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The contribution of prosody to machine classification of
schizophrenia
Tomer Ben Moshe1, Ido Ziv2✉, Nachum Dershowitz1 and Kfir Bar3

We show how acoustic prosodic features, such as pitch and gaps, can be used computationally for detecting symptoms of
schizophrenia from a single spoken response. We compare the individual contributions of acoustic and previously-employed text
modalities to the algorithmic determination whether the speaker has schizophrenia. Our classification results clearly show that we
can extract relevant acoustic features better than those textual ones. We find that, when combined with those acoustic features,
textual features improve classification only slightly.
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INTRODUCTION
Schizophrenia is an acute mental disorder characterized by
delusions, hallucina- tions, and thought disorders. Thought
disorders are disturbances in the normal way of thinking, typically
presented as various language impairments, such as disorganized
speech, which are related to abnormal semantic associations
between words1. These include the following: (1) poverty of
speech; (2) pressure of speech, fast, loud and hard-to-follow
responses; (3) “word salad”, random-word selection at times; (4)
derailment, shifting from one topic to another during a conversa-
tion; and (5) tangentiality, furnishing an irrelevant response, never
reaching the answer to the posed question2. Andreasen3 provides
some statistics for symptoms of thought disorder, with the most
common being derailment, loss of goal, poverty of content, and
tangentiality.
Diagnosing thought disorders is performed by clinicians and

mental-health professionals, typically by means of a conversation.
This is an arduous and subjective process. Mental-health profes-
sionals are on constant lookout for objective computational
assessment tools that can help identify whether a person is
showing signs of thought disorders.
There have been several prior attempts at developing

computational tools for analyzing language with the goal of
detecting symptoms of mental-health disorders; we describe
some of those works in the following section. Generally speaking,
speech and text are the two modalities of human language that
can be processed and analyzed algorithmically for the diagnosis of
mental-health disorders. For this purpose, processing speech is
typically done for the purpose of modeling the prosody by
extracting features related to intonation, stress and rhythm. One
of the most prominent prosodic symptoms is flattened intonation,
or aprosody, which is interpreted as inability of a person to
properly convey emotions through speech. This is a negative
symptom of schizophrenia. Another negative symptom that is
associated with speech is alogia, or poverty of speech, presented
as very minimal speech. Metaphorically, it has been claimed4,5 that
patients with schizophrenia sometimes sound like a person talking
on the phone, referring to the low-quality aspect of the voice,
sometimes occasionally to as a “creaky” voice. Cohen et al.6

associate acoustic-based analysis of speech, generally speaking,

with clinically rated negative symptoms, while associations with
positive symptoms have been found to be inconsistent.
Prosody, which encompasses aspects of language beyond the

scope of grammar and vocabulary choice, can reflect subtle
elements such as emotions and pragmatic nuances. Conversely,
the transcription is essential for capturing the linguistic and
semantic characteristics inherent in conversations. It’s important
to note, however, that non-emotional aspects of prosody also exist
and play a significant role in communication.
We study the salience of acoustic and textual features for the

classification task of automatically detecting whether a given
utterance was generated by someone who has been diagnosed
with schizophrenia or by a control subject. To do that, we measure
the contribution of each set of features once when used
individually for classification, and again when both modalities
are combined together.
Our dataset comprises transcribed interviews, collected from

native Hebrew-speaking inpatients, officially diagnosed with
schizophrenia at a mental health center in Israel, and from a
demographically balanced control group. The prosodic features
that we consider are based on pitch, which we extract using an
audio processor. The textual features are extracted from the
transcriptions of the audio files and are designed to capture
symptoms such as derailment and incoherence, following a
previous work7 that has shown the efficacy of such features when
used in a similar classification task.
Prosodic features have been computationally examined pre-

viously and were shown to be effective for the task of detecting
schizophrenia—for example8,9 for English speech. For Chinese,
Huang et al.10 combined acoustic features with textual features for
assessing the severity of thought disorders in examined schizo-
phrenia patients. However, none of these works compare the
individual contributions to classification of each of the modalities
when used in combination.
Our contribution is twofold: (1) We show how acoustic prosodic

features can be used for detecting symptoms of schizophrenia
from only a single spoken response (given in Hebrew); and (2) we
measure the individual contribution of both speech and text
modalities to the task of detecting whether the person who
generated a given utterance has schizophrenia. Our classification
results clearly show that the acoustic prosodic features capture
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more information than do the textual ones. When combined with
those acoustic features, textual features improve classification very
slightly.

RELATED WORK
The extensive literature about language characteristics and
schizophrenia is examined in11. The authors distinguish between
two types of language impairment among patients with schizo-
phrenia: thought disorder—defined as disturbances in the normal
way of thinking, and schizophasia—comprising various dysphasia-
like impairments such as clanging, neologism, and unintelligible
speech. They also assert that patients with thought disorders
produce and perceive sounds in an abnormal way, manifesting as
flat intonation or unusual voice quality.
Hoekert et al.12 conducted a meta-analysis of seventeen studies

between 1980 and 2007. They found that prosodic expression of
emotions is significantly impaired with schizophrenia. Martínez-
Sánchez et al.13 compared the speech of 45 medicated schizo-
phrenia patients and 35 healthy controls, all native Spanish
speakers from Spain. The results revealed that patients paused
more, talked more slowly, and showed less variability in speech
and fewer variations in syllable timing. Alpert et al.14 examined
whether “flat affect”, defined as emotionless speech, which is one
of the symptoms of schizophrenia, indicates an emotional
deficiency or whether this is only a communication issue. They
did not find evidence for impairment in any other aspect of
emotion expression besides prosody.
There is a large body of work that studies the efficacy of

computational approaches for diagnosis of mental-health disorders.
We continue by listing some related work that use computational
tools to process acoustic speech signals for diagnosis of mental-
health disorders, followed by works that use natural-language
processing tools for analyzing transcriptions for the same purpose.
In a systematic review15 that analyzes 127 studies, the authors

conclude that speech processing technologies could aid mental-
health assessment; however, they mention several caveats that
need to be addressed, especially the need for comprehensive
transdiagnostic and longitudinal studies. Given the diverse types
of datasets, feature extraction procedures, computational meth-
odologies, and evaluation criteria, they provide guidelines for both
data acquisition and building machine-learning models for
diagnosis of mental-health disorders.
Kliper et al.8 trained a support vector machine (SVM) classifier

that gained about 76% accuracy in a binary classification task of
identifying people with schizophrenia versus controls, using
acoustic features. The study population comprized 62 English-
speaking participants, divided into three groups: patients with
schizophrenia, patients with clinical depression, and healthy
controls. In a three-way classification task over the three groups,
their classifier achieved about 69% accuracy. Every participant was
interviewed and recorded by a mental-health professional. Each
recording was divided into segments of two minutes each, which
were subsequently analyzed independently. Each recording was
represented by nine acoustic features based on pitch and power,
which were automatically extracted using tools similar to those
that we use in this work.
Dickey et al.16 study prosodic abnormalities in patients with

schizoid personality disorder (SPD). Their experimental results
showed that SPD patients speak more slowly, with more frequent
pauses, and exhibited less pitch variability than control
participants.
A new algorithm to detect schizophrenia was proposed by17

based on a classifier that uses three new acoustic prosodic
features. On a dataset comprised of 28 schizophrenia patients and
28 healthy controls, they measured classification accuracy
between 89.3% and 94.6%.

Agurto et al.18 predict psychosis in youth using various acoustic
prosodic features, such as pitch-related and Mel-frequency
cepstral coefficients (MFCC). They analyzed the recorded speech
of 34 young patients who were diagnosed to be at high risk of
developing clinical psychosis. Among other things that they
showed, they trained a classifier that can predict the development
of psychosis with 90% accuracy, outperforming classification using
clinical variables only.
Lucarini et al.19 offer a review of research papers focusing on

the less-explored topic of non-emotional prosody. They introduce
a linguistic model designed to classify prosodic functions along a
continuum ranging from “linguistic,” pertaining to the structural
aspects of language, to “paralinguistic,” which relates to the
expression of emotions.
Lucarini et al.20 conducted an analysis of conversations between

patients with schizophrenia and interviewers, aiming to detect
associations between symptoms of schizophrenia and conversa-
tion dynamics. The approach centered on a relatively straightfor-
ward representation of a conversation, primarily encoding pauses
and participant involvement. Their findings indicate a significant
association between the dynamics of these conversations and
negative symptoms of schizophrenia.
There has been an increasing number of works that computa-

tionally process speech transcriptions for detecting symptoms of
schizophrenia. Specifically, measuring derailment and tangentiality
has been addressed several times. For example, Elvevåg et al.21

analyzed transcribed interviews of inpatients with schizophrenia by
calculating the semantic similarity between the response given the
participants and the question that was asked by the interviewer. For
semantic similarity they used cosine similarity over the latent
semantic analysis (LSA) vectors22 calculated for each word, and
summed across a sequence of words. Similarly, Bedi et al.23 use
cosine similarity between pairs of consecutive sentences, each
represented by the element-wise average vector of the individual
words’ LSA vectors, to measure coherence. Using this score they
automatically predicted transition to psychosis with perfect
accuracy. Iter et al.24 showed that removing some functional words
from the transcriptions improves the efficiency of using cosine
similarity over LSA vectors for measuring derailment and
incoherence.
This direction was developed further by Bar et al.7, who used

fastText vectors25 to measure derailment in a study group that
included 24 schizophrenia patients and 27 healthy controls, all
native Hebrew speakers. Furthermore, they developed a new metric
for measuring some aspects of incoherence, which compares the
adjectives and adverbs that are used by patients to describe some
nouns and verbs, respectively, with the ones used by the control
group. As a final step, they used derailment and incoherence scores
as features for training a classifier to separate the two study
subgroups. In another work26 on the same study group, the authors
used part-of-speech tags, lemma-to-token ratio, and some other
morphological features, to perform a two-way classification for
patients and controls. They report almost 90% accuracy.
We study a similar group of Hebrew-speaking male schizophrenia

patients and healthy controls. Therefore, we use some of the same
textual features suggested in that prior work to measure their
respective contributions when combined with acoustic features.
Corona-Hernández et al.27 analyzed speech transcriptions of

Dutch-speaking schizophrenia patients and controls, focusing on
how connectives serve as informative and explainable variables.
That study aimed to determine the reliability of using connectives
to assess disorganized speech in patients with schizophrenia.
Finally, Corcoran et al.28 present a survey of various studies that

employ similar techniques for measuring symptoms of psychosis
and schizophrenia, by automatically analyzing speech
transcriptions.
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METHODOLOGY
Participants and data collection
We interviewed 48 men, aged 18–60, divided into control and
patient groups, all speaking Hebrew as their first language. The
patient group includes 23 inpatients from the Be’er Ya’akov–Ness
Ziona Mental Health Center in Israel who were admitted following a
diagnosis of schizophrenia. Diagnoses were made by a hospital
psychiatrist according to the DSM-5 criteria (American Psychiatric
Association, 2013) and a full psychiatric interview. Each participant
was rewarded with approximately $8. The control group includes 25
men, mainly recruited via an advertisement that we placed on social
media. The demographic characteristics of the two groups are given
in Table 1. Exclusion criteria for all participants were as follows: (1)
participants whose mother tongue is not Hebrew; (2) having a
history of dependence on drugs or alcohol over the past year; (3)
having a past or present neurological illness; and (4) using fewer
than 500 words in total in their transcribed interview. Additionally,
the control group had to score below the threshold for subclinical
diagnosis of depression and post-traumatic stress disorder (PTSD).
Most of the control participants scored below the threshold for
anxiety. Most of the patients scored above the threshold for
borderline or mild psychosis symptoms on a standard measure. (Our
patient group is composed of inpatients who are being treated with
medications; therefore, higher scores were not expected.) See
Section 3.2 for more details about the assessment measures used in
this study.
The patients were interviewed in a quiet room at the

department where they are hospitalized by one of our profes-
sional team members, and the control participants were
interviewed in a similar room outside the hospital. Each interview
lasted approximately 60 min. The interviews were recorded and
later manually transcribed by a native Hebrew speaking student
from our lab. All participants were assured of anonymity, and told
that they are free to end the interview at any time.
After signing a written consent, each participant was asked to

describe 14 black and white images picked from the Thematic
Appreciation Test (TAT) collection. We used the TAT images
identified with the following serial numbers: 1, 2, 3BM, 4, 5, 6BM,
7GF, 8BM, 9BM, 12 M, 13MF, 13B, 14, and 3GF. These include a

mixture of men and women, children, and adults. The images
were presented one by one. Each picture stands by itself, was
presented alone, and bears no relation to the other pictures.
Participants were asked to tell a brief story about each image
based on four open questions:

(i) What led up to the event shown in the picture?
(ii) What is happening in the picture at this moment?
(iii) What are the characters thinking and feeling?
(iv) What is the outcome of the story?

The interviewer remained silent during the respondent’s
narration and offered no prompts or additional questions.
After describing the images, the participant was also

asked to answer four open-ended questions, one by one:

(1) Please tell me as much as you can about your bar
mitzvah. (The Jewish confirmation ceremony for boys
upon reaching the age of 13)

(2) What do you like to do, mostly?
(3) What are the things that annoy you the most?
(4) What would you like to do in the future?

As before, the interviewer remained silent during the respon-
dent’s narration and offered no prompts or questions.
Once all 18 components (14 image descriptions and 4 open

questions) were answered, each participant was requested to fill in
a demographic questionnaire as well as some additional ques-
tionnaires for assessing mental-health symptoms, which we
describe in the following subsection.

NB. This research was approved by the Helsinki Ethical Review
Board (IRB) of the Be’er Ya’akov–Ness Ziona Mental Health
Center.

Symptom assessment measures
Control group. The control participants were assessed for
symptoms of depression, PTSD, and anxiety.
Depression: Symptoms of depression were assessed using

Beck’s Depression Inventory-II (BDI-II)29. The BDI-II is a 21-item
inventory rated on a 4-point Likert-type scale (0= “not at all” to
3= “extremely”), with summary scores ranging between 0 and 63.
Beck et al.29 suggest a preliminary cutoff value of 14 as an
indicator for mild depression, as well as a threshold of 19 as an
indicator for moderate depression. BDI-II has been found to
demonstrate high reliability30. We used a Hebrew version31.
PTSD: Symptoms of PTSD were assessed using the PTSD

checklist of the DSM-5 (PCL-5)32. The questionnaire contains
twenty items that can be divided into four subscales, correspond-
ing to the clusters B–E in DSM-5: intrusion (five items), avoidance
(two items), negative alterations in cognition and mood (seven
items), and alterations in arousal and reactivity (six items). The
items are rated on a 5-point Likert-type scale (0= “not at all” to
4= “extremely”). The total score ranges between 0 and 80,
provided along with a preliminary cutoff score of 38 as an
indicator for PTSD. PCL-5 has been found to demonstrate high
reliability33. We used a Hebrew translation of PCL-534.
Anxiety: Symptoms of anxiety were assessed through the State

Trait Anxiety Inventory (STAI)35. The STAI questionnaire consists of
two sets of twenty self-reporting measures. The STAI measure of
state anxiety (S-anxiety) assesses how respondents feel “right now,
at this moment” (e.g., “I feel at ease”; “I feel upset”), and the STAI
measure of trait anxiety (T-anxiety) targets how respondents
“generally feel” (e.g., “I am a steady person”; “I lack self-
confidence”). For each item, respondents are asked to rate
themselves on a 4-point Likert scale, ranging from 1= “not at
all” to 4= “very much so” for S-anxiety, and from 1= “almost
never” to 4= “almost always” for T-anxiety. Total scores range

Table 1. Demographic characteristics by group.

Control Patients Statistics

Subjects (N) 25 23

Age mean (SD) 33.15
(9.98)

25.46 (6.39) t= 3.24**

Years of education mean
(SD)

11.96
(0.20)

11.21 (1.12) t= 3.41**

Place of residence
(frequencies)

x2(3, 49)= 8.29*

Southern Israel 1 7

Central Israel 21 16

Northern Israel 2 0

Jerusalem 1 0

Marital status
(frequencies)

x2(1, 47)= 0.08,
p= 0.77

Single 4 3

Married 21 20

PANSS positive subscale 9.21 ± 3.70

PANSS negative subscale 8.26 ± 3.36

PANSS total subscale 17.47 ± 5.52

*p < 0.05; **p < 0.005.
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from 20 to 80, with a preliminary cutoff score of 40 recommended
as indicating clinically significant symptoms for the T-anxiety
scale36. STAI has been found to have high reliability37. We used a
Hebrew translation38.

Patients. Psychosis symptoms were assessed by the 6-item
Positive And Negative Syndrome Scale (PANSS-6)39. The original
30-item PANSS (PANSS-30) is the most widely used rating scale in
schizophrenia, but it is relatively long for use in clinical settings.
The items in PANSS-6 are rated on a 7-point scale (0= “not at all”
to 6= “extremely”). The total score ranges from 0 to 36, with a
score of 14 representing the threshold for mild schizophrenia, and
a score between 10 and 14 defined as borderline disease or as
remission. PANSS-30 has been found to demonstrate high
reliability40, while Østergaard et al.39 reported a high correlation
between PANSS-6 and PANSS-30 (Spearman correlation coeffi-
cient= 0.86). We used the Hebrew version of PANSS-6 produced
by Katz et al.41. The range of positive and negative symptoms are
presented in the last three rows of Table 1.

Data analysis
We analyse the data using two modalities, audio and text. All the
interviews were recorded with a voice recorder, which was placed
on the table next to the participant. The responses of the
participants for each of the 18 interview components were
recorded separately, and stored as individual files in Waveform
Audio File Format (WAV). Each response was manually transcribed.
We extracted prosodic acoustic features from the audio signal, as
well as textual features from the corresponding transcriptions.

Prosodic acoustic features. We processed each WAV file with
PRAAT42, a computer software package for speech analysis, in
order to extract pitch and intensity per 10 ms frame. We use the
PRAAT “Sound: To Pitch” method, assigned with its standard
values, to detect frames with fundamental-frequency (F0) above
75 Hz. Typically, males’ pitch ranges between 75 Hz and 180 Hz
and females’ from 80 Hz to 250 Hz. Furthermore, we noticed that
some external noises occur in high frequencies. Therefore, we
distinguish between speech and non-speech frames by auto-
matically annotating as speech those frames with a detected F0
value above 75 Hz and below 250 Hz. Overall, we processed
18,187,506 10ms frames, corresponding to approximately 50 h of
recordings, out of which 8,377,628 frames had an F0 above 75 Hz.
Only 322,189 (approximately 4% of 8 M frames) were above the
250 Hz threshold, resulting in 8,055,439 frames that we treated as
carrying human speech. We acknowledge that errors may have
occurred during the pitch-extraction process; we did not employ
any correction utilities for the extraction. Additionally, we are
aware that the voiceless sounds characteristic of Hebrew could
potentially lead to some frames being misclassified as non-speech.
Each WAV file, corresponding to a response to a single image/

question, is now represented by a sequence of speech frames,
each represented by a pair of pitch and intensity values. We
extract nine feature types from each response; to avoid overfitting,
we filter out responses representing less than 10 seconds worth of
speech. Therefore, we work with a dataset containing 449
responses given by controls and 409 responses given by patients.
Following previous work on computational prosodic analysis8, we
extracted the following set of features:
Mean Utterance Duration (MUD): Every segment of at least

500ms of continuous speech is defined as an utterance. MUD is
the mean duration (in ms) of all the utterances in a given
response. The threshold of 500ms corresponds to 50 consecutive
frames with a pitch value indicative of speech. Considering our
criteria for identifying speech within a frame, there is a potential
for omission of speech signals that could have been analyzed.
However, given our focus—in this study—on comparing textual

and acoustic features, we chose to concentrate on speech
segments with a high likelihood of containing substantive content
for meaningful extraction of both feature types.
Mean Gap Duration (MGD): A gap is defined as a maximal time

interval containing no speech. MGD is the mean length (in ms) of
all gaps in a given response.
Mean Spoken Ratio (MSR): The sum of the durations of all

utterances in a response divided by the total response duration.
Mean Spoken Ratio Samples (MSRS): The number of frames that

are classified as speech divided by the total number of frames in
the response.
Mean Pitch (MP): The mean pitch (in Hz) of all frames

recognized as speech in a given response.
Pitch Range (PR): The maximum pitch of all frames recognized

as speech, minus their minimum value, and divided by MP for
normalization.
Standard Deviation of Pitch in a Single Response (PS): The

standard deviation of pitch (in Hz) of all frames recognized as
speech in a given response.
Frame Pitch Correlation (FPC): The Pearson correlation

between a sequence of pitches of speech frames and a sequence
of pitches of their consecutive frames in a given response. FPC, the
way it is applied on pitch, measures the level at which the speaker
sustains constant pitch. FPC is equivalent to mean waveform
correlation (MWC), suggested in ref. 8.
Jitter (J): The local deviation from stationarity of pitch.

Formally, let R be the number of speech frames, and let p(v) be
the pitch of the vth frame. We define J as follows:

J:¼ 1
R� K

XR�K�1
2 �1

v¼K�1
2

p vð Þ � 1
K

PK�1
2

k¼�K�1
2
pðv þ kÞ

PK�1
2

k¼�K�1
2
pðv þ kÞ

K is a locality parameter; it was set to 5 in all our experiments.
Jitter quantifies the variability of a given measurement within a
specific local context, determined by the locality parameter K. In
other words, it assesses the stability of the time period within an
environment spanning five consecutive frames.
We did not extract features that are based on intensity since we

noticed some differences in the background noise between the
recordings of the control participants and the patients, probably
due to differences in room settings and recording equipment.
We verified that all the features are distributed normally, as

expected, and performed t tests to measure the difference in
feature expression between patients and controls. The results are
summarized in Table 2. As can be seen, all the features associated
with speech rate (MUD, MGD, MSR, MSRS) are distributed
significantly differently among patients and controls. MGD
exhibits relatively high levels of variability as indicated by the

Table 2. Mean (SD) values of all prosodic features.

Feature Control mean (SD) Patient mean (SD) t test p

MUD 0.558 (0.120) 0.470 (0.151) 9.488 <0.001***

MGD 0.236 (0.083) 0.928 (1.502) −9.739 <0.001***

MSR 0.446 (0.135) 0.220 (0.154) 22.831 <0.001***

MSRS 0.563 (0.100) 0.311 (0.138) 7.254 <0.001***

MP 129.202 (22.113) 125.422 (21.274) 0.602 0.550

PR 1.148 (0.153) 0.906 (0.196) 4.809 <0.001***

PS 21.579 (5.517) 19.411 (7.370) 1.160 0.252

FPC 0.581 (0.096) 0.483 (0.147) 2.750 0.009*

J 0.008 (0.002) 0.007 (0.002) 2.066 0.044*

*p < 0.05; ***p < 0.001.
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relatively large standard deviation. Consistent with other
research8, our findings indicate that controls generally exhibit
more fluent speech, characterized by significantly shorter pauses.
These results should be qualified by a reminder that we consider
only utterances that comprise at least 50 consecutive pitch frames
marked as speech. Therefore, an MSR value of 0.124 (12%) for the
patients does not necessarily mean that the patients speak for
only 12% of the response time on average. It primarily means that
only 12% of the signal is treated as substantive speech.
Consequently, there is no intention to use the findings in Table
2 to draw direct conclusions about the speech patterns of
participants. We primarily use these values as features for
classification, as explained below. Conversely, analysis reveals that
the mean pitch (MP) and pitch standard deviation (PS) of a given
response are relatively comparable across the two groups.
Nevertheless, more nuanced metrics derived from pitch values,
such as jitter (J), frame pitch correlation (FPC), and pitch range
(PR), demonstrate a more pronounced distinction between the
groups. Upon examination of the jitter calculation methodology, it
becomes apparent that the differences in pitch across consecutive
frames may significantly contribute to the differentiation between
the two groups. The explanation is the fact that jitter is calculated
locally over five consecutive frames as defined by the locality
parameter. The standard deviation of PS (5.517 and 7.370 for
control and patients, respectively) indicates that there are some
responses with high pitch variability, which in turn facilitates
greater jitter variability. We ascribe the same explanation to the
pronounced difference in FPC between the two groups, resulting
in a more significant difference between them. The FPC values
(0.581 and 0.483 for controls and patients, respectively) suggest
that control participants exhibit a more consistent prosody while
responding to questions compared to patients.
We also experimented with a different method of calculating

pitch range, dividing by the minimum pitch value instead of the
mean value. The average and standard deviation for the control
participants and patients using this alternate calculation were
1.814 (0.226) and 1.367 (0.383), respectively. This also resulted in a
significant difference [t=−4.96 (p < 0.001***)] between the two
groups. However, the distribution of this new pitch range variation
did not differ markedly from the original.

Textual features. We extract the same textual features that have
been used by Bar et al.7 on a similar dataset. Essentially, they
designed two types of features for capturing specific symptoms of
thought disorder.
Derailment: The first type is designed to capture derailment,

which is a symptom of thought disorder when the speaker digresses
from the main topic. Technically speaking, we represent words using
static embeddings provided by fastText43 for Hebrew. For each
response, we retrieve the fastText vector vi for every word Ri, i= 0..n,
in the response. Then, for each word, we calculate a score defined as
the average pairwise cosine similarity between this word and the k
following words, with k a variable parameter. The score of a response
is the average of all the individual cosine-similarity scores. To filter
out functional words that do not contribute to the topical mutation
assessment, we follow7 by pre-processing each response with a
Hebrew part-of-speech tagger44 and keep only content words, which
we take to be nouns, verbs, adjectives, and adverbs.
We calculate derailments for k= 1..6, thereby extracting six

derailment features per response.
Incoherence: One of the most informative features reported in7

was designed to capture some aspects of discourse related to
incoherence. Specifically, this feature examines the way patients
use adjectives to describe specific nouns. The goal is to measure
the difference between adjectives used by patients and the ones
used by controls when describing the same nouns. Technically
speaking, we process each response with YAP45, a dependency
parser for Modern Hebrew, to find all noun-adjective pairs

(indicated by the amod relation). To measure the difference
between adjectives that are used by patients and controls, we
compare them to the adjectives that are commonly used to
describe the same nouns. To do that, following the above-
mentioned work, we use an external corpus of health-related
documents and forums, all written in Hebrew, containing nearly
680K words. (We use the same sources as in7). We process each
document in exactly the same way to find all noun- adjective
pairs. Given a list of noun-adjective pairs from one response, we
calculate the similarity score between every adjective that
describes a specific noun and the set of adjectives describing
exactly the same noun across the entire external corpus. Hebrew
enjoys a rich morphology; therefore, we work on the lemma (base-
form) level. The lemmata are provided by YAP. We take the
fastText vectors of the adjectives that were extracted from the
external corpus and average them, element wise, into a single
vector by assigning weights to each individual vector.
The weights are the inverse-document-frequency (idf) score of

each adjective, to account more heavily for adjectives that
describe the noun more uniquely. Then, we take the cosine
similarity between each adjective from the response and the
aggregated vector of the adjectives from the external corpus. For
each response, we take the average of the individual adjective
cosine-similarity scores as the overall response incoherence score.
As before, we verified that all our features are distributed normally

and performed t-tests to measure the difference in feature
expression between patients and controls. The results are summar-
ized in Table 3. In contrast with the outcomes in7, we see no
evidence for different distributions of each individual textual feature
between the two groups. The datasets, patients and controls, differ
for the two experiments. In7, the controls were told to talk for at
least two minutes, which potentially impacted the outcome.

Classification
We train a two-way machine-learning classifier to distinguish
between responses that were generated by patients and controls.
Each response is used as a classification instance, assigned either a
“patient” or “control” label depending on the group to which the
subject who generated the response belongs. Overall we have 449
responses generated by controls and 409 responses by patients.
We ran three sets of experiments: (1) using only the acoustic
features (Acoustic); (2) using only the textual features (Textual);
and, (3) using both feature sets (Combined). Consequently, each
response is represented by a nine-dimensional vector in the first
set of experiments, a seven-dimensional vector in the second set,
and a 16-dimensional vector in the third set of experiments.
For classification, we used three traditional machine-learning

algorithms: XG-Boost46, Random Forest47, and Linear SVM48.

RESULTS
We measured the classification results using accuracy and the F1
score of the patient label. For each classifier, we ran five evaluations,

Table 3. Mean (SD) values of the textual features.

Feature Control mean (SD) Patient mean (SD) t test p

Derailment 1 0.247 (0.011) 0.239 (0.017) 1.797 0.080

Derailment 2 0.237 (0.015) 0.236 (0.013) 0.102 0.918

Derailment 3 0.233 (0.015) 0.231 (0.017) 0.297 0.768

Derailment 4 0.229 (0.015) 0.226 (0.021) 0.522 0.605

Derailment 5 0.227 (0.016) 0.226 (0.016) 0.331 0.742

Derailment 6 0.225 (0.016) 0.225 (0.016) 0.006 0.995

Incoherence 0.520 (0.062) 0.502 (0.070) 0.931 0.357
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each time taking a five-fold cross-validation approach. Every
evaluation had a different random seed, which was kept similar
across all classifiers. The five results were calculated as the average
over the five evaluation runs. The results, divided into the three
feature sets, are presented in Table 4.
Overall, the XGBoost algorithm achieves the best classification

performance when utilizing solely the acoustic features. When using
only the textual features, all the classifiers perform poorly.
Furthermore, combining the textual features with the acoustic ones
did not usually result in significant performance improvement,
suggesting that the contribution of our textual features to the
classification performance on the dataset is limited and redundant
when the acoustic features are used for detecting symptoms of
schizophrenia. The lesser success with textual features may be due
in part to the inherent difficulty of accurately measuring semantic
features like derailment and incoherence computationally.
Our best accuracy for the two-way classification task is around

90%, which is higher than the best accuracy of about 76% reported
by Kliper et al.8 using a similar set of acoustic features for the same
two-way classification task with an English-speaking population.
Looking at the demographic characteristics of the participants in

Table 1, we notice that the patients and controls significantly differ in
age and years of education. Therefore, we performed a comple-
mentary analysis to support the current findings in which seven sets
of multiple regressions have been carried out as reported in Table 5.
These represent the seven prosodic features which demonstrated a
significant (at least p < 0.05) different distribution among patients
and controls. As shown in Table 3, none of the textual features has
been shown to be different among the two groups.
As can be seen from Table 5, years of education consistently did

not associate with any of the prosodic features. The age
characteristic was associated significantly (p= 0.047) only once
with MGD. However, the group (patients/control) was the only

predictor that was associated consistently, substantially, and
significantly with all the prosodic features.
We acknowledge potential variability in patient interactions

during the interviews, as recently demonstrated in a study by
Cangemi et al.49, which analyzed both speech and non-speech
segments of patients with schizophrenia. Additionally, while the
average PANSS-total score in our study is 17.34, above the
threshold of 14, the considerable standard deviation of 6.29
indicates the presence of borderline cases and possibly some
patients in remission. Specifically, among our sample of 23
patients, two have PANSS scores below 10, and three have scores
between 10 and 14, suggesting that five patients could be
considered in remission. Our current study primarily examines
the influence of two feature sets—acoustic and textual—on
classification outcomes, as detailed in Table 4. Although patient
interactions may vary, we believe that analyzing these feature
sets within the same group of patients is a valid approach.
Furthermore, in an additional analysis, we observed a significant
association, beyond mere chance, between these feature sets
and the PANSS-total score. The analysis involved clustering the
23 patients into 2, 3, and 8 clusters, performed independently.
We conducted the experiments twice, representing patients
once with textual features and once with acoustic features. The
k-means algorithm was employed for clustering, and the mutual
information (MI) metric was used to assess the relationship
between the cluster assignment for each patient and their
PANSS-total score. Given that the centroids in the k-means
algorithm are randomly initialized, we ran each analysis 50 times
to ensure reliability. This approach allowed us to report the
average MI and its standard deviation. The MI scores, detailed in
Table 6, indicate that knowing a patient’s cluster assignment
enhances the predictability of their PANSS-total score. These
results suggest that the selected features vary in alignment with

Table 4. Classification results.

Feature Set Classifier Accuracy (SD) Precision (SD) Recall (SD) F1 (SD)

Acoustic Random Forest 88.4 (2.0) 87.3 (4.6) 80.3 (4.2) 80.8 (4.0)

Acoustic XGBoost 90.1 (1.4) 95.3 (2.3) 86.0 (2.7) 87.8 (1.3)

Acoustic Linear SVM 83.5 (2.0) 86.6 (4.0) 79.6 (4.7) 80.1 (3.2)

Textual Random Forest 63.3 (1.5) 60.8 (1.4) 49.0 (5.1) 51.1 (7.4)

Textual XGBoost 63.1 (4.8) 64.3 (5.7) 60.6 (4.8) 59.5 (5.4)

Textual Linear SVM 73.4 (2.7) 74.0 (5.0) 65.3 (4.9) 66.4 (3.6)

Combined Random Forest 89.0 (1.5) 91.6 (3.3) 83.6 (4.3) 85.3 (2.9)

Combined XGBoost 88.5 (1.8) 94.0 (3.8) 81.3 (3.8) 84.8 (3.7)

Combined Linear SVM 84.7 (1.8) 88.3 (4.0) 76.0 (4.6) 79.1 (3.6)

Table 5. Seven regression analyses for the most impacting acoustic features.

MUD MGD MSRS MSR PR FPC J

V t V t V t V t V t V t V t

Age −0.04 0.34 −0.29 2.04* 0.05 0.49 −0.08 0.65 0.24 1.88 0.16 1.04 0.18 1.1

Edu. 0.06 0.46 −0.05 0.38 0.07 0.62 0.13 1.02 −0.17 1.30 −0.10 0.68 −0.06 0.42

Grp. 0.47 3.04** 0.57 3.76*** 0.72 5.87*** 0.53 3.85*** 0.76 5.4*** 0.49 2.98** 0.4 2.35*

PEV R2= 0.28 R2= 0.29 R2= 0.54 R2= 0.41 R2= 0.41 R2= 0.17 R2= 0.11

F (3, 45) =
5.63**

F (3, 45) = 5.95** F (3, 45) =
17.20***

F (3, 45) =
10.4***

F (3, 45) =
10.19***

F (3, 45) = 3.05* F (3, 45) = 1.93

PEV percentage of explained variance, Edu. Years of education, Grp. Group (patients/control). For more information, see the text. *p < 0.05,
**p < 0.01, ***p < 0.001.
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PANSS scores, reinforcing our primary conclusion that both
acoustic and textual features are correlated with symptoms of
schizophrenia.

We performed an ablation study to measure the effect of each
feature individually. The results are summarized in Fig. 1. As can be
seen, MSRS, MUD and MGD are the most effective features; both are
related to the pace of speech. It is noteworthy that removing certain
features, primarily textual ones, slightly improves the performance
of the classifier. The most significant one is FPC, which measures the
level at which the speaker sustains constant pitch. Our hypothesis is
that this is mainly a result of overlap in our feature descriptions.
To measure the correlation between all the individual features,

we calculate Pearson p for all feature pairs and summarize them in
a heat map, as shown in Fig. 2. Unsurprisingly, we see a strong
correlation between all the textual derail- ment features, which
makes them somewhat redundant for classification. Among the
acoustic features, we see a stronger correlation between the

Fig. 1 Ablation study: F1 (y-axis) scores of the Combined XGBoost classifier by removing one feature from the data at a time, as indicated
by the x-axis. The red line at 84.8 indicates the F1 value for XGBoost with all features included. The F1 scores the average of five executions,
each using a different seed. Der. = Derailment; Inco. = Incoherence.

Fig. 2 Pearson p between all individual features, shown as a heat map.

Table 6. Mutual information—mean and (standard deviation)—
between the variable assigning a cluster for each patient (using
k-means) and the PANSS-total score.

Feature set Two
clusters

Three
clusters

Eight
clusters

Textual 0.40 (0.02) 0.78 (0.09) 1.56 (0.06)

Acoustic 0.36 (0.00) 0.65 (0.10) 1.53 (0.07)
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standard deviation of the pitch (SP) and the frame pitch
correlation (FPC). Generally speaking, both represent the dynamics
of the pitch in speech frames. Similarly, and unsurprisingly, the
mean spoken ratio (MSR) is strongly correlated with mean spoken
ratio samples (MSRS); both represent the ratio between the time in
which actual speaking is taking place and the overall time of the
response. Naturally, gap duration (MGD) has a negative correlation
with all the features that measure speaking duration. However, we
do not find any significant correlation between the acoustic
features and the textual ones. And, as seen in Table 4, the textual
features did not contribute added information for classification
not already covered by the acoustic prosodic features.

CONCLUSION
We have extracted features from two modalities of Hebrew speech
produced by schizophrenia patients during interviews and compared
it with those of controls. Specifically, we extracted acoustic, prosodic
features from the audio signal, as well as textual features of
transcriptions of the interview that measure derailment and
incoherence. Our main goal was to measure the contribution of
each modality to classification performance, when used in combina-
tion. Generally speaking, we find that a traditional classification
algorithm can nicely separate between the two groups, schizo-
phrenia patients and healthy controls, with best accuracy of about
90%, which is better than the results that have been previously
reported. The results also show that the textual features do not add
much to classification performance when they are combined with
the acoustic features that measure aspects of prosody.

DATA AVAILABILITY
We have included a dataset as supplementary material, which details the values of all
features for each participant, categorized by question.
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