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Rapid analysis of meat floss origin using a supervised machine
learning-based electronic nose towards food authentication
Linda Ardita Putri 1,2, Iman Rahman 1,2, Mayumi Puspita1,2,3, Shidiq Nur Hidayat 1, Agus Budi Dharmawan1,4, Aditya Rianjanu 5,
Sunu Wibirama6, Roto Roto7, Kuwat Triyana 2,8✉ and Hutomo Suryo Wasisto 1

Authentication of meat floss origin has been highly critical for its consumers due to existing potential risks of having allergic
diseases or religion perspective related to pork-containing foods. Herein, we developed and assessed a compact portable electronic
nose (e-nose) comprising gas sensor array and supervised machine learning with a window time slicing method to sniff and to
classify different meat floss products. We evaluated four different supervised learning methods for data classification (i.e., linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors (k-NN), and random forest (RF)). Among
them, an LDA model equipped with five-window-extracted feature yielded the highest accuracy values of >99% for both validation
and testing data in discriminating beef, chicken, and pork flosses. The obtained e-nose results were correlated and confirmed with
the spectral data from Fourier-transform infrared (FTIR) spectroscopy and gas chromatography–mass spectrometry (GC-MS)
measurements. We found that beef and chicken had similar compound groups (i.e., hydrocarbons and alcohol). Meanwhile,
aldehyde compounds (e.g., dodecanal and 9-octadecanal) were found to be dominant in pork products. Based on its performance
evaluation, the developed e-nose system shows promising results in food authenticity testing, which paves the way for ubiquitously
detecting deception and food fraud attempts.
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INTRODUCTION
Nowadays, various kinds of meat products are widely manufac-
tured and consumed throughout the world1. The consumption of
meat, especially pork, turns out to be highly critical when it comes
to the potential risks of having allergic diseases2,3. Pork-containing
ingredients have transmitted major meat-based parasites includ-
ing protozoa (e.g., Toxoplasma gondii and Sarcocystis spp.) and
helminths (e.g., Trichinella spp. and Taenia spp.) that cause serious
illness and death4. On the other hand, religious belief on halal
foods has become an important reason for strict restriction of
pork-containing ingredients in various foods5,6. Therefore, it is
important to develop an accurate system to authenticate the
origin of food products and to ensure consumer protection on
daily consumption of meat-based foods.
Several methods for identifying pork in the meat products have

been explored and implemented by different research groups and
food communities, which mainly used commercial tools based on
biochemical detection techniques (e.g., differential scanning
calorimetry (DSC)7, enzyme-linked immunosorbent assay (ELISA)8,
nuclear magnetic resonance (NMR)9, and polymerase chain
reaction (PCR)10,11). However, these methods can only be tested
in a well-equipped laboratory, in which many technical limitations
are associated with sample preparation, calibration of the
instrument, personnel and training costs, and laboratory infra-
structure requirements12,13. Meanwhile, it is necessary to use a
mobile and easy-to-use instrument that can rapidly detect the
pork content in the meat products (e.g., meat flosses) without
reagents and complex preparation.

The volatility of meat products depends on their volatile organic
compound (VOC) compositions, as they emit specific odors14. The
VOCs can be divided into several groups, i.e., organic acids,
alcohols, esters, aldehydes, hydrocarbons, terpenes, furans, and
others5. The presence of the VOCs determines the aroma of a
particular product15. Sources of volatile compounds can also be
found in spices and other food additives, which contribute to the
overall taste and modulate certain authoritative reactions5.
Therefore, VOC information can be further processed for
identification of meat floss origin.
An electronic nose (e-nose) is an aroma analyzer comprising gas

sensor array and artificial intelligence to emulate human olfactory
system. This system has recently been reported to be a versatile
tool for different VOC-based sensing applications, e.g., monitoring
of toxic air pollutants16, fast screening of coronavirus disease 2019
(COVID-19)17,18, and assessment of food authenticity and adultera-
tion19–24. In addition, e-nose can sense the odor patterns from
substances present in the food products including chicken25–27,
pork28, goat meat26, fish29, duck, and goose meat27,30. E-nose
offers several advantages compared to other nondestructive
technologies that have been explored in meat quality and safety
evaluation (e.g., computer vision, spectroscopy, hyperspectral
imaging, and multispectral imaging30). For instance, e-nose
provides high sensitivity and accuracy, produces rapid result
classification27, requires simple sample preparation, and has
economical procedure of usage30. The system also consumes
low power31, provides high portability32, does not require skilled
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laboratory operators26, and implements pattern-based
detection33.
A further enhancement of pattern recognition models is

necessary in e-nose for data analysis besides fabrication and
optimization of highly sensitive low-power gas sensors34–40. To
obtain high accuracy and precision, e-nose requires appropriate
learning algorithms to extract and to learn complex patterns
detected by its sensor components. This is critical for the system
to classify or to discriminate between different meat flosses.
Principal component analysis (PCA) is a well-known technique
used not only for dimensionality reduction, but also for feature
extraction and identification41. This unsupervised technique
transforms the signals into a lower dimensional matrix to calculate
the Eigenvector and Eigenvalue and to find the greatest
Eigenvalues as the unique feature42. To perform the identification,
various supervised classification models can be used in classifying
the extracted features, in which they have their certain unique
advantages29,43–46. For instance, the linear discriminant analysis
(LDA) possesses an advantage of low computational cost due to
the reduction of dimensional complexity of the features. Mean-
while, the quadratic discriminant analysis (QDA) is relatively more
flexible but has a slightly higher computational cost than LDA.
Furthermore, while the k-nearest neighbors (k-NN) algorithm is
quite robust to noisy training data due to its instance-based
learning, random forest (RF) model offers a benefit of less frequent
overfitting because it comprises several decision trees. In addition,
all those four methods (LDA, QDA, k-NN, and RF) have simple
architectures and do not require any training or long iteration
processes to perform optimal classification. Hence, the complexity
of e-nose system can be reduced. Although these models can be
classified as simple and old machine learning models, in several
cases they still outperform other newer and more complex
machine learning models.
In this work, we developed a compact portable e-nose

comprising gas sensor array and integrated machine learning
models to identify and to classify the origins of different meat floss
products. To enhance the system accuracy, a window time slicing
method was applied during the feature extraction process, in
which the optimum number of windows was also investigated.
The obtained data were analyzed not only using the unsupervised
learning model of PCA, but also utilizing four supervised learning
models (LDA, QDA, k-NN, and RF). The performances of machine
learning models were evaluated for discriminating beef, chicken,
and pork meat flosses. In addition to learning optimization and
data analysis, the investigation of meat floss using e-nose was also
supported with two spectral material characterizations (i.e.,
Fourier-transform infrared (FTIR) spectroscopy and gas
chromatography–mass spectrometry (GC-MS)), which were valu-
able to validate the e-nose and elucidate the possible detected
VOCs in this study.

RESULTS AND DISCUSSION
Portable electronic nose system
The developed e-nose comprises eight metal-oxide semiconduc-
tor (MOS) gas sensors enabling detection of various target gases,
as listed in Table 1. Despite their high robustness, all sensors are
sensitive to more than a single detectable gas, which is a typical
characteristic for such inorganic MOS materials (i.e., low selectiv-
ity)47–49. In another study, similar types of commercial MOS
sensors were used for real-time classification of black tea
according to its quality level50. A chemoresistive gas sensor
employing thin-film MOS relies on changes in the conductivity of
the material caused by the adsorption of target gas molecules on
its surface51. More specifically, it works based on the depletion
layer variation at the grain boundaries in the presence of oxidizing
or reducing gases, which result in modulation in the height of theTa
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energy barrier for free charge carriers to flow. Hence, the
resistance of the sensing material will change. Here, the gas
molecules that interact with the MOS material act as either donor
or acceptor for the charge carriers altering the MOS resistivity.
At the system level, the change in resistance is converted into

voltage using a voltage divider circuit. The measured analog
voltage from each sensor is then converted to digital form by 16-
bit analog-to-digital converter (ADC). In the data acquisition
system (DAQ), the microcontroller reads digital data for every
100ms. The data are then sent to the computer via the RS232
serial protocol for analysis. The complete experimental setup of
e-nose for meat floss authentication is depicted in Fig. 1a, b, and
Supplementary Fig. 1.
The e-nose system involves two chambers, i.e., a sampling

chamber to insert the tested samples and a sensing chamber to
mount the sensors detecting different VOCs. Eight sensors (S1–S8)
were employed inside the sensing chamber to interact with VOC
molecules released by the meat floss having a certain concentra-
tion level. The total assessment time was set at 260 s for each

meat floss sample investigation consisting of delay, sampling, and
purging phases of 20 s, 120 s, and 120 s, respectively. During the
sampling phase, reference air was flown from the reference
connector to the first valve passing through the sampling
chamber containing two grams of meat floss sample and
subsequently entering the sensing chamber via the second valve.
During the delay and purging phases, reference air was supplied
from the reference connector to the first valve and passed directly
to the sensing chamber via the second valve. The difference
between these two phases is the gas type that is being sensed. At
the delay phase, ambient air was sensed. Meanwhile, at the
purging phase, residual sample gas was detected and drawn out
from the sensing chamber. The typical signals from all eight
sensors (S1–S8) during an assessment of meat floss are depicted in
Fig. 1c. It is obvious that during the sampling phase, the sensors
yield different sensing signal characteristics, which depend on
their sensitivity and selectivity towards target gases (see Table 1).
The selection criteria of the employed sensors were based on

their abilities to possibly detect the potential compound-based

Fig. 1 Portable electronic nose (e-nose) for meat floss authentication. a Configuration of the e-nose comprising a sampling system, a sensor
array, and a data acquisition (DAQ) system. b Photograph of e-nose during test of meat floss. The meat floss sample was placed inside a
sampling chamber during aroma test. The headspace system has two processes (i.e., sensing and purging), in which through data processing
and pattern recognition, the aroma of meat floss samples can be identified. c Typical signals obtained from eight sensors (S1–S8) in the
e-nose. For each measurement, three phases are defined: a time delay phase of 20 s, a sampling phase of 120 s, and a purging phase of 120 s.
Time window slicing method is implemented in the sensing signal: d one window (W1) and e five windows (W5).
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biomarkers in meat and their compatibility to be integrated with
other controlling electronic components in the system. From
several reports associated with the studies of mass spectrometry
techniques for analyzing meat biomarkers52–55, main volatile
compounds could be derived from beef (e.g., hydrocarbon [5-
ethyl-m-xylene and 3-ethyl-2-methyl-1,3-hexadiene], and alde-
hyde [benzaldehyde]), chicken (e.g., hydrocarbon [b-cymene],
alcohol [2-pentanol], and aldehyde [3-methyl-butanal]), and pork
(e.g., aldehyde [pentanal], hydrocarbon [2,6-dimethylcyclohex
anone, 2,4,5-trimethyl-thiazole, 5-ethyl-3-(3-methyl-5-phenylpyra-
zol-1-yl, 1,2,4-triazol-4-amine)], and alcohol [1-undecanol,
cyclobutanol])54.
The main VOC species in dried pork slices include alcohols,

aldehydes, acids, ketones, heterocyclic compounds, aromatic
hydrocarbons, and esters53. Beef contains several metabolites
(decanoic acid, uric acid, elaidic acid, and 3-phosphoglyceric
acid)52. Meanwhile, the GC-MS results of this study showed that
the beef, chicken, and pork floss samples contained hydrocarbons
(2,4-dimethylhept-1-ene, 4-methyl-1-decene, (E)-4-dodecene, (Z)-
5-tridecene, and 3-trifluoroacetoxytridecane), which were also
able to be detected by six sensors in e-nose (i.e., S1, S2, S4, S5, S7,
and S8). Besides hydrocarbons, e-nose can detect alcohol
compounds (2-butyl-1-octanol, 2,4-di-tert-butylphenol, ethyl iso-
allocholate, 6,11-dimethyl-2,6,10-dodecatrien-1-ol) by S3. The
content of ether (6-methylheptyl vinyl ether) was able to be
measured by S1, S3, S7, and S8. To distinguish chicken from other
samples through the hydrocarbon compound (6-methyl-octade-
cane), S1, S2, S4, S5, S7, and S8 could be used. The capability of S1,
S3, S7, and S8 to sniff ether compounds also plays a role in finding
the methoxyacetic 2-tridecyl ester compound, which is the
characteristic of chicken. The hydrocarbons (1-methylhexyl
hydroperoxide and 4-ethyl-octane), which were detected only in
beef and chicken, were not found in the pork. The characteristics
of pork that could be sensed by S3 were alcohol compounds (i.e.,
trans-2-dodecen-1-ol and 12-methyl-E,E-2,13-octadecadien-1-ol).
Meanwhile, aldehydes (octadecanal and 9-octadecanal) were
detected by S1, S2, S5, S7, and S8.
Moreover, different types of meat flosses resulted in altered

sensor signals. To provide comparable trend among different
measurements, the raw signals were then normalized according to
their initial baselines (see Supplementary Fig. 2). In this experi-
ment, the baseline normalization process was used to normalize
the signals from different measurements for an effective
comparison56.
The baseline-corrected statistical analysis was processed by

subtracting all the original sensor responses with the first
response recorded in the delay phase57, which can be represented
by the following equation:

V 0
ij ¼ Vij � Vi0 (1)

where V 0
ij is the normalized response or signal of the sensor i in

timestamp j and Vi0 is the sensor i response at timestamp of 0 s.
To further improve the e-nose system performance, the time

window slicing method was implemented to create the separating
detection lines in the disturbances signal. For a single window (i.e.,
one window), data selection using this technique started from 20
to 200 s, in which the data were then processed to extract out
features of maximum, minimum, mean, and median values (see
Fig. 1d). For more windows (e.g., 2–6 windows), a further time
slicing was implemented in the single defined window of the data
(see Fig. 1e and Supplementary Fig. 3).

Unsupervised clustering by principal component analysis
(PCA)
In contrast to signals produced by conventional analytical
instruments (e.g., GC-MS), e-nose signals generally do not
correspond directly to specific chemical components. Instead,

the pattern recognition method is required to extract and to
analyze information from the sensing signals generated by the
sensor arrays. Principal component analysis (PCA) is an unsuper-
vised, non-parametric statistical technique, which is commonly
used as the first step for exploring spectral data58,59. This
technique linearly reduces the large number of variables in the
original data into principal components, which contain most of
the variable data.
In the first step of data analysis, we implemented PCA to

perform clustering of three different labels, which are beef floss,
chicken floss, and pork floss. Each sample was made of single
meat origin. Thus, beef, chicken, and pork were not mixed into
one composition during meat floss production. The PCA
visualization is shown in Fig. 2, where we varied the feature
extraction used for the analysis. We employed the maximum,
minimum, mean, and median of the e-nose sensor responses. The
maximum value indicates the highest sensor reaction rate in
response to the sample aroma. The minimum value describes the
lowest response value from the entire data. The mean value is the
ratio between the total sensor response and the total data. The
median value indicates the middle value of the overall sensor
response60. The four extracted features were obtained using the
formulas listed in Table 5. Another variation implemented in the
analysis was the amount of sliced time windows. The number of
features was also related to the number of windows, in which
each window provides maximum, minimum, mean, and median
values. Here, the time window slicing method was implemented
up to 6 windows to find the optimum window number for the
resulting dataset. The methods having no window (W0), one
window (W1), and five windows (W5) yielded 8, 10, and 42
proportions of variance, respectively. The detailed results for other
window numbers are shown in Supplementary Fig. 4 and
Supplementary Fig. 5. Normally, the PCA is interpreted by
visualizing the principal component (PC) scores. The scores of
the first two PCs from sets 1 and 2 are referred to as PC1 and PC2,
respectively, which represent the largest proportion of data
variance.
Figure 2a–d represents the score plots of meat flosses (beef,

chicken, and pork) using extracted features of maximum,
minimum, mean, and median values with the first two PCs (PC1
and PC2) accounting for 87%, 87%, 86%, and 85% of the total
variance, respectively. The plots show that the pork samples differ
spectrally, as the PCA can distinguish the samples in separated
clusters. The samples are grouped into three different classes,
indicating that the components of the beef and chicken classes
are very similar and separated from the pork class.
From the PCA results, the beef and chicken clusters are plotted

in the negative quadrant, while the pork cluster is in the positive
quadrant of the PC1. Here, the pork is diverged to form a wide
angle from the other two materials. This indicates that the pork
has a volatile content, which is directly distinguishable from other
meat types. On the other hand, the beef and chicken clusters are
still overlapped in the PC1, despite the increase in the number of
windows. The overlap between beef and chicken is explained by
the GC-MS results in Table 4 where both contain numerous similar
volatile compounds (e.g., 1-methylhexyl hydroperoxide and 4-
ethyl-octane). Although beef and chicken classes still possess
overlap in the PC1, they exhibit unique volatile component
characteristics that can be distinguished in different quadrants of
the PC2. Here, the beef is separated in the negative quadrant,
while the chicken is in the positive quadrant. This is due to the
unique volatile compound characteristics in the chicken (e.g., 6-
methyl-octadecane and methoxyacetic 2-tridecyl ester).
Again, although PCA can demonstrate the initial potential for

cluster formation among the different meat flosses, the over-
lapping results between beef and chicken clusters cause
difficulties in better classification and identification. Therefore,
the supervised learning method was required to be used for
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finding out the specific variation and classifying the three classes
of meat flosses.

Multivariate supervised learning for enhanced classification
Highly accurate detection of certain chemical compounds from
the multivariate sensor readout can be interpreted robustly using
powerful supervised learning methods. In our study, four different
supervised learning methods were used, i.e., linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), k-nearest
neighbors (k-NN), and random forest (RF).
LDA was applied to reduce dimensionality and to identify linear

combination of features to distinguish two or more classes of
meat floss odors. In case there are three classes of odors, LDA
creates one hyperplane and projects the data in such a way that
the separation of classes is maximized. The hyperplane is drawn
by minimizing the distance within the same class and maximizing
the distance between the classes61. Cross validation was
performed for the LDA model to evaluate its robustness in
predicting the meat floss. Before statistical analysis, matrix data
were subjected to standardization procedures (scaling and
centering). After performing standardization, the initial database

was divided into two groups (i.e., a training data subset and a
testing data subset). The database used in this research comprises
300 data (i.e., 100 data for each type of meat floss). The database
was then divided into a 75% training dataset and a 25% testing
dataset, which was carried out by random sampling method. The
training data were used to develop a classification model. Here,
the chosen model was validated using 10-fold cross validation.
The testing data subset was utilized for external validation—
estimating classification accuracy using unseen data.
In this experiment, no standard rule was applied for splitting

between training and testing data. There is no clear evidence that
suggests machine learning models always deliver stable perfor-
mance under specific data splitting configuration. Thus, the data
splitting cannot be decided a priori62. Importantly, the ratio
between training and testing data should be set enabling the
model to predict the unseen data in this study. We split the
training and testing data into 75% and 25% ratio, respectively. We
opted to use this ratio to ensure that the models were able to gain
sufficient information from the training data before being
evaluated with unseen data in the testing set. Note that the
testing data were used in the external validation. For model

Fig. 2 Unsupervised classification of meat flosses using principal component analysis (PCA) integrated with time window slicing method.
PCA is implemented to analyze output sensing signals that are preprocessed with four different extracted features: a maximum, b minimum,
c mean, and d median values. Time window slicing method is applied to construct different window numbers in the data (i.e., 1 window (W1)
and 5 windows (W5)). The condition without window (W0) is also analyzed as reference. PCA can create separated clusters between pork and
non-pork meat flosses in the data measured by e-nose, despite the existing overlap between beef and chicken classes.
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selection, we separated the 75% training data into training and
internal validation set with ratio of 75% and 25%, respectively.
Table 2 lists the accuracy values resulting from the validation

and testing processes of various extracted statistical features (i.e.,
maximum, minimum, mean, and median values) using the LDA
model. Validation accuracy is used as a reference to verify that the
generated model does not exhibit overfitting. The testing
accuracy is used to measure the ability of the generated model
in predicting the unseen data. The LDA results indicate that the
sensing signals captured by the e-nose can be used to
discriminate the pork meat floss from its non-pork counterparts
(beef and chicken meat flosses).
Maximum, minimum, mean, and median statistical values were

applied to extract the unique response shape of e-nose readout. In
this approach, several features were extracted from the
trapezoidal-shaped responses of e-nose. The responses were
divided into three main types based on the planned further
processing: original response curve, curve fitting parameters, and
transform domain63. From Table 2, the highest average validation
occurs in LDA with five windows (W5). The maximum, minimum,
and mean scores reach accuracy values of 99.9%, 99.7%, and
99.6%, respectively. However, for the median, its highest accuracy
value of 100% is found in the LDA with two (W2) and four windows
(W4). For the testing results, the highest and the most stable
accuracy values (100%) were obtained on maximum, minimum,
mean, and median values with five (W5) and six windows (W6).
Despite good results in testing, the accuracy values in the internal
validation of LDA with W6 slightly dropped compared with those
of LDA with W5. For instance, the accuracy of maximum metric
decreased from 99.9% to 99.4% when six windows were
implemented during feature extraction. These results indicate that
the optimum number of windows should be investigated under
different processed sensing signals and datasets. Our results
suggest that increasing the number of windows does not always
correspond to improvement of internal validation accuracy.
Figure 3a–d shows the classification of meat flosses using the

LDA model integrated with different window numbers for all four
extracted features (maximum, minimum, mean, and median
values). Compared with other supervised models, the LDA reduced
the complexity of the dimension. Hence, it is useful to investigate
the distribution of each label in a lower dimension. In addition, LDA
can be combined with other classification methods to provide
additional advantage, where the extracted features from the LDA
are considered labels in the training data. Hence, the data were
more separated between different classes. This advantage yielded
higher performance of the machine learning model64,65. Here, the
classification is made with more than one canonical variable. The
most significant variables are described by LD1 and LD2.

In Fig. 3, beef cluster tends to be distributed in the positive LD2
and negative LD1 quadrants, while the chicken cluster is
distributed in the negative LD1 and LD2 quadrants. In contrast,
the pork is clustered perfectly in the positive LD1 quadrant, while
its LD2 spreads into positive and negative quadrants. Based on
these results, three different types of meat flosses can be well
separated with an external validation (testing) accuracy of >90%.
Indeed, the lower dimensional features resulting from LDA
simplify the analysis in machine learning algorithm by reducing
insignificant and redundant features66. In comparison to the PCA
approach, the LDA method is also capable of separating pork
cluster from other material clusters at the LD1 stage. We
implemented a time slicing window approach to reduce existing
overlap at W0. Consequently, we obtained significant improve-
ment in discrimination of beef and chicken clusters. The LDA-
based classification results of the meat flosses using different
window numbers (i.e., from W0 to W6) are displayed in Fig. 3,
Supplementary Fig. 6, and Supplementary Fig. 7.
Although the plots from the feature extractions without window

(W0) and with one window (W1) still indicate overlap between
beef and chicken, the results still can be used to classify pork and
non-pork meat flosses. W0 and W1 produce similar results because
they process the data as one piece of information, in which the
only difference is the duration of signal retrieval. The signals are
divided into separated ranges by increasing the window number
to extract different information. Based on the results, LDA can
completely separate three clusters in the feature extraction using
W5. Meanwhile, W6 can also separate the three samples, but its
accuracy values are smaller than those of W5 (see Table 2).
The analysis process was performed with several window

configurations to find the optimum number of windows. We
aimed to achieve the highest internal and external validation
accuracy values (see Supplementary Table 1). The time window
slicing process affected the model on gaining insight into the data
due to the natural response of the sensors. In e-nose, the gas
sensing pattern usually has a trapezoidal shape with a specific
area. The curve of the sensor response starts rising significantly
when the adsorbed gas molecules have induced increase/
decrease in the resistance of the MOS sensor (see Fig. 1c–e).
Afterward, the curve will be stable at a certain voltage or
resistance value for some time during sampling. Finally, the curve
declines to the baseline state when the target gas molecules have
been removed from the sensor active material surface. These
unique and specific regions may offer more valuable insight if
they are processed as individual parts. One approach that can be
applied is the rising window method, which only focuses on the
early part of the data for classification67. The advantage of using
specific time window regions in data is that each sliced data

Table 2. Accuracy values resulting from validation and testing with the LDA model.

Window number Accuracy (%)

Maximum Minimum Mean Median

Validation Testing Validation Testing Validation Testing Validation Testing

0 95.5 92.0 89.0 90.7 91.5 93.3 93.3 90.7

1 95.6 90.7 97.7 90.7 96.9 94.7 97.8 93.3

2 92.3 90.7 99.0 94.7 97.4 97.3 100 97.3

3 92.3 90.7 99.6 100 98.6 100 99.2 100

4 92.3 90.7 99.2 100 98.8 100 100 100

5 99.9 100 99.7 100 99.6 100 99.4 100

6 99.4 100 99.2 100 99.3 100 98.7 100

Validation accuracy was used during development of machine learning model under cross-validation. Testing accuracy was employed to evaluate the
developed machine learning model on the unseen data. Different window numbers were evaluated using the LDA model (W1–W6).
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region will be optimum because of its own unique characteristic68.
In our case, when we started to apply four windows (W4) to our
data during analysis using LDA model, we could identify the
cluster separation between pork and non-pork clusters. However,
the maximum value approach still suffered from overlapping beef
and chicken clusters. After implementing five windows, all beef,
chicken, and pork samples could be properly separated (see
Fig. 3). This has proven that increasing the number of windows
will enlarge the distance among the clusters. In this approach, the
separation process was conducted by the Euclidean distance to
calculate the interpoint distances between samples.
The Euclidean distance was reported efficiently for data

clustering69,70. Euclidean distance has also been used as the main
construction component for several other learning methods. For
example, Euclidean distance was also used in the Ward’s method
—a special type of agglomerative hierarchical clustering analysis
(HCA)71,72. Euclidean distance is defined by the following
equation:

dik ¼
Xp

j¼1

Vij � Vkj
� �

" #1
2

(2)

where dik is the distance between clusters i and k, in which it is
determined as the summation of square roots of each feature
distance between clusters i and j. Meanwhile, V is the sensor
response or extracted feature. To represent p feature or to make p
dimension simpler, dimension reduction can be carried out using
PCA, which is calculated as

PCi ¼
Xp

j¼1

aijV j (3)

where PCi is the principal component at a certain number i, which
is obtained from the summation result of the multiplication of the
multiplier coefficient a with the sensor response V.
Dimension reduction from p number of features combined with

the Euclidean distance method is used to evaluate the effect of
window variation on the distance separation between clusters.
The distance between two clusters is calculated from the central
point of each cluster, in which this has normally been termed as
a pitch.
Figure 4a–d shows that increasing number of windows reduces

the cluster size and overlapping, which consequently enlarges the
distance between clusters. This phenomenon was found in all
possible cluster correlations (i.e., beef–chicken, beef–pork,

Fig. 3 Supervised classification of meat flosses using linear discriminant analysis (LDA) integrated with time window slicing method. LDA
was employed to analyze output sensing signals that were preprocessed with four different extracted features: a maximum, b minimum,
c mean, and d median values. Time window slicing method was applied to construct different window numbers in the data (i.e., 1 window
(W1) and 5 windows (W5)). The condition without window (W0) was also analyzed as reference. A clear cluster separation among three
different meat flosses (beef, chicken, and pork) was yielded by the LDA at W5.

L.A. Putri et al.

7

Published in partnership with Beijing Technology and Business University npj Science of Food (2023)    31 



chicken–pork, and pork–non-pork distances) for different
extracted features (maximum, minimum, mean, and median).
Thus, clear classification of different clusters can be facilitated
enhancing the learning model performance. Here, the separation
distance between pork and non-pork cluster centers (see Fig. 4d)
tends to be larger than that between two non-pork meat flosses
(i.e., beef and chicken in Fig. 4a). This has revealed that beef and
chicken categorized as non-pork meat flosses are more collected
into one region and separated from the pork cluster. The results of
this overlapping in low window number are in accordance with
Table 4, where the same volatile compounds (i.e., 1-methylhexyl
hydroperoxide and 4-ethyl-octane) were detected from both beef
and chicken meat floss samples. From a statistical point of view,
this finding is also supported by the PCA and LDA results in Figs. 2
and 3, where the beef and chicken data are more accumulated to
each other, and the pork data are more separated from the other
two labels (beef and chicken). In other words, a significantly
different pattern was detected between non-pork (beef and
chicken) and pork meat flosses. This investigation is therefore
important to understand and gain insight on the data pattern
behavior for a specific time window.
A wide variety of pattern recognition methods can be used to

interpret e-nose data. Nevertheless, selecting a suitable method
for analyzing a specific type of e-nose data is still challenging73.
This issue arises due to differences in sensor sensitivity, selectivity,
and environmental condition. Additional problems may come
from low sensor stability and reproducibility resulting in output
sensing variations. Thus, each target class detected with an
electronic nose has its unique challenges74. In our case, besides
LDA, other supervised learning methods (i.e., QDA, k-NN, and RF)

were also applied to evaluate the e-nose performance in
identifying and classifying the meat flosses. In chemometrics
studies, the percentage of correctly classified test sets is used to
measure performance of the learning algorithm. This comparison
is often used empirically to find the optimal method. However, in
reality, the selection of appropriate learning methods should
depend on the distribution of samples in variable space75.
The accuracy values of all supervised learning models (LDA,

QDA, k-NN, and RF) used in the meat floss investigation are listed
in Table 3. Here, we compare the results from all four extracted
features (maximum, minimum, mean, and median) that were
preprocessed with five windows. Internal validation was used to
build an accurate model by taking 75% of the overall data (225
samples) and resampling 10-fold cross validation with 10 times
repetition. The validation accuracy results range from 93.4% to
99.9%. External validation (testing) was employed to test data
testing by taking 25% of the overall data (75 samples). Testing
accuracy results range from 89.3 to 100%. We compare all window
conditions: without window (W0), with one window (W1), and
with two to six windows (W2–W6). We found that the model with
five windows (W5) was able to classify samples with the highest
accuracy. This is also supported by the results of the LDA plot
where the three samples can be completely clustered. Thus, for
accuracy value comparison, Table 3 has only listed the perfor-
mance of learning models with W5. Nevertheless, the complete list
of validation analysis results for all the investigated window
numbers (W0–10) can be seen in Supplementary Table 1.
There is a deviation in the performance during cross-validation

due to the combination of training and validation data that are
used for different k-fold iterations. The most stable models were

Fig. 4 Effect of window number variation on distance between two separated different clusters. Evaluation of relationship between
window number and cluster distance is applied to investigate the behaviors of a beef–chicken, b beef–pork, c chicken–pork, and d pork–non-
pork meat floss clusters. Beef and chicken categorized as non-pork meat flosses are more collected into one cluster, which is shown by the
relatively short distance between these two cluster types compared to that in the pork–non-pork cluster case. Increasing the window number
leads to the larger distance between two different clusters for all possible meat floss sample correlations.
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found by monitoring this deviation. In our case, a model with the
lowest deviation value was able to maintain its performance for
several data variations. Cross-validation with different data
combinations showed the behavior of model in the fields. Here,
the deviation on the cross-validation was used as an indicator for
the model stability level. A model with low deviation value in
cross-validation was more consistent in performance than those
with high deviation value. The values of mean and deviation
metrics during testing were close to their values during cross-
validation.
Based on the accuracy results of all models presented in Table 3,

it is obvious that different learning models demonstrate their best
performances with altered preprocessed features. First, the LDA
model performed best in classifying meat floss samples with an
extracted feature of maximum value having five windows. Its
validation and testing accuracies achieved up to 99.9 and 100%,
respectively. Second, the QDA model provides its best accuracy on
preprocessing mean value with validation and testing accuracies
of 98.5 and 93%, respectively. Third, the k-NN model has a
parameter of the number k in providing its best classification.
Using k= 5, five windows, and extracted feature of minimum
value, validation and testing accuracies of 97.0% and 93.3%,
respectively, can be obtained by the k-NN model. Fourth, for the

RF, mtry is required as a parameter to specify the number of
variables that are randomly collected at each split time. The data
analysis based on RF model results in the highest validation and
testing accuracies of 98.7% and 100%, respectively, when mtry =
6 and extracted feature of minimum in five windows are
employed.
Among all tested learning algorithms, the LDA model has been

the most superior and suitable method to classify three different
types of meat floss samples. It clearly discriminated the beef and
the chicken classes from their pork counterpart. Moreover, in the
configuration of five windows (W5), the LDA model reached
validation and testing accuracies of >99% for all extracted features
of maximum, minimum, mean, and median values. This excellent
performance was not rivaled by other three learning models (QDA,
k-NN, and RF). However, again, selection of the learning
algorithms depends on distribution of meat floss samples in
variable space. Thus, it is always beneficial to evaluate more than
one machine learning model in the data analysis of e-nose,
especially during its development phase. Hence, we can achieve
the optimum classification results.

Analysis of chemical compounds
In addition to the analysis using e-nose, products made from beef,
chicken, and pork flosses (see Fig. 5a) have also been character-
ized by Fourier-transform infrared (FTIR) spectroscopy to identify
their chemical compositions. Figure 5b shows the FTIR spectra of
three different samples of meat flosses (beef, chicken, and pork) at
a frequency range recorded between 4000 and 400 cm−1. Similar
FTIR spectra have been observed in all three samples, showing
typical absorption spectra of edible fats and oil. These results are
consistent with those obtained in previous study76. The strong
and wide bands observed at 3290 cm−1 are related to N−H and
O−H stretching vibrations, while the small bands observed at
3076 cm−1 are due to the N−H stretching vibration. These two
peaks are related to the protein of the sample. The peak of
2924 cm−1 is thought to be the result of the Csp3−H stretching of
the ethylene chain and the alkyl groups associated with
unsaturated lipids. Meanwhile, the vibration of C−H stretching
at 2854 cm−1 corresponds to the saturated lipids in the meat
sample. Another strong peak was also observed at 1743 cm−1 due
to the C=O carbonyl stretching of ester (triglyceride ester).
The spectra obtained from all three samples also show protein

characteristics between 1700 and 1500 cm−1, which are similar to
the beef, chicken, and pork samples reported in another study77.
All samples display strong peaks of 1650 and 1537 cm−1 that
correspond to the amide I band (C−O stretching, C=N starching,
and N−H bending of protein) and the amide II band (C−N
stretching and N−H bending of peptide bonds). In the FTIR
fingerprint area (1450 to 600 cm−1), meat floss samples also have
the same peaks in 1390, 1238, and 1160 cm−1, which are due to
fatty acid, phospholipid, and lipid ester, respectively.

Fig. 5 Fourier-transform infrared (FTIR) spectroscopy results of
meat flosses. a Photographs and b FTIR spectra of the meat floss
samples (i.e., beef, chicken, and pork meat flosses).

Table 3. Accuracy results of four different supervised learning models with five windows.

Model Accuracy (%)

Maximum Minimum Mean Median

Validation Testing Validation Testing Validation Testing Validation Testing

LDA 99.9 100 99.7 100 99.6 100 99.4 100

QDA 97.4 93.0 95.9 99.0 98.5 93.0 96.0 92.0

k-NN 94.8 92.0 97.0 93.3 93.4 89.3 93.3 92.0

RF 98.6 97.3 98.7 100 97.5 96.0 97.5 100

The four models were analyzed by different characteristic extraction methods (maximum, minimum, mean, and median). Validation is generated with 75% of
the overall data to train the model, while testing is generated to evaluate the model using 25% of the overall data.
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Again, all peaks observed in the FTIR spectra of meat floss
samples (beef, chicken, and pork) are well consistent with those
obtained in earlier studies77. These results support PCA-based
analysis of the e-nose data (see Fig. 3 and Supplementary Fig. 4).
The three different meat flosses (beef, chicken, and pork) remain
overlapping due to the same functional groups and similar volatile
compounds (see Table 4). The three samples contained volatile
compounds: hydrocarbons, ether, and alcohol. In case of
hydrocarbons, S1, S2, S4, S5, S7, and S8 could detect 2,4-
dimethylhept-1-ene, 4-methyl-1-decene, (E)-4-dodecene, (Z)-5-
tridecene, and 3-trifluoroacetoxytridecane. In the meantime, S1,
S3, S7, and S8 detected the 6-methylheptyl vinyl ether. Finally, S3
detected various types of alcohols (e.g., 2-butyl-1-octanol, 2,4-di-
tert-butylphenol, ethyl iso-allocholate, 6,11-dimethyl-2,6,10-dode-
catrien-1-ol). However, an interesting phenomenon is observed
with a wavenumber of 1743 cm−1, which is related to the fatty
acids in the sample. For this particular peak, the peak intensity
observed in pork samples is significantly higher than in chicken
and beef samples. On the contrary, the peak intensity of the pork
sample is lower at 1650 cm−1 wavenumber, which further
confirms that the protein content of pork floss is lower than
those of beef and chicken flosses. The results of the FTIR
measurement show that the three different samples (beef,
chicken, and pork) contain different fat and oil functional groups,
so it is confirmed that the meat products used in the experiment
were produced separately during production of the flosses. In
other words, they are not mixed in a single composition. Thus,
pure beef, chicken, and pork flosses could be obtained. Again, FTIR
spectroscopy is an ideal chemical compound analysis technique to
complement e-nose. This method can also be used to analyze
lipids and distinguish between fat and oil76.
The chemical compositions of the meat floss samples were

further analyzed using gas chromatography coupled with mass
spectroscopy (GC-MS), where the results are listed in Table 4. The
similarity of the samples was observed by the similar retention

time peak. The peak was further analyzed by mass spectroscopy.
In general, meat floss samples contain compounds of hydro-
carbons and alcohol. Furthermore, some ethers and aldehydes
were also found.
Most compounds detected by GC-MS overlapped among the

three meat floss samples (beef, chicken, and pork) that were also
observed by initial unsupervised assessment using PCA (see
Fig. 2). Compounds detected in all meat floss samples include 2,4-
dimethylhept-1-ene, 4-methyl-1-decene, (E)-4-dodecene,
6-methylheptyl vinyl ether, 2-butyl-1-octanol, (Z)-5-tridecene, 3-
trifluoroacetoxytridecane, ethyl iso-alcoholate, and 6,11-dimethyl-
2,6,10-dodecatrien-1-ol. Moreover, some compounds occurred
only in beef and chicken samples (i.e., 1-methylhexyl hydroper-
oxide and 4-ethyl-octane), which can illustrate the overlapping of
beef and chicken samples in the supervised classification using
LDA (see Fig. 3). Both beef and chicken samples are on the left
side of the diagram, while pork sample is on the right side.
Fortunately, there are some compounds observed only in chicken
samples (e.g., 6-methyl-octadecane and methoxyacetic 2-tridecyl
ester). These compounds are believed to be responsible for further
discrimination in samples of beef and chicken. In addition, the
separation of pork group can be made easier because several
compounds are observed only in the pork sample (i.e., trans-2-
dodecen-1-ol, octadecanal, 9-octadecenal, and 12-methyl-E,E-2,13-
octadecadien-1-ol).
The main volatile compounds detected by the e-nose come

mainly from alcohol, ester, and acid hydrolysis products of
triglyceride. The GC peak assignment focuses on possible
fragments. We may have discovered aldehydes and alkanes.
However, their concentration is low. The differences in meat
flosses may come from structural isomers, especially alcohol, acids,
and alkene. The aromatic components should be rare in the meat.
Beef and chicken have similar group of compounds, namely
hydrocarbons and alcohol. In accordance with previous research78,
meat volatile compounds mainly comprise alcohol, aldehydes,

Table 4. Gas chromatography-mass spectroscopy (GC-MS) results of meat flosses.

Retention time (min) VOC type Molecular formula Volatile Detected in Sensors

Beef Chicken Pork

4.68 2,4-dimethylhept-1-ene C9H18 Hydrocarbon Yes Yes Yes S1, S2, S4, S5, S7, S8

7.83 1-methylhexyl hydroperoxide C7H16O2 Hydrocarbon Yes Yes No S1, S2, S4, S5, S7, S8

9.06 4-ethyl-octane C10H22 Hydrocarbon Yes Yes No S1, S2, S4, S5, S7, S8

9.18 4-methyl-1-decene C11H22 Hydrocarbon Yes Yes Yes S1, S2, S4, S5, S7, S8

11.12 (E)-4-dodecene C12H24 Hydrocarbon Yes Yes Yes S1, S2, S4, S5, S7, S8

11.24 6-methylheptyl vinyl ether C10H20O Ether Yes Yes Yes S1, S3, S7, S8

17.57 2-butyl-1-octanol C12H26O Alcohol Yes Yes Yes S3

17.80 (Z)-5-tridecene C13H26 Hydrocarbon Yes Yes Yes S1, S2, S4, S5, S7, S8

18.02 3-trifluoroacetoxytridecane C15H27F3O2 Hydrocarbon Yes Yes Yes S1, S2, S4, S5, S7, S8

18.10 6-methyl-octadecane C19H40 Hydrocarbon No Yes No S1, S2, S4, S5, S7, S8

23.19 2,4-di-tert-butylphenol C14H22O Alcohol Yes Yes Yes S3

23.53 methoxyacetic 2-tridecyl ester C16H32O3 Ether No Yes No S1, S3, S7, S8

29.73 trans-2-dodecen-1-ol C12H24O Alcohol No No Yes S3

33.77 octadecanal C18H36O Aldehyde No No Yes S1, S2, S5 S7, S8

38.71 9-octadecenal C18H34O Aldehyde No No Yes S1, S2, S5 S7, S8

41.79 12-methyl-E,E-2,13-octadecadien-1-ol C19H36O Alcohol No No Yes S3

45.50 ethyl iso-allocholate C27H48O5 Alcohol Yes Yes Yes S3

52.37 6,11-dimethyl-2,6,10-dodecatrien-1-ol C14H24O Alcohol Yes Yes Yes S3

The similarities and differences in samples of beef, chicken, and pork meat flosses are indicated by time retention in GC-MS. The compounds in the samples
are indicated by the presence of peaks (intensity) from the main GC, which are then analyzed by MS. Based on molar mass data and database available in the
GC-MS library system, VOC types can be defined.
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ketones, esters, and hydrocarbons. Meanwhile, the main pork
products are aldehyde (e.g., dodecanal and 9-octadecanal), which
are not present in beef and chicken79. From the FTIR data, the
C=C bond is more detectable in chicken and beef, which is well
consistent with the GC-MS data. According to the above-
mentioned results, e-nose is more likely to be an alternative food
authentication instrument than GC-MS and FTIR, especially for
quickly discriminating pork product from its other meat counter-
parts (non-pork samples).

METHODS
Meat floss sample preparation
Three different meat floss materials (i.e., beef, chicken, and pork)
were used and processed separately in this study. The materials
(meats) were purchased at a traditional market in Sleman,
Yogyakarta, Indonesia. All breeds of meats were obtained from
the local Indonesian animal species that were ready to be
consumed by humans. The meats were taken from local chickens,
cows, and pigs that had ages of 45–75 days, 2–4 years, and
4–6 months, respectively. The selected parts were pure meats
(only meat cuts without muscles), where neither fat nor bone was
added into the composition. For chicken, the pure meats were
originally from two body parts (breast and thigh), which were
divided into five pieces. For beef and pork, the pure meats were
loin cuts, which were divided into four pieces.
The meat cuts were processed to form meat flosses in the

laboratory located at the Faculty of Animal Science, Universitas
Gadjah Mada (UGM), Yogyakarta. Meat flosses were carefully
prepared. Each type of meat (beef, chicken, or pork) with a weight
of 500 g was boiled and shredded to form fibers. The shredded
meat was fried to dry, in which afterward a spinner was used to
remove the water in the obtained meat floss. This process resulted
in fried meat floss containing either pure beef, chicken, or pork.
Thus, there was no floss product comprising mixed meats in
this case.
After their production processes, the meat flosses were

prepared as the samples for three different tests (i.e., e-nose,
FTIR, and GC-MS). First, for e-nose assessment, we employed a
total number of 300 meat floss samples (i.e., 100 samples of beef
meat floss, 100 samples of chicken meat floss, and 100 samples of
pork meat floss), where each sample has a weight of 2.0 g
measured by a TL Series digital scale (a professional digital mini
scale with a capacity of 50 g). We characterized 100 samples for
each meat floss variant (total weight of 200 g) to provide sufficient
data for learning-based classification and to ensure the reliability
of the analyzed data. The e-nose measurements of meat floss
samples were carried out at room temperature. Second, for FTIR
preparation, we used KBr pellets at room temperature using
spectrophotometer FTIR Shimadzu Prestige 21. Here, for each
meat floss type, we prepared samples with a total weight of 150 g
for FTIR measurement. Third, to enable the GC-MS measurement
for identifying the volatile compounds in meat flosses, the
samples were extracted with methanol. For the GC-MS test, we
prepared 150 g of sample for each meat floss type.

E-nose setup for meet floss investigation
After becoming meat flosses, the samples were tested with the
e-nose. The micropump was used to flow the aroma molecules
from the sampling container to the sensing chamber as well as to
purge the aroma out from the sensing chamber in the cleaning
process. The aroma of the sample passing through the sensor
array changed the electrical properties of the sensor materials.
Then, the electrical signal changes were processed with a data
acquisition system (DAQ) that comprises 16 bit analog-to-digital
converter (ADC) and microcontroller. Each sensor has different
responses displayed on a personal computer. In addition, a

temperature and humidity sensor was added inside the sensing
chamber to monitor the condition that could affect the sensor
array responses16,51,80.

Machine learning models
The measured data were processed with various machine learning
methods (i.e., unsupervised and supervised learning models) to
classify beef, chicken, and pork meat floss samples with the
highest possible validation accuracy. Before they could be
processed, the data features had to be first extracted. The
technique used in the extraction process was time window slicing
or so-called windowing, which was created for the detection line
in the sensing signals81.
The response sensors were multiplied by the used windows

(e.g., five windows as shown in Fig. 1e). Then, the resulting time
traces were integrated with respect to time referring to63. The
number of features in each window can be obtained from the
following equations:

A ¼ ½W1;W2; :::;Wi� (4)

Wi ¼
XN

k¼1

RðtkÞKiðtkÞΔt (5)

KiðtkÞ ¼ 1

1þ ðtk�ci
ai

Þ2bi (6)

where A is the feature vector extracted from one sensor
comprising four elements, Wi is the area surrounded by the
response sensor and the windowing function curves, RðtkÞ is the
response value at the time tk, KiðtkÞ is the value of the i-th
windowing function at the time tk, k ¼ 1; 2; 3; :::;N denoting the
sampling points of each curve, Δt is the sampling interval between
two sampling points, and the parameters (ai; bi; ci) define the
width, shape, and center, respectively, of the different windowing
functions KiðtkÞ63.
The data were cleaned by windowing phase with five windows,

and various feature extraction methods (i.e., the maximum63,
minimum60, mean82, and median values60) were performed in
each window. All those four statistical parameters are the basic
feature extraction methods obtained from sensor signals that
have been extracted in the time domain60. The maximum value
indicates a change in the sensor maximum reaction rate in
response to the scent of the sample. The minimum value is the
lowest sensor response value of the entire data. The mean value is
a comparison between the total number of sensor responses to
the amount of data. The median value is the middle value of the
overall sensor response. Maximum, minimum, mean, and median
value equations are shown in Table 560.
Time window slicing was implemented to create different

window numbers (W0–W10) in the obtained signals. In case of no
window (W0), the overall data were retrieved from 0 to 260 s.
Meanwhile, for case of window number other than 0 (W1–W10),
the data were retrieved from 20–200 s and subsequently divided
into different parts with equal time span for each window.

Table 5. Feature extraction formulas for maximum, minimum, mean,
and median values.

Feature Formula

Maximum Y ¼ maxðYÞ
Minimum Y ¼ minðYÞ
Mean Y ¼ sumðYðtÞÞ

N

Median Y ¼
YN
2
þYN

2þ1

2
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Feature extraction provides important information from a
multidimensional sensor signal collection to obtain optimum
results83. Basically, the purpose of feature extraction is to take the
characteristics of the sample, so that the pattern recognition
algorithm can easily recognize one sample from the others. After
the features have been extracted from the sensor signals,
chemometrics analysis was performed to classify the meat floss
samples. Here, the learning investigation started with principal
component analysis (PCA), which is an unsupervised pattern
recognition method being able to reduce the dimensionality of
the data by an orthogonal transformation into principal compo-
nents (PCs), new variable sets (uncorrelated) that are linear with
the original variable sets (possibly correlated variables)84–86. Also,
PCA is useful for observing the differences and similarities
between various samples. In our case, only a few significant
components are produced (e.g., PC1 and PC2) and subsequently
plotted as a graph87.
After performing unsupervised learning model of PCA, the

analysis was continued with four supervised learning algorithms
(i.e., linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), k-nearest neighbors (k-NN), and random forest
(RF)). LDA and QDA, which are boundary detection statistical
methods, were used to verify the capability of the e-nose to
correctly classify meat floss samples according to their types or
origins (beef, chicken, and pork). LDA tries to find a linear
combination of features and the best linear fit that can separate
two or more sample groups84. The LDA maximizes the distance of
data between each group and minimize the distance of data in
each group. LDA helps locate projection to maximize the
separation between samples for class separation88. The projection
is done by linearly transforming data from a high dimensional
space to a low dimensional space, in which finally the decision is
made in the low dimensional space89. The purpose of the LDA is
to change the original dataset to a lower-dimensional space with
good sample discrimination. Moreover, the possibility of over-
fitting is reduced87.
The QDA is a simple algorithm and is different from LDA. QDA is

used to find quadratic boundaries where a quadratic curve divides
the variable space in regions. It computes the variance structures
for each class separately, creating a more powerful discrimination
rule for classes with different covariance matrices43. QDA employs
different variance-covariance matrices for each class, which differs
it from LDA that only considers a single variance-covariance matrix
for all classes90.
The k-NN as a non-parametric method is used for classification,

regression, and establishment of the classification model classes
with different degrees of corruption73,91. The main concept of
k-NN is to provide a prediction target, calculate the distance or
similarity between the predicted target and all samples, select the
first k sample that is closest to each other, and finally use that
sample to choose a decision according to the most votes of k92.
Here, k is a positive integer number of neighbors. To calculate the
distance between the predicted targets, this model uses the
Euclidean distance and selects the dominant class for it84,93.
Euclidean distance is one of the statistical methods that can be
used to calculate the interpoint distances between samples. The
usage of the Euclidean distance is shown to be efficient for
clustering data69,70. Using the closest suitable neighbor search
algorithm, k-NN can become computationally traceable even for
large datasets94.
The RF model is a non-linear statistical ensemble method that

constructs and subsequently averages many randomized, dec-
orrelated decisions. RF utilizes the constructed model to estimate
the content of samples by exploiting historical data64. The method
can be used not only for selecting variables (i.e., for understanding
the important variables that are used for prediction), but also for
solving classification and regression problems with strong abilities
to eliminate the noise and to avoid overfitting64,73. In RF model,

hyperparameter tuning is one of the methods utilized to configure
the model parameters and increase the model performance.
Nonetheless, a careful attention has to be given when applying
this approach because hyperparameter tuning may lead to over-
optimistic performance estimation if the used step-by-step
methods are not precisely suitable for the model and data
condition95. RF has several advantages in classification (i.e., the
ability to be run on large and high dimensional datasets, good
accuracy, stable prediction, and feature selection improvement)96.
For regression tasks, the RF model has several advantages97. First,
it offers an uncomplicated inclusion or exclusion of predictors
based on data availability and user demands. Second, an inclusion
of continuous and categorical predictors is possible. Third, it has a
comparatively small number of model parameters that must be
specified by the user. Fourth, the risk of overfitting can be
minimized. Fifth, the automatic computation of a variable
importance score is feasible to assess the contribution of
individual predictors to the final model.
For statistical analysis, the data matrix was normalized using

scaling and centering techniques. After the normalization step, the
initial database was divided into two groups (i.e., training and
testing data). Training data were used to develop and create a
classification model that allowed the best classification perfor-
mance for the repeated k-fold cross validation (CV) procedure (10
folds x 10 repetitions, which ensured that at each validation run,
25% of the training data were used for validation accuracy).
Meanwhile, the testing data were used for testing accuracy (full
prediction) of the classification model that was previously created.
The overall modeling development and analysis were carried out
using open source R statistical software (version 3.5.1) and utilizing
CARET, MASS, and the Kernlab library50.

Chemical compound characterization
FTIR spectroscopy can be used to qualitatively analyze the sample
based on its functional groups98. In this work, it was used to
rationalize the results of the e-nose analysis for distinguishing
meat flosses based on their origins that are beef, chicken, and
pork99. For FTIR analysis, the meat floss was dried separately in the
oven for 7 min. The sample was ground into the powder and
pelleted with KBr. The FTIR spectra were recorded on Shimadzu 21
Prestige FTIR spectrophotometer in the wavenumber range of
400–4000 cm−1.
GC-MS analysis was performed to identify volatile compounds

released by the samples100. It used a Chromeleon software, a
carrier gas of ultra-high pure (UHP) helium, an injector tempera-
ture of 260 °C, a mobile phase flow rate of 50mL/min, a split ratio
of 50, a front inlet flow of 1 mL/min, a MS transfer line temperature
of 250 °C, an ion source temperature of 200 °C, a purge flow of
3 mL/min, a gas saver flow of 5 mL/min, and a gas saver time of
5 min. For the GC-MS analysis, the meat floss had to be
preprocessed first during sample preparation. The meat floss
was dried in an oven and then ground into the powder. The
sample was extracted using pure methanol (>99%). The analysis
was done at room temperature of 23 °C and relative humidity of
55%. The GC-MS data were recorded in an HP-5MS UI column with
a length of 30m and an inner diameter of 0.25 mm. Based on their
ion molecular mass (M+) and fragmentation pattern, the molar
mass of the compound was confirmed with the NIST 14 standard
library.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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