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Reduction of N-acetyl aspartate (NAA) in association with
relapse in early-stage psychosis: a 7-Tesla MRS study
Marina Mihaljevic 1, Yu-Ho Chang2, Ashley M. Witmer2, Jennifer M. Coughlin 3, David J. Schretlen3, Peter B. Barker4, Kun Yang3✉ and
Akira Sawa 1,2,3,5,6,7✉

Understanding the biological underpinning of relapse could improve the outcomes of patients with psychosis. Relapse is elicited by
multiple reasons/triggers, but the consequence frequently accompanies deteriorations of brain function, leading to poor prognosis.
Structural brain imaging studies have recently been pioneered to address this question, but a lack of molecular investigations is a
knowledge gap. Following a criterion used for recent publications by others, we defined the experiences of relapse by
hospitalization(s) due to psychotic exacerbation. We hypothesized that relapse-associated molecules might be underscored from
the neurometabolites whose levels have been different between overall patients with early-stage psychosis and healthy subjects in
our previous report. In the present study, we observed a significant decrease in the levels of N-acetyl aspartate in the anterior
cingulate cortex and thalamus in patients who experienced relapse compared to patients who did not. Altogether, decreased
N-acetyl aspartate levels may indicate relapse-associated deterioration of neuronal networks in patients.
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INTRODUCTION
The outcomes following the first episode of psychosis (FEP) exhibit
significant heterogeneity in terms of symptom severity, patient
functionality, and treatment response1. Among the various
contributors to heterogeneous outcomes after FEP, relapse
emerges as one of the main features of poor disease trajectory2.
Relapse is highly frequent in psychosis, affecting approximately
30–50% of patients within the first three years following disease
onset3. As a result, combating relapse has become a major goal in
the management and treatment of psychosis.
There are two complementary lines of effort in addressing

relapse. First, there are efforts to identify risk factors and triggers
that elicit relapse, which include treatment non-adherence,
substance abuse, and stressful life events3. One of the major
breakthroughs in this line of efforts was a recent report of the
dose-dependent relationship between stressful life events and the
incidence of relapse, in which hospitalization was used as a
measure for relapse4. Second, there are efforts that address the
possible impact of relapse as a negative consequence. One good
example is a trajectory study based on the staging model of
psychosis5. Although the reasons for relapse can vary, current
literature suggests that brain alterations may occur as a
consequence of relapse6–8. While these studies are intriguing,
most of them predominantly focused on investigating brain
connectivity or structural changes, with a lack of molecular
investigations.
To address this knowledge gap, we conducted a study building

upon our previous publication on a 7-Tesla (T) magnetic
resonance spectroscopy (MRS) study, which highlighted signifi-
cant differences in patients in the early stages of psychosis (within
2 years of onset) compared to healthy controls9. Specifically, our
previous study indicated that psychotic patients had lower levels

of glutamate (Glu), γ-aminobutyric acid (GABA), N-acetylaspartate
(NAA), and glutathione (GSH) in the anterior cingulate cortex
(ACC), as well as reduced NAA levels in the orbitofrontal cortex
(OFR) and thalamus, and diminished GSH levels in the thalamus9.
We hypothesize that relapse may lead to alterations of the brain,
which are represented as changes in brain metabolites. NAA and
GSH directly reflect neuron health and dysfunction10, which may
possibly lead to changes in neurotransmitters such as Glu and
GABA. Altogether, we further hypothesize that patients who
experience relapse may show more significant changes in these
metabolites compared with those who do not.

METHODS
Participants were scanned in a 7 T scanner (Philips ‘Achieva’, Best,
The Netherlands) equipped with a 32-channel head coil (Nova
Medical, Wilmington, MA) for this MRS study. As published9,11,12,
the ‘LCModel’ software package (Version 6.3-0D) was used to
analyze the spectra. Metabolite levels relative to total creatine (tCr)
or water signal were calculated from the same voxel and
expressed in institutional units (IU, approximately millimolar).
Patients with a DSM-IV diagnosis of psychotic disorder (see

details in the Supplementary Information) within two years of the
onset were recruited for this study. We did not enroll patients who
reported active substance abuse. Furthermore, we excluded the
patients who were positive in a urine screen test for illicit
substance use, with the exception of cannabis use, following the
standards used in other psychosis studies13,14.
We collected demographic data (age, sex, race), clinical data

(diagnosis, duration of illness, antipsychotic dosage at the time of
MRS scan, cannabis use), and neuropsychological scores. The
antipsychotic dosages were converted to chlorpromazine
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equivalents (CPZ) using the defined daily dose method15, and the
duration of illness (DOI) represented the time between onset and
the MRS scan.
We used a comprehensive neuropsychological battery to obtain

cognitive scores that covered six domains: processing speed,
attention/working memory, verbal learning and memory, visual
learning and memory, ideational fluency, and executive function-
ing12. Additional details are available in our previous
publications9,11,12.
This study was approved by the Johns Hopkins Medicine

Institutional Review Boards and in accordance with The Code of
Ethics of the World Medical Association (1964 Declaration of
Helsinki). All study participants provided written informed
consent. Parental consent and assent were obtained for all
participants under the age of 18 years.
We stratified the patients into two subgroups based on the

hospitalization records between the onset of psychosis and the
MRS scan: patients who had hospitalization(s) due to psychotic
exacerbation after the onset were assigned to the relapsed (R)
group, while the remaining patients without hospitalization were
assigned to the non-relapsed (NR) group. Recent studies showed
that re-admission into hospitals (re-hospitalization) is a frequently
used and reliable measure of relapse4,16. In addition, we carefully
examined medical records for treatment adherence, duration
between hospitalizations, and cannabis use to determine recovery
or symptom stability prior to psychotic symptom exacerbation.
Patients who were nonadherent to medication and/or used
substances frequently prior to hospitalizations were excluded
from this study. In total, data from 24 patients in the R group and
38 patients in the NR group were used.
Analysis of covariance (ANCOVA) with age, sex, race, diagnosis

(see details in the Supplementary Information), cannabis use, CPZ
dose, and DOI as covariates was conducted to compare MRS data
between the R and NR groups. General linear regression with the
same covariates was employed to test the association between
neuropsychological scores and neurometabolites (only significant
neurometabolites identified by group comparison between the R
and NR groups were tested). The Benjamini and Hochberg
procedure was used for multiple comparison correction. More
details about statistical analysis are available in the Supplementary
Information.

RESULTS
In demographic and clinical data between the R and NR groups,
no significant differences were observed in demographic data
between the groups, while the clinical data indicated a longer
duration of illness and higher antipsychotic dosage in the R group
compared with the NR group (Table S1). Also, there was no
significant difference in LC model quality metrics (full width at
half-maximum, signal-to-noise ratios, Cramér-Rao lower bounds),

white matter, gray matter, cerebrospinal fluid (CSF), and tCr in the
ACC, thalamus, and OFR between the R and NR groups (Table S2).
We next compared the levels of NAA, Glu, GSH, and GABA in the

ACC, NAA and GSH in the thalamus, as well as NAA in the OFR,
between the R and NR groups. After multiple comparison
corrections, our analysis of MRS data normalized by the tCr signal
revealed that the R group exhibited significantly decreased NAA
levels in the ACC and thalamus compared to the NR group (Fig. 1),
while no significant differences were found in other neurometa-
bolites (Table S3). When we used the water signal for normal-
ization, no significant differences were observed after multiple
comparison corrections (Table S3). We further assessed whether
the differences observed in NAA levels in the ACC and thalamus
between R and NR groups may be associated with CPZ dose and
DOI. Accordingly, we tested the correlations between the ACC
NAA and CPZ, the ACC NAA and DOI, the thalamus NAA and CPZ,
and the thalamus NAA and DOI in patients. No significant
correlations were observed (Table S4), indicating that the lower
levels of NAA are likely to be associated with relapse itself rather
than other confounding factors.
A recent meta-analysis showed that decreased NAA level could

be the strongest marker of progression from mild cognitive
impairment to Alzheimer’s disease17. Therefore, we tested
associations between NAA levels in the ACC and thalamus
(normalized by tCr) and neuropsychological scores. NAA levels in
the ACC were positively correlated with processing speed and
ideational fluency in the NR group, but not in the R group (Fig. 2,
Table S5).

DISCUSSION
This study represents the first investigation of relapse-associated
brain metabolite alterations in early-stage psychosis. Studying the
consequence of relapse may also help interpret longitudinal
changes observed in psychotic patients during disease progres-
sion11,18. We found significantly decreased NAA levels in the ACC
and thalamus in the R group compared to the NR group. In
addition, we found that higher NAA levels in the ACC were
correlated with better neuropsychological functions (processing
speed and ideational fluency) in the NR group, but such positive
correlations were lost in the R group.
NAA is thought to reflect neuronal health and integrity10.

Moreover, lower NAA in living patients may be reflected in the
synaptic and mitochondrial deficits19. Consistent with these
notions, a reduction of NAA has been reported in neurodegen-
erative disorders20,21. Although robust neurodegeneration is not
observed in psychotic disorders, a mild but significant reduction of
NAA has been reported in multiple reports22,23, including our past
publication9,11,12. The significantly decreased NAA levels in the
ACC and thalamus in patients with psychotic disorders who
experienced relapse compared to those who did not imply that
the biological consequence of relapse may accompany a

Fig. 1 Boxplots of significant neurometabolites between R and NR groups. A NAA levels in the thalamus. B NAA levels in the ACC.
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functional deterioration in the neuronal network. This notion may
amount to a poorer prognosis for psychosis patients who
experience relapse compared with those who maintain remis-
sion1,24,25. The ACC has been frequently underscored in neuroima-
ging studies for psychotic diseases, including our previous
research demonstrating its involvement in social cognition26 and
poor prognosis in psychosis12. Furthermore, we have recently
highlighted the pathological role of the thalamus in association
with relapse in a study of resting-state functional connectivity27,
which may have complementary implications to the molecular
observations reported in the present study.
We observed that NAA levels in the ACC were significantly

correlated with processing speed and ideational fluency in the NR
group but seemed to be lost in the R group. Although we cannot
draw any biological message for these molecular-
neuropsychological relationships with the current sample size,
we hope that this observation may aid future investigations on
molecular changes in association with relapse.
The majority of the patients in this study were medicated. Thus,

it is important to consider the potential effects of medications on
the levels of NAA. As far as we look for the past literature,
antipsychotics do not significantly affect the levels of brain NAA
shown in longitudinal studies of psychotic patients28,29. Consis-
tently, no effects of antipsychotics on the brain NAA were
observed in animal study30. Furthermore, in vitro experiments
with human SH-SY5Y neuroblastoma cells indicated that anti-
psychotics could potentially elevate NAA levels31. In the present
study, we showed that the influence of relapse on ACC NAA levels
exhibits a much larger effect size compared to the impact of CPZ
dose (Fig. 1). Taken together, although this may be a point that we
need to carefully and conservatively pay attention to, there is no

definitive conclusion regarding the impact of medications on the
brain NAA.
Here, we present results from data normalized by both the

water and the total creatine (tCr) signal. We observed significant
results in the data normalized by tCr, but not in the data
normalized by water. Both the water signal and tCr are commonly
used internal references in MRS studies; each has its own
advantages and disadvantages32. Meta-analysis studies of diffu-
sion magnetic resonance imaging (MRI) data found significant
differences in extracellular free water signal between schizophre-
nia and controls33,34. In contrast, no significant alternations in tCr
between schizophrenia and controls have been observed in meta-
analysis studies35,36. We did not observe any significant difference
in tCr between the two groups investigated in this study (R and NR
groups) either. Nevertheless, at the individual paper level, there
have been a small number of studies reporting significant
alterations in tCr between schizophrenia and controls37,38. The
MRS expert consensus paper32 published in 2022 discusses
referencing to both tCr and water in detail but makes no
recommendations as to which is better or more appropriate to
use, particularly in pathological conditions where neither signal
may be normal. Further exploration is warranted to understand
how the choice of internal reference relates to both the significant
and non-significant results observed in this study.
We acknowledge the limitations of the present study: these

include no measurement of stressful life events and insufficient
statistical power to address the effects of different types of
medications. Future longitudinal studies with data before and
after relapse, as well as complete records about the triggers of
each relapse, could further help us evaluate the consequence of
relapse and its independence (or dependence) from the triggers.

Fig. 2 Dot plots of associations between NAA levels (relative to tCr) in the ACC region and neuropsychological scores. A Processing speed
in the NR group; B ideational fluency in the NR group; C processing speed in the R group; D ideational fluency in the R group.
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In addition, patients with a longer duration of illness often
experienced more number of relapses3. While there was no
significant correlation between duration of illness and NAA levels
in our cohort, future studies are encouraged to dissect the effects
of duration of illness and cumulative impacts of relapse on the
brain. Nevertheless, we believe that the present report of a
potential association of lower NAA levels with relapse as its
consequence may shed light on future mechanistic studies for
relapse. We believe that intervening with brain changes based on
mechanistic information, as this study demonstrated, in parallel to
preventing relapse by identifying its risk factors and triggers, are
complementary endeavors essential for enhancing the manage-
ment of psychosis treatment.

DATA AVAILABILITY
MRS. and clinical data are available to academic researchers upon request under
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