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Multimodal fusion of brain signals for robust prediction of
psychosis transition
Jenna M. Reinen1,4✉, Pablo Polosecki1,4, Eduardo Castro 1, Cheryl M. Corcoran 2, Guillermo A. Cecchi 1 and Tiziano Colibazzi3

The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures
predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis
conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each
modality to inform each other. Baseline multimodal scans (n= 74, 11 converters) included structural, resting-state functional
imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC= 0.73 vs. 0.66 in predicting
conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality
redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature,
including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex
pathophysiology of psychosis.
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INTRODUCTION
Psychotic illness is associated with significant implications for
long-term function. Diagnosis often occurs in adolescence or early
adulthood, and is preceded by a period of risk, defined by present
but sub-diagnostic symptom levels. To improve treatment and
understand the mechanisms of psychosis, a substantial body of
literature has characterized this at-risk period (“clinical high risk” or
CHR)1. A diverse set of clinical and biological (e.g., genetic)
methods has been used to determine which individuals develop
psychosis2. In particular, hope has been placed in neuroimaging to
identify biomarkers of risk and conversion, which has revealed an
extensive list of biomarker candidates. For example, the onset and
early stages of psychotic disorders have been associated with
alterations in structural brain features, including decreased whole
brain gray matter3 and hippocampal volume4, ventricular
enlargement5,6, and insular and prefrontal cortex (PFC) abnorm-
alities7,8. Changes in prefrontal and temporal cortical volumes
have been associated with faster rates of decline in conver-
ters3,9–11. Discoveries in diffusion-weighted imaging (DWI) have
implicated white matter tracts as markers of high risk status and
conversion in the cerebello-thalamo-cortical circuit12 and superior
longitudinal fasciculus13. Functional magnetic resonance imaging
(fMRI) studies have shown abnormal PFC-amygdala connectivity
and alterations in dorsolateral prefrontal cortex associated with
working memory deficits in CHR groups14–16, and in functional
connectivity (FC) in the cortico-striatal and thalamo-cortical
regions that predict increased risk and disease onset17–20. Finally,
hyperactive cerebello-thalamo-cortical circuitry may predict time
to diagnosis21.
These numerous predictors vary across modalities, representing

only a portion of features associated with risk and conversion. A
reliable single-modality, individual-level marker of diagnosis
remains elusive, likely reflecting the heterogeneity of psychosis.
To address this complexity, machine learning (ML) algorithms
have been increasingly used over the last decade to obtain a

formal prediction of conversion22,23. ML has an advantage in
handling complex data using pattern recognition and multivariate
analyses, and has demonstrated improved performance relative to
traditional statistical approaches in predicting conversion1,24 and
in classifying conversion using neuroanatomical10,25–27 and
functional imaging features28. Promising evidence has shown
that adding modalities improves classification in psychosis23.
Though the number of publications using multiple modalities to
predict outcomes is increasing29, approaches vary widely. Data
fusion methods, which make predictions by combining modalities,
are relatively underutilized in brain imaging30. For some methods,
multimodal information boosts predictive power by optimizing
the combination of each modality’s contribution to a final
prediction, thereby reducing noise-related uncertainty, as in
voting schemes (late fusion)29,31. But predictive patterns from
different modalities can inform each other during training,
allowing complementary information and synergies to produce
more robust patterns for each modality. Its simplest implementa-
tion is directly concatenating all features (early fusion), treating
the whole as one large modality. This can become problematic
when collapsing across datasets with unbalanced dimensionality
(e.g., neurocognitive assessment vs. whole-brain FC)32 where low-
dimensional features may be underrepresented when juxtaposed
with high-dimensional ones. One solution is intermediate fusion,
such as multiple kernel learning (MKL), a simple approach that
utilizes a similarity measure (kernel) for each modality across a
sample set during training. This makes the dimensionality of
individual modalities less relevant yet still allows them to inform
each other during learning for increased robustness and
performance33–35. Consequently, we expected MKL would per-
form equivalently or better than single modalities or early fusion
when predicting outcomes from multimodal data in schizophre-
nia. To address this, we used structural, resting-state fMRI, and
diffusion neuroimaging modalities within a cohort of healthy
participants and CHR individuals followed for two years. We
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assessed classification in: 1) healthy vs. all CHR individuals (CHR-
converters and CHR-nonconverters); and 2) CHR-converters vs.
CHR-nonconverters. We compared methodologies by providing
prediction accuracy of a support vector machine (SVM) within
each modality and two multimodal approaches: 1) direct
concatenation of features (early fusion) with SVM; and 2) MKL to
compare feature sets with highly disparate dimensionalities. We
discuss the benefits, limitations, and contributions of these
approaches to understanding the etiology of psychosis.

METHODS
Participants
Participants (initial recruited sample n= 101) included 61 CHR
individuals, of whom 14 were known to convert to psychosis
within two years, and 40 healthy individuals similar in demo-
graphics who were drawn from the same source population (Table 1).
CHR individuals were participants in a clinical research program,
the Center of Prevention and Evaluation at the New York State
Psychiatric Institute. 74 individuals (43 CHR, including 11 CHR-
converters, and 31 healthy individuals) had available data from all
imaging modalities that passed quality thresholds. CHR status was
defined using the Structured Interview for Psychosis-Risk Syn-
dromes /Scale of Prodromal Symptoms (SIPS/SOPS); distinct
analyses and additional details from this cohort are reported
elsewhere15,20. Among those CHR who reported medication at
baseline and had eligible scans from all modalities (total n= 42),
22 were prescribed psychiatric medication, and of those, 8 were
also prescribed antipsychotic medication. Of the CHR-
nonconverters (n= 31), 16 took medication and 4 took anti-
psychotics. Of the CHR-converters (n= 11), 6 took medication and

4 took antipsychotics. Formal statistics were not calculated due to
the small number of CHR-converters taking medication. CHR
participants were followed to assess clinical outcomes for 2.5
years. All procedures were approved by the New York State
Psychiatric Institute IRB and informed consent was acquired prior
to participation.

Imaging acquisition and preprocessing
Structural, functional (fMRI), and diffusion-weighted (DWI) imaging
data were acquired using a GE Signa 3T whole-body scanner using
a GE quadrature head coil. Imaging acquisition parameters are
described elsewhere20 and in the Supplementary Materials. FMRI
and DWI imaging preprocessing was performed using an in-house
pipeline created with Nipype36 using Freesurfer v5.337 and FSL38.
Further detail on this preprocessing, as well as information about
the construction of functional connectivity (fMRI FC), fractional
anisotropy (DWI FA) and mean diffusivity (DWI MD) summary
features are described in the Supplementary Materials.

Additional quality control and cohort information
Functional data was first evaluated for quality, and features were
then created from qualifying data using partial calculations. In the
full sample of 101 participants, 19 had missing functional or
structural files, and 8 had files that did not pass quality control
thresholds as administered by standard fMRIPrep processes39.
Following preprocessing, data were calculated across each resting
state scan using a map of 100 ROIs40.
Volumetric structural features were calculated for cortical and

subcortical regions using FreeSurfer’s automated cortical surface
reconstruction and subcortical segmentation of neuroanatomical
regions37. Roughly, this processing incorporates motion correc-
tion, removal of non-brain tissue, segmentation of subcortical
white matter and deep gray matter structures, and cortical
segmentation. Following this process, scans underwent an
automatic quality assessment using FreeSurfer’s QA tools41.
Volumes that were not adequately processed based on subcortical
reconstruction processes or that did not surpass the FreeSurfer
default signal-to-noise (SNR) cutoff value were excluded from our
analysis.

Predictive models
Our goal was to predict and identify markers of CHR and psychosis
conversion. To this end, we focused on two models of interest
(Fig. 1), classifying: 1) the high-risk label overall (CHR-nonconver-
ters+ CHR-converters) versus healthy controls, and 2) the CHR-
converter label versus CHR-nonconverters. An analysis examining
the converter label (CHR-converters) versus all others (controls+
CHR-nonconverters) is reported in the Supplementary Material.
For all analyses, in total, 84 structural features, 4851 fMRI features,
and 4304 diffusion features were used in the analysis.
For the sake of efficiency, we focus on multiple kernel learning

(MKL) in this manuscript. The choice to use MKL over other
methods was done for several reasons, such as the need to predict
a binary outcome. Importantly, late fusion was not a focus of this
paper because it does not allow cross-modality interactions during
learning, which was the main interest of this study. However, we
did explore the performance of stacked generalization29,42 which
is reported in the results section.
As described, multiple kernel learning (MKL) is an example of an

intermediate fusion approach; i.e., one that lets signals from each
modality inform each other. MKL can be used with a kernel
method like support vector machines (SVM), which is an approach
that relies on a similarity measure (the kernel) between observed
samples. In MKL, for each modality in this study (DTI, fMRI, and
structural features), a kernel is created by calculating a similarity
matrix comprised of the dot product between pairs of subjects’

Table 1. Demographic and symptoms across groups.

Controls v. CHR

Controls (n= 31) CHR (n= 43)

n Female/Male ns 11/20 9/34

Mean age (SD)* 23.23 (3.57) 21.30 (4.08)

Mean education in years
(SD)*

4.20 (1.38) 3.25 (1.60)

n Minority/Caucasiana ns 17/8 25/16

CHR-Nonconverters v. CHR-Converters

Not converted
(n= 32)

Converted (n= 11)

n Female/Male ns 5/27 4/7

Mean age (SD) ns 21.66 (5.28) 21.18 (3.67)

Mean education in years
(SD) ns

3.1 (1.54) 3.70 (1.77)

n Minority/Caucasiana ns 18/13 7/3

Mean SIPS Pos (SD) ns 11.53 (4.94) 13.55 (5.34)

Mean SIPS Neg (SD) ns 14.19 (6.78) 17.36 (9.77)

Mean SIPS Disorganized
(SD) ns

7.68 (4.53) 9.73 (4.47)

Mean SIPS General (SD) ns 9.45 (4.14) 11.55 (5.30)

Mean SIPS GAF (SD) ns 47.87 (8.22) 43.55 (10.23)

Mean and standard deviation (SD) for demographics and symptoms are
reported. Chi-square tests were used to assess gender and minority status.
T-tests assessed all other comparisons.
ns denotes not significantly different at p < 0.05.
CHR clinical high risk, SD standard deviation, SIPS Structured Interview for
Psychosis-Risk Syndrome.
*Denotes significant difference at p < 0.05.
aMinority status was not reported for all participants.
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imaging data. Kernels from each modality are normalized to
ensure that they contribute similarly when combined. The kernels
are then combined into a composite kernel, which is usually
represented by a weighted sum of each individual kernel,
determined by EasyMKL34 method to best discriminate between
the groups of interest. Following this, the composite kernel, which
integrates information from all modalities, is provided to a SVM to
predict either CHR status or conversion status, depending on the
analysis.
In Step 1, a unimodal analysis (Fig. 1, top-right) was performed

to determine the presence or absence of predictive information
for each modality (structure, fMRI, DWI). Here, a linear SVM was
used to assess the performance of each modality in both models.
The second analysis tested two types of multimodal models (Fig.
1, bottom-right). Step 2 (Fig. 2, bottom) used a collapsed
representation with SVM for a direct concatenation of features,
also known as early fusion, to assess prediction for each imaging
modality. Finally, Step 3 consisted of a multiple kernel learning
model33 for multimodal fusion using EasyMKL34,43. As stated
above, this approach learns a kernel from each individual modality
and an optimal combination of them simultaneously.
To assess performance, we used a Monte Carlo cross validation

scheme with 100 random splits into train and test sets (75%/25%,
respectively), using the same proportion of labels in each set. We
computed the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve and reported the median
AUC across splits. To assess statistical significance, this was
compared to a null distribution obtained by random permutation
of the test labels (103 permutations used). To visualize the
variability of learned patterns of each model, we extracted the
weight vectors for each modality in each train set, normalized
each vector to unit norm, and used principal component analysis
(PCA) to project the vectors to two dimensions. We report top
feature weights based as those feature labels (brain regions or
features) that were given the highest absolute weights, on
average, across train sets.

RESULTS
Participant characteristics
We first addressed demographic and motion characteristics within
and across the groups. During participant recruitment, propor-
tional matching was performed for race, sex, and age of the CHR
and healthy individuals. In the present analysis, we specifically

examined subgroups of the original cohort based on data
availability, quality, and specific comparison (e.g., CHR or healthy
individuals from the original cohort who had data from all
modalities that passed QC). As a result, we re-assessed demo-
graphics, and where appropriate, symptoms (see Table 1) for each
cohort comparison. A comparison across healthy controls and CHR
participants showed that there were differences in age and
education (both p < 0.05), though no differences were identified
for CHR-converters versus CHR-nonconverters for demographics
or symptoms. Because symptoms (SIPS/SOPS), age, and sex were
similar across CHR-converters and CHR-nonconverters in this
cohort (Table 1), they were not used as variables of interest.
Instead, we focused on brain measures alone. No differences were
found between the groups for motion related to the BOLD signal;
head motion defined by mean displacement was not different
between healthy control and CHR (t(71)=−0.62, p= 0.54), or
CHR-nonconverters and CHR-converters (t(40)=−1.86, p= 0.07).
Upon inspection, head motion showed greater variability in CHR-
nonconverters, which explained their increased but non-
significant mean displacement.

Comparison of model performance and stability
We then examined the performance results of machine learning
classifications, first for the CHR label (CHR-converters and CHR-
nonconverters) versus the control label. FA and fMRI FC features
had the best performance of the single feature modalities (Table 2;
AUC= 0.61, p= 0.027 and 0.62, p= 0.02, respectively). MD and
structural features were not significant predictors. The MKL model
tied with early fusion SVM in this instance with AUC= 0.66,
p < 0.01. Next we examined the analysis classifying the CHR-
converter versus CHR-nonconverter label. Here, FA and fMRI FC
features also yielded the best single-modality predictions (AUC=
0.66, p= 0.043 and AUC= 0.65, p= 0.037, respectively). Similar to
the first analysis, MD and structural features were not significant.
The MKL model outperformed any single modality and early
fusion SVM with AUC of 0.73, p < 0.01. To further explore the
performance advantage of this MKL model, we calculated the
precision-recall AUC and still found an advantage for MKL (PR-
AUC= 0.6) versus SVM (PR-AUC= 0.52), indicating that MKL was
still our best option. Overall, this suggests a performance
advantage for multimodal models, and highlights the importance
of FA and fMRI FC in predicting psychosis onset. Several other
methods were explored, including logistic regression and stacked

Fig. 1 Analysis Specifications and Flowchart. (Left) Multiple kernel learning (MKL) is a part of the family of kernel methods. These make a
prediction about a test sample based on its similarity (kernel function) to samples seen during training. In multimodal multiple kernel learning,
schematized here, a multimodal kernel is learned as a combination of kernels obtained from single modalities, allowing patterns to be learned
from each modality to inform the rest. (Right) Predictive models were assessed with a unimodal analysis where each data modality was
evaluated individually to predict the given label. Next, multimodal analyses are shown using support vector machines (SVM), and finally, a
MKL model. RS resting state, DTI diffusion tensor imaging, FA fractional anisotropy, MD mean diffusivity, CHR clinical high risk.
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generalization, which did not show an advantage over MKL (AUC
for all stacked generalization comparisons <0.59).
To understand the effects of multimodal fusion in learned

patterns and their stability, we assessed their variability in the
unimodal (SVM) and multimodal (MKL) models. We considered
how the weight vectors (i.e. the vectors quantifying the signed
importance given to each feature in a given modality, Fig. 2A)
changed as different train sets (100 random splits of the data)
were used for learning, and visualized how they were distributed
using principal component analysis to project them to two
dimensions (Fig. 2 and Supplementary Fig. S9). Unimodal SVM
models tended to be multi-stable, forming clusters depending on
the samples seen during training. By contrast, MKL weights
tended to benefit from the presence of other modalities, which
stabilized the feature weights (especially FA and structural maps).
A similar behavior was observed in CHR prediction

(Supplementary Fig. S9). This suggests that multimodality can
ameliorate the stability issues of high-dimensional patterns that
are typical of the low-sample-number brain models common in
psychiatric disorders.

Features predicting healthy controls vs. all CHR participants
Next, we examined features predicting the CHR label (CHR-
converters and CHR-nonconverters) versus control label using the
MKL model (Fig. 3, upper panel). The top structural features
predicting CHR status for the SVM model included regions of
cortex, including postcentral gyrus, cingulate, and insula, as well as
enlarged ventricles and decreased dorsal striatum and frontal
cortex volume (Fig. 3A and Supplementary Table S3). Additionally,
reduced fMRI connectivity in limbic, striatal, fronto-cortical and
cerebellar regions, including connectivity in medial and inferior
frontal gyrus and caudate, also predicted the CHR label, as did
heightened thalamic-cortical and fronto-striatal connectivity
(Fig. 3B; see Supplementary Materials for single-modality findings).
The top FA features predicting the CHR label included decreases in
corpus callosum and limbic regions (Fig. 3C). Differences between
MKL-SVM models indicated the MKL model leveraged SVM
predictors by identifying the optimal combination of each
modality, including reduced volume in frontal and temporal
cortex, ventricle size, and fronto-limbic functional connectivity
(Supplementary Fig. S1).

Features predicting CHR-nonconverters vs. CHR-converters
The MKL model predicting the CHR-converter versus CHR-
nonconverter label (Fig. 3, lower panel) indicated that structural
features identifying converters from high risk non-converters
included enlarged ventricle size, as well as orbitofrontal, insula,
cingulate, and hippocampal volumes (Fig. 3D, Supplementary
Table S1). Functional connectivity features predicting conversion
included decreased connectivity in multiple cortical regions, and
between cortical and striatal regions as well. Both reduced and

Fig. 2 Variability of brain patterns learned by unimodal and multimodal models. A Linear classifiers use feature weight vectors for making
a classification, representing the multivariate patterns of feature importance and variability across training samples and folds. B–D We used
principal component analysis (PCA) to visualize this weight vector variability across train sets (100 total) for each modality in unimodal SVM
and MKL when predicting conversion (CHR-converters vs. CHR-nonconverters). Relative to SVM models which formed clusters based on
training samples, MKL benefitted from other modalities to stabilize the feature weights. Please refer to the supplement for a similar analysis
that identifies CHR status.

Table 2. Model performance.

CHR vs.
Controls

CHR: Non-
converter v.
Converter

Feature AUC p-value AUC p-value

Structural 0.53 0.28 0.63 0.06

Fractional anisotropy 0.61 0.03 0.66 0.04

Mean diffusivity (MD) 0.41 0.96 0.56 0.25

Functional MRI 0.62 0.02 0.65 0.04

Multiple kernel learning (no MD) 0.66 0.01 0.73 0.01

Support vector machine (no MD) 0.66 0.01 0.67 0.03

Model performance was quantified for each analysis. The MKL model
demonstrates superior performance when identifying converters.
Bolded values denote significance at p < 0.05.
CHR Clinical High Risk.
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Fig. 3 Top features predicting (above) CHR vs. Controls and (below) CHR-Converters vs. CHR-Nonconverters using the MKL model. Top
feature weights are shown for A, D subcortical and cortical structural features; B, E functional connectivity features for which green= L and
pink= R; and (C, F; bottom two panels) fractional anisotropy features. For all graphs, warm colors denote positive weights (i.e., a higher feature
value tilts the classifier toward predicting a CHR and a CHR-Converter label in the first and second model respectively) and connectivity, and
cool colors denote negative weights (lower feature values would tilt the decision toward CHR or CHR-Converter). [F= Frontal; C= Central].
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heightened connectivity predictors were also identified in various
cortical regions, including frontal, temporal, cerebellar, and
cingulate cortices (Fig. 3E). When examining DWI predictors of
conversion, we identified notable increased bilateral thalamic FA
as a top predictor of psychosis, providing further evidence for the
role of this region in predicting conversion (Fig. 3F). Differences
between the MKL-SVM top features indicate that MKL models
further leveraged ventricle size, decreased frontal and parietal
cortical volume, and numerous frontal, striatal, cerebellar and
limbic functional connections to predict the converter label
(Supplementary Fig. S2).

DISCUSSION
Using a multimodal brain imaging dataset comprised of
functional, structural, and white matter brain imaging features
to predict risk and conversion to a psychotic illness, we
demonstrated that a multimodal approach achieves superior
performance over a unimodal approach, and in particular that
MKL was superior relative to single-modality SVM and collapsed
feature SVM in predicting conversion to psychosis from high-risk
status. Across our two analyses of interest, MKL leveraged the
multimodal neurobiology of psychosis to learn stable predictive
patterns that enhance accuracy, a key element in small studies
using high dimensional data to predict outcomes. These findings
suggest that there may be an advantage in predicting psychiatric
outcomes from multiple modalities and in optimizing the
combination of variables with an intermediate-fusion approach.
This approach reveals clear differences and similarities in the
features predicting risk and conversion through the inspection of
common features across modalities, for instance in the insula,
cingulate, striatum, and along thalamo-cortical tracts. Moreover,
these findings have implications extending to modalities beyond
neuroimaging. For example, MKL could be particularly useful
when combining cognitive and genetic features with neuroima-
ging data, each of which is expected to have distinct feature
dimensionality and appropriate similarity measures. Collectively,
these findings point to the value of using a multimodal approach,
and more specifically, that using MKL with multimodal data to
understand and predict risk and conversion offers benefits beyond
other methods.
Unlike ML approaches that complicate the ability to inspect

learned patterns, one advantage to this method is that it does not
obfuscate the brain regions involved. To the contrary, the
increased stability of learned patterns in MKL allowed us to
explore the top predictive features within the models and assess
their consistency with prior findings. For instance, when examin-
ing risk alone, we found that frontal, striatal, and thalamic
dysconnectivity predicted the CHR label (CHR-nonconverters +
CHR-converters) versus controls, converging with growing evi-
dence that these regions serve as biologically meaningful markers
of risk and psychosis18,44. Structural features predicting CHR status
further verified this, as volume of the thalamus, putamen, frontal
and cingulate cortex, and sensory and motor cortices were also
CHR predictors. Fractional anisotropy features distinguishing CHR
from controls included negative weights in the cingulate.
Comparing across modalities, the cingulate, frontal, and somato-
motor cortices, striatum, and thalamus emerged as multimodal
markers of CHR, aligning these findings with prior literature44,45.
When predicting conversion, many regions were characterized by
both hypo- and hyper-FC, including frontal cortical regions,
cingulate, and cerebellum, perhaps indicating an overall pattern
of dysconnectivity. Structural features predicting conversion
included frontal cortex, cingulate, insula, and a range of
subcortical regions. Well-aligned with prior converging evidence,
ventricle size and hippocampus distinguished converters in the
SVM analysis, which was further leveraged in the MKL approach5.
FA predictors of conversion included robust activation of the

bilateral striato-thalamic tract, and negative weights in corpus
callosum and cingulate. Together these observations underscore
the flexibility of multimodal modeling to tap into the complex
neurobiology of psychosis.
There were several commonalities across modalities, including

those in dopaminergic pathways, cerebellar-cortical and thalamo-
cortical regions, insula, and cingulate. Volumetric predictors in the
striatum, medial temporal lobe, orbitofrontal, and occipital
cortices aligned with findings that abnormalities in these regions
are associated with illness onset and early first-episode schizo-
phrenia6,46, possibly implicating the pathophysiology in dopami-
nergic pathways, a putative mechanism underlying symptoms of
schizophrenia47,48. Top feature weights predicting conversion
implicated both hypo- and hyperconnectivity in cerebellar-cortical
regions, partially aligning with findings in cerebellar hypercon-
nectivity predicting conversion21. Insula volume and FA were top
predictors of CHR status, with insular volume also distinguishing
converters from other CHR patients, which aligned with prior
reports of structural and functional abnormalities in high-risk
individuals8,49–51. Increased thalamo-cortico tract FA was a top
predictor of conversion, also verifying broad findings associating
abnormal thalamic function with conversion52–55. Finally, the
cingulate was a predictor of both CHR status and conversion as
evidenced by including dysconnectivity in the FC data, structural
abnormalities, and reduced FA. Overall, this was largely consistent
with mechanisms thought to underlie early psychosis, implicating
a diverse set of brain regions and a broad pattern of whole-brain
dysconnectivity, affecting a range of functions associated with
psychosis. These included primary sensory and motor cortices,
regions supporting dopaminergic and salience processing48, and
frontal regions supporting higher cognitive processes such as
working memory and cognitive control15. In particular, thalamic
abnormalities were multimodal predictors of both risk and
conversion, which may reflect compensatory activity aimed to
support abnormal salience and sensory processing55, resulting in
broad downstream physiological changes. This list of regions
highlights the complex nature of predicting conversion, and the
need for methodologies that account for this complexity in
predicting outcome.
The present study also serves as an opportunity to test the

accuracy of MKL approach, relative to unimodal models, side-by-
side. We found that each modality showed different predictive
power depending on the classification task, with FA and fMRI
performing best when classifying converters. DWI MD-based
models did not perform above chance levels in any task and that
modality was omitted in multimodal analyses. Generally, we were
more successful at distinguishing the converter group than the
CHR group. We speculate that this is possibly due to greater
heterogeneity in the CHR group, which was recruited with a broad
set of clinical requirements, whereas the converter group is
ultimately defined by a more narrow set of diagnostic SIPS criteria.
Further exploration comparing modalities and performance is
needed, as the number of studies using machine learning to
predict psychosis onset is small relative to those using traditional
statistical approaches. We also advocate here more generally for
the use of intermediate fusion methods like MKL. Though studies
using multimodal imaging with machine learning to identify
schizophrenia or CHR are relatively uncommon6,22,27,55,56, and
those predicting psychosis onset are even less common25,57,58,
many of those published typically used a straightforward SVM
approach for single modalities, combined together using a voting
scheme (late fusion). We had expected that MKL would boost
predictive power by averaging out noise in the prediction of single
modalities29, allowing learned signal from each modality to inform
or affect the others33–35. Here we confirmed that MKL can indeed
do that, learning a kernel from each individual modality and
generating an optimal combination of them simultaneously. It is
likely because of it that it performed best in our comparison
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analyses. This suggests that intermediate fusion methods, of
which MKL is arguably the simplest, may have an advantage with
multimodal imaging data, which may be even more pronounced
in feature sets of heterogeneous size.
This is the first study to use multimodal imaging and MKL to

predict psychosis to our knowledge, and there are important
considerations regarding possible extensions and limitations. In
addition to conversion, future studies should explore variables like
symptom remission, functional outcomes, and medication use.
Replication in independent datasets should include data with
diverse dimensional characteristics, like cognitive, clinical, demo-
graphic, and genetic features. In particular, these features may
enhance predictive accuracy in psychosis23. Here, MKL could show
a particular advantage, given the extreme difference in dimen-
sionality between, for example, high-dimensional FC features and
scores from lower-dimensional cognitive assessments. Addition-
ally, it could directly accommodate other modalities for which
specific measures of similarity are relevant, as with genetic
sequences. Our study found greater motion variability in the CHR-
nonconverters, which could impact model performance. Future
studies should continue to examine the impact of head motion,
which can be a confounder in neuroimaging data, and especially
in schizophrenia. Finally, while the benefits of intermediate fusion
approaches might be general, the sample size in this study was
small, and findings reported here need independent replication.
Overall, we demonstrated clear advantages for the use of
multimodal datasets and use of MKL, both in terms of predictive
performance and model robustness. Across modalities, we
identified many biological features, including the cingulate,
thalamus, striatum, and frontal cortices, which emerged as cross-
modality predictors of CHR and conversion, providing strong
converging evidence for each of these as biomarkers of risk and
psychosis onset. This large number of common predictors also
highlighted the multidimensionality of mechanisms underlying
psychosis, and the strong need for multimodal learning models
when predicting outcomes.
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