructure can perform some of the “negotiation”
(otherwise done by humans) automatically once data sharing
policies are agreed upon. FL has recently gained attention in
several domains such as life sciences15–19 but has, to our
knowledge, not yet been explored in food domain.
In this study, the FL concept was developed to predict food fraud

type through federated food fraud data stations and a BN model. It
was shown that a BN model could be trained on these data stations
without the data leaving the data stations and that the model
performance is like a BN model developed on the same data pooled
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to one location. The developed FL infrastructure addresses some of
the limitations that classical centralized solutions still faces such as
data ownership, confidentiality, privacy, security, and increased data
traffic by: (i) keeping the data locally with the data owner; (ii)
requiring no exchange of raw data (iii) providing high-level data
security; (iv) reducing data traffic between actors in the food chain;
and (v) allowing parameter learning from all stations20–22.
The developed FL infrastructure has the potential to improve

prediction models, benefiting all stakeholders in the food supply
chain. By ensuring that data remains within the ownership of its
respective database, FL effectively addresses concerns related to
General Data Protection Regulation (GDPR) compliance and business
sensitivity. Such a concept may stimulate the collaboration along the
food supply chain, which leads to an increased trust among actors
and drives efficiency across the entire food supply chain.

RESULTS AND DISCUSSION
Food fraud data per data station
Often actors in the supply chain have limited, imbalanced data
available on which decisions must be made. Sharing these

datasets between these actors would improve their individual
models and decision making. To mimic such situation and to
demonstrate how FL may solve this data sharing issue, the total
available data set was separated into three incomplete data
sets varying in the number of food fraud cases, years, and type
of fraud (see Table 1 and Fig. 1). For example, STATION-1
contained only two types of food fraud, which are Smuggling-
Mislabeling-Origin Masking (i.e., 105 observations), and
Substitution-Dilution (i.e., 97 observations). All the data of
STATION-1 is obtained from Rapid Alert System for Food and
Feed (RASFF) from 2008 to 2013 (see Table 1). The other
stations contained other types of food fraud (i.e., Artificial
enhancement/Improvement) and more recent food fraud data
(e.g., 2014–2018).

Federated BN
Within the FL infrastructure, a BN model was trained and validated
to show that knowledge can be shared without source data
leaving the data stations and that such sharing will benefit the
decision makers in general. Two different experiments were
conducted to showcase the difference in each setting to highlight

Table 1. Food fraud data available at different data stations.

Data station Fraud type Years No. of cases % Per data station

STATION-1 Smuggling-Mislabelling-Origin Masking 2008–2013 105 52%

Substitution-Dilution 97 48%

STATION-2 Artificial enhancement/Improvement 2014–2018 1 1%

Smuggling-Mislabelling-Origin Masking 135 94%

Substitution-Dilution 8 6%

STATION-3 Artificial enhancement/Improvement 2008–2018 21 22%

Smuggling-Mislabelling-Origin Masking 23 24%

Substitution-Dilution 51 54%

Fig. 1 Distribution of food fraud across different data stations. Summary of data stations depicting imbalance in different fraud types on
count.
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the fact that despite enforcing privacy and security measures
there was not significant loss in information gain compared to the
situation when all data is compiled in one database and used for
the BN modeling.

Experiment 1. A BN model was created, trained, and tested on
each individual data station (i.e., individual BN model) (Table 2 and
Fig. 2).
ROC curves used to evaluate and compare the performance of

the BN models based on the individual station data versus the
combined station data for STATION-1, -2, and -3, respectively, are
shown in Table 2 and Fig. 3. The overall model performance is
expressed by the area under the ROC curve (AUC). The results
show that the accuracy of each BN model was high for STATION-1
and -2 (i.e., AUC= 0.96), but for STATION-3 the accuracy was
significantly lower (i.e., AUC= 0.72; Table 2). For the combined BN
model when tested with the test data sets from the individual
data stations, the accuracy was equal to 0.89 for STATION-1, 0.99
for STATION-2 and 0.74 for STATION-3 (Table 2). This shows that a

larger number of data available to train/develop a BN model does
not necessarily lead to higher accuracies, which can be explained
in our case with the data heterogeneity (i.e., number of cases per
year, different types of food fraud) in relation to food fraud type
(Fig. 1). The relatively small decrease in accuracy of the combined
BN compared to the individual BN in STATION-1 (AUC= 0.96 vs.
AUC= 0.89) is noteworthy because the combined BN model
includes three categories of food fraud, whereas the STATION-1
training data set includes only two (see Table 2). However, one
should realize that the combined BN model contains more
knowledge because it was trained on a broader dataset of food
fraud cases than the individual datasets (different products and/or
countries of origin) and therefore covers the real situation better
and allows the user to make better decisions. In the case
presented in this study, the owner of STATION-1 lacked the food
category “artificial refinement/improvement” in the dataset, but
with the “combined” BN model, the user of STATION-1 effectively
gains knowledge about this type of fraud. Moreover, the ROC
curves show the trade-off between sensitivity and specificity. An

Table 2. AUC, average sensitivity, average specificity per station.

STATION-1 STATION-2 STATION-3

Individual Combined Individual Combined Individual Combined

AUC 0.96 0.89 0.96 0.99 0.72 0.74

Average sensitivity 0.75 0.75 0.49 0.78 0.62 0.66

Average specificity 0.69 0.63 0.83 0.69 0.58 0.59

Fig. 2 Example of the structure of the BN model for STATION-1. The nodes (ellipses in the figure) represent the indicators. The arrows
indicate linkages between these nodes. The states are depicted as squares below the nodes.
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improvement of the combined BN model compared to the
individual BN model was observed for the sensitivity parameter of
performance, especially for STATION-2 (i.e., increase from 0.49 to
0.78, see Table 2). Higher sensitivity means that the combined BN

model is better able to identify the food fraud cases. Nevertheless,
lower specificity was also found for the combined BN model in
STATION-2 (decrease from 0.83 to 0.69, see Table 2), which means
that the combined BN model leads to more misclassifications of
positive food fraud cases where no food fraud is present
compared to the single BN model.

Experiment 2. In this setting, a BN was developed on the total
dataset without using a FL infrastructure, hence the data is shared
in a traditional manner (i.e., random split of the dataset, 80% for
training and 20% for testing). As shown in Table 3 and Fig. 4, an
AUC of this BN is 0.86 with an average sensitivity of 0.72 and an
average specificity of 0.67.
As can be seen in Table 4, the combined AUC values with and

without a FL infrastructure are very close, with an average AUC
value of 0.9 for all three data stations in a federated environment

Fig. 3 Performance of the BN models in each data station and in
combined station data. A Performance of the BN models in data
station 1 (Orange) and in combined station data (Blue). B Performance
of the BN models in data station 2 (Orange) and in combined station
data (Blue). C Performance of the BN models in data station 3 (Orange)
and in combined station data (Blue).

Table 3. AUC, average sensitivity, average specificity.

BN (80%, 20%) BN (FL datasets combined)

AUC 0.86 0.90

Average sensitivity 0.72 0.77

Average specificity 0.67 0.64

Fig. 4 Performance of the BN models with ROC. A BN Model
learned from the combined data in a federated manner. Micro-
average ROC curve (area= 0.9) (Orange). B BN model learned from
the combined data in a federated manner. Micro-average ROC curve
(area= 0.86) (Orange).
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compared to 0.86 without a FL infrastructure. The results show
that a FL infrastructure is robust to both model performance and
imbalances in the data.
An important goal of government agencies, enterprises, and

research institutes using a federated infrastructure is to ensure
that the security and privacy of their data comply with the GDPR
and meet data protection compliance measures. In a FL
infrastructure, a potential threat is running Docker images on
the data stations and granting that permission without the data
station owners having visibility into the source code repository of
the images. Therefore, it is highly desirable that data station
owners allow these images to run on their compute nodes only
after validating the source code in the Docker image itself. After
validation, the data owner can release this version for execution
on their data. The infrastructure handles the validation of the
algorithm version using a hash and Docker registry, see the details
in ref. 23. Vantage6 uses token-based authentication and
authorization for each data station to join the collaboration, while
an API can be used to create such collaboration and organizations
within that facility.
There are currently three main issues that are observed in a FL

setup which are: data democratization, limitation on AI models,
and efficiency of the tools. In most FL systems, there is not much
emphasis on democratization of data, which seems to be of
paramount importance for data harmonization. Current con-
straints in FL require that data is in a static structure in a table
format (e.g., CSV) and that the order of variables in that data is
maintained24,25. Aside from this, it is important to consider the
data type, as it poses a problem when Machine Learning (ML)
models use this data (e.g., a ML model might expect a number,
but the value is in characters). To address some of these issues,
modern data formats have been proposed, such as linked data
formats like RDF, where data can be represented as triples. The
advantage of this approach is that the data for ML models does
not need to be in a predefined tabular structure but can be
expanded as it is. However, to be able to use these data, an
additional SPARQL26 layer must be integrated into the machine
learning models, which first identifies the required variables and
determines whether they are available at all from the data owners.
This does not preclude still considering preprocessing steps such
as missing values and other data formatting issues. When different
data owners collaborate in a federated setting using same data in
different contexts additional layers can be added on top of data
stations where automated deciphering of data based on
ontologies can be carried out using modern data standards like
FHIR27 or OMOP28.
So far, there are only a limited number of AI models

implemented in the FL environment. Some of them are
commercial in nature such as HPE29, other open-source models
that have just been made available in a federated environment
are glm30. For large datasets, simple models (e.g., summary
statistics) are often sufficient because big data often introduce
unique statistical challenges, including scalability and storage
bottleneck, noise accumulation, spurious correlation, incidental
endogeneity, and measurement errors31. Apart from that, most

complex statistical models are designed to run on single devices
in a centralized setting. Modern algorithms like deep learning
models need to be redesigned to leverage the power of a FL
setup32.
Most ML models are created using languages such as Python or

R. These languages allow a researcher to quickly create models
for research purposes. However, these models are difficult to
operationalize because they have issues with data structures, as
most of them work with tabular data and are incompatible with
web data formats such as JSON. While there are some packages in
these languages that take care of some of the problems, they are
not inherently efficient. Most of the models created in a FL
environment are dockerized. Docker33 provides an environment
that allows a ML model to be reusable and reproducible by
considering all the dependencies that a ML model requires.
However, since both Python and R are interpreted languages,
docker images created with these languages are very large,
resource intensive, and require good network bandwidth and
CPU resources. Recently, efforts are being made to create models
in modern compiled languages such as Golang34 and Rust35.
Since the ML models created using these tools are in binary
format, all dependencies are included in them, making these
models more efficient both CPU and in terms of network
bandwidth. In future, it is important that more ML models are
built using compiled languages.
In this study, a proof of concept of FL approach was

demonstrated to detect food fraud. A federated BN model was
implemented in this setting that could be trained on the
combined data of databases from geographically different
locations, without the source data ever leaving the data stations.
The principle was demonstrated for three data stations, although
many more data stations can easily be linked to this infra-
structure.
The results showed that the federated BN model achieved high

accuracy and improved sensitivity, indicating better identification
of food fraud cases. Despite the heterogeneity and imbalances of
the data, the federated BN model provided a broader knowledge
base, and maintained model performance while preserving
privacy and security.
The FL may help to develop powerful prediction models for the

benefit to all actors in the food supply chain while the data will
not be leaving the database of the data owner, hence solving
GDPR and business sensitivity issues. Such a concept may
stimulate the collaboration along the food supply chain and lead
to an increased trust among actors. In addition, making use of
data from many stakeholders may also stimulate a more efficient
use of resources and reduce the costs of data collection (i.e., food
safety monitoring).
Overall, the findings of this study contribute to the under-

standing of FL infrastructure and its potential for secure and
privacy-preserving knowledge sharing. This research paves the
way for wider adoption of FL in various domains where data
privacy is a concern and for the development of data trusts in
food supply chains.

METHODS
Federated architecture
In this study, the Vantage636 platform (version 2.3.4) was used,
which is a FL infrastructure for secure information sharing. This
central infrastructure component (authentication and message
broker) was hosted at the Wageningen University & Research
premise. Vantage6 enforces privacy concerns by allowing only
certain algorithms to run. This ensures that data is secure even if
the security of the server is compromised. Collaboration policies
for data sharing were defined on the central server. To set up a
federated collaboration (shown in Fig. 5), the following activities

Table 4. Metadata for data stations.

Variable name Node name States

Type of fraud Fraud type Artificial enhancement/Improvement,
Smuggling-Mislabeling-Origin Masking,
Substitution-Dilution

Category of product Product Alcoholic, Fish_Seafood, etc.

Year Year 2008, 2009, …, 2018

Origin country Country (O) South Korea, Croatia, etc.

Report country Country (N) United Kingdom, Netherlands, etc.
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should be carried out: (i) A collaboration network is created when
all participating organizations agree to work together on a
particular issue. These organizations can represent any actor in
the food supply chain (e.g., farmers, food industry, government
agencies), who can be both owners and/or users of data and
models/algorithms. This infrastructure is created from a central
location where a collaboration server is established that has an
integrated database that stores collaboration information and
policies that determine which collaborations have access to which
data stations according to those policies. An administrator makes
individual organizations part of this collaboration at the central
server and distributes the authentication information to all
involved organizations and users; (ii) A data analysis algorithm
or model learning application is created by a model developer
using an appropriate language (e.g., R/Python). These scripts can
be used on a particular data station that is part of this
collaboration network. These scripts are typically published as
Docker images in an internal Docker registry or a publicly
accessible Docker registry, approved within the collaboration. All
input parameters are passed to this Docker image; (iii) Any data
station requesting this Docker image as part of a collaboration can
have it run at the data station owner’s site if execution of that
image is allowed; (iv) The computing nodes of the data stations
return the results after the algorithm has been executed. These
results are sent to the central server, from which the model users
can retrieve the results.
Each data station is connected to various components that

enable the entire workflow of data storage and computation in a
secure environment. These components include the data
volume (i.e., local storage for data in csv files or a database),
the Docker daemon (i.e., software to run Docker images), the
algorithm container (i.e., compute node running the Docker
image of the algorithm), CLI (i.e., command line interface to
start, stop and debug nodes using log files or configuring new
nodes), and a set of configuration files consisting of data policies
and API keys that connect this data station to the federated
server it belongs.

EXPERIMENTAL CASE STUDY: FOOD FRAUD
Food fraud data and data stations
Data for this study is derived from two major sources: the
European Union (EU) Rapid Alert for Food and Feed (RASFF)37

database and the United States (US) Economic Motivation
Adulteration (EMA) database from the period these were publicly
available7.
The collected data was separated in three portions and placed

in different databases, representing a hypothetical situation of
three data owners. For each dataset, a data station was prepared
and hosted at a different geographic location in the Netherlands,
namely Wageningen (STATION-1), Maastricht (STATION-2), and
Utrecht (STATION-3) (Fig. 6). STATION-1 contained RASFF data
from 2008 to 2013 (i.e., 202 observations), STATION-2 contained
RASFF data from 2014 to 2018 (i.e., 144 observations), while
STATION-3 contained EMA data from 2008 to 2017 (i.e., 95
observations). For each of these datasets, food fraud type, product
category, year, origin country and the control country were
selected to be used for data training (i.e., the BN model). The
meanings, corresponding nodes, and states of the variables of the
BN model are listed in Table 4.
All metadata belonging to each of these stations is made

available on an internally hosted FAIR Data Point38 that can be
accessed at WUR39.
To demonstrate the applicability of the infrastructure, different

data formats were used. The data located at STATION-1 and
STATION-2, containing RASFF food fraud notifications, were in CSV
format and the data located at STATION-3, containing EMA food
fraud notifications, was in RDF format.
The data from STATION-3 were in a semantically interoperable

RDF format and are shown in Fig. 7, including their metadata. This
data model was created using ontologies such as the National
Agricultural Library Thesaurus, FOODON and Semantic Science
Integrated Ontology (SIO), and Wikidata. To date, there is no
specific ontology for food fraud and only minimal information
standards exist that have not yet been formalized. Therefore, we
have relied on generic terminologies that would increase the

Fig. 5 Main components of a federated architecture. Federated architecture consisting of model developers and users, FL infrastructure, and
two data stations (i.e., data base of the data owner and compute node depicted as node server).
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use(ability) of them for the community. The AgroPortal40 was used
to search for these ontologies, which contains various ontologies
in the field of agricultural and plant sciences. This RDF data model
was then converted to a CSV format by STATION-3 to be hosted
on STATION-3 nodes, because the BN model only can consume
data from CSV.

Federated BN model
In this work, we implemented a BN model, in a federated
environment. The R package “bnlearn”41 was used to apply
“Bayesian network analysis” to the data. The algorithm is
encapsulated in a Docker image and the R algorithm library of
Vantage6 is used. This library contains auxiliary functions for
input/output between the infrastructure and the algorithm. This
allows developers to focus on implementing the algorithm and
worry less about the infrastructure-specific code. The source code
for this library can be found in the repository (see “Data
availability” section).
A BN model was developed that automatically divides the

dataset into a training (80%) and a test dataset (20%) and learns
using a data framework. The algorithms use a standard CSV file as
input. Tree-Augmented Naive Bayes (TAN) was applied to learn
the structure of BN on each of the training datasets for the
variable “Fraud” (i.e., the fraud type). Once the structure was
known, the parameters were estimated using the bn.fit function
with the “Bayes” method to derive the three BN models. The
model was trained using characteristics such as the product
susceptible to fraud (e.g., eggs, oils, oily fish, and seafood), the
year (e.g., when it was first reported), the origin (e.g., which
country the food came from), and the type of fraud (e.g.,
substitution, mislabeling, etc.) to make predictions about “fraud”.

All data stations that provided this data had these variables in
common.
Finally, the predicted “fraud” type was compared to the

observed “fraud” type recorded in the test data sets to obtain
the prediction accuracy, sensitivity, and specificity. This model
provides the results in web-enabled json format.

Description of the experiments
To demonstrate the operation of the developed federated
infrastructure, two experiments were conducted to (a) first, test
how a BN model trained on the aggregate dataset of all three data
stations in a federated environment performs on the test dataset
of each of the data stations separately. Second, (b) we tested how
a model from BN, trained on the aggregated dataset of all three
data stations without a federated environment, performs on the
aggregated test dataset.

Experiment 1. A BN model was developed, trained, and evaluated
on each individual data station, resulting in multiple individual BN
models. The performance of each individual BN model was then
compared to that of a combined BN model, which was trained on
the aggregated training data from all data stations. Subsequently,
the performance of the combined BN model was tested on the
individual test data from each respective data station.

Experiment 2. The objective of this experiment was to examine
and comprehend differences between the two approaches: with
and without federated settings. In this case, a BN was constructed
using the entire dataset without utilizing a FL infrastructure.
Consequently, the BN was based on a random split of the dataset,
allocating 80% for training and 20% for testing purposes.

Fig. 6 Conceptual framework of collaboration aimed at prediction of food fraud. The model users first train their model on their own local
data stations using a BN model (embedded inside a docker image). The trained model parameters are then transferred to the central server.
These parameters are subsequently retrieved back by model users in a secured setting via the central server for each station to generate a
combined BN model which contains information from each data station.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Datasets used are available in the following link: https://zenodo.org/record/8220868.

CODE AVAILABILITY
Source code: (a) Vantage6 library: https://vantage6.ai. (b) Bayesian Network Algorithm:
https://zenodo.org/record/8220868. (c) Docker image: harbor2.vantage6.ai/wur/
vtg.wur.
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