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Genomic insights into the comorbidity between type 2 diabetes
and schizophrenia
Ana Luiza Arruda1,2,3, Golam M. Khandaker4,5,6,7, Andrew P. Morris 8, George Davey Smith 4, Laura M. Huckins 9 and
Eleftheria Zeggini 1,10✉

Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management
and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate
the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal
relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes
genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index
(BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes
risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have
opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-
omics data from bulk and single-cell gene expression studies, along with functional information. We identify putative effector genes
and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities
including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for
type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions
and shedding light on the complex nature of this comorbidity.
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INTRODUCTION
Multimorbidity, the coexistence of two or more chronic health
conditions within an individual, has been of growing public health
concern in recent years1. The simultaneous presence of multiple
medical conditions poses substantial challenges for healthcare
systems worldwide, affecting disease management, patient out-
comes, and healthcare costs. Multimorbidity is not simply the sum
of individual diseases but rather represents a complex interplay of
interacting factors, including genetic predisposition, environmen-
tal influences, and shared pathophysiological pathways. Under-
standing the underlying mechanisms of multimorbidity is
essential for guiding effective treatment strategies for patient-
centered care. Yet, most health-related and drug development
research is focused on treating or preventing individual diseases2.
Treating each condition separately is inefficient and increases the
patient’s treatment burden, possibly leading to adverse effects.
Individuals with mental health disorders are at higher risk of

having multimorbid physical health conditions than those without
psychiatric disorders, which contribute to lower life quality and
premature death3,4. Here, we study the comorbidity between type
2 diabetes and schizophrenia, two conditions that commonly co-
occur and have been described to be genetically correlated5.
Dissecting the shared genetic etiology of these diseases can help
identify risk variants and effector genes that could be used as
biomarkers or druggable targets for their treatment and
prevention.

Type 2 diabetes is characterized by persistent elevated glucose
levels and insulin resistance, with typical onset of symptoms
during middle adulthood. In 2021, over 536 million people were
affected by type 2 diabetes worldwide6. The heritability of type 2
diabetes has been estimated as ~50%7. Schizophrenia is a major
psychiatric disorder typically characterized by problems with
perception, cognitive function and behavior and presents with
hallucinations, delusion, disorganized thinking and speech8.
Unlike type 2 diabetes, schizophrenia affects young people with
onset during late adolescence or early adulthood. The prevalence
of schizophrenia is ~1%9, and of schizophrenia and related
psychotic disorders is ~3%. Genetic epidemiological studies have
shown that schizophrenia has an estimated general heritability of
~80%8.
Observational studies have yielded indications of an epidemio-

logically positive association between type 2 diabetes and
schizophrenia10. An evaluation of multiple observational studies
derived a pooled relative risk of type 2 diabetes in schizophrenia
patients versus healthy controls of 1.82 (95% confidence interval
[CI]= 1.56–2.13)11. Sociodemographic and lifestyle factors are also
considered key in the observed association. In addition, treatment
with antipsychotic medication is associated with greater weight
gain risk12 and increased risk for diabetes among individuals with
schizophrenia13. However, hyperinsulinemia and impaired glucose
tolerance have also been observed in first-episode schizophrenia
patients who are antipsychotic naïve compared to healthy
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controls matched for age, sex and body mass index (BMI)14,15.
Genetic studies point to a partial shared genetic aetiology
between type 2 diabetes and schizophrenia16–18. For instance, a
polygenic risk score for schizophrenia onset has been found to be
positively correlated with insulin resistance among first-episode,
drug naïve patients with schizophrenia19. Causal inference analysis
using Mendelian randomization has not provided evidence of a
causal relationship between type 2 diabetes and schizophrenia20.
Elevated fasting insulin levels have been shown to have a causal
effect on schizophrenia20, albeit with inconsistent results21. This
suggests that insulin might exert an impact on this condition via a
direct modulation of brain function instead of impaired glucose
metabolism.
Beyond the role of increased adiposity, which is, in part,

influenced by some antipsychotic drugs, possible additional
biological pathways underlying the comorbidity between type 2
diabetes and schizophrenia may include immune dysfunction,
particularly autoimmunity and chronic low-grade systemic inflam-
mation21,22. Emerging evidence suggests that this interplay may
be partly mediated by insulin resistance. Insulin has an anti-
inflammatory effect, with inflammatory markers experiencing
elevation in contexts of insulin resistance and diabetes23,24.
Increased levels of inflammatory mediators IL-1β, IL-6, TNF-α and
pro-inflammatory adiponectin have been observed in drug naïve,
first episode schizophrenia patients with normal weight compared
to overweight individuals without schizophrenia25. The role of
inflammation in schizophrenia has been validated by Mendelian
randomization analyses that show evidence of potential causal
connections between inflammatory biomarkers and
schizophrenia26.
Genome-wide correlation analyses show evidence of a weak

negative genetic correlation between type 2 diabetes and
schizophrenia18,27. Due to the difference in age-of-onset between
the two conditions, and the diabetogenic side-effects of
antipsychotic drugs, it is difficult to ascertain from observational
studies whether type 2 diabetes and schizophrenia share under-
lying biological mechanisms. In this study, we aim to disentangle
the shared genetic aetiology of type 2 diabetes and schizophrenia
by resolving colocalizing signals to provide greater insight into the
well-known comorbidity.

METHODS
Datasets
GWAS summary statistics. For type 2 diabetes, we used the latest
published multi-ancestry GWAS summary statistics not adjusted
for BMI from the Diabetes Meta-Analysis of Trans-Ethnic (DIA-
MANTE) consortium that encompass 180,834 cases and 1,159,055
controls28. The distribution of effective sample sizes across
ancestries included 51.1% European ancestry, 28.4% East Asian
ancestry, 8.3% South Asian ancestry, 6.6% African ancestry
including admixed African American populations and 5.6%
Hispanic ancestry. In our analyses utilizing the multi-ancestral
findings, we integrated the p-values emanating from the meta-
analysis conducted via MR-MEGA29 and the effect size estimation
and standard error from a fixed-effects model. We set the
threshold for genome-wide significance at p-value < 5 ´ 10�8. For
schizophrenia, we used the latest published multi-ancestry GWAS
summary statistics comprising data from 74,776 cases and 101,023
controls30. The distribution across ancestries indicated European
ancestry at 74.3%, East Asian ancestry at 17.5%, African American
ancestry at 5.7%, and Latino ancestry at 2.5%. Genome-wide
significance was set at p-value < 5 ´ 10�8.
In some analyses, we also used GWAS summary data from

endophenotypes of type 2 diabetes, including glycaemic and
adiposity-related traits. We used the following glycaemic traits
data from MAGIC including up to 281,416 individuals without

diabetes: fasting glucose, fasting insulin, HbAc1 and 2h-glucose-
post-challenge31. Only summary statistics adjusted for BMI were
made publicly available. Multi-ancestry summary statistics from
MAGIC did not include effect size estimates, so we restricted the
analyses to European ancestry summary statistics only. Adiposity-
related traits were defined as BMI, body fat percentage, whole
body fat mass and waist-to-hip ratio ratio (WHR) unadjusted for
BMI. For BMI (N= 806,834) and WHR (N= 697,734), we used the
recent meta-analysis combining data from the GIANT consortium
and the UK Biobank32. The inverse rank normalized GWAS
summary statistics for whole body fat mass (N= 330,762) and
body fat percentage (N= 331,117) from the UK Biobank were
taken from the Neale Lab website (http://www.nealelab.is/uk-
biobank/).

Molecular quantitative trait loci summary statistics. We used
various datasets of molecular quantitative trait loci (QTLs) from
relevant tissues for each condition, namely brain (adult and fetal) for
schizophrenia and adult brain, pancreatic islets, liver and sub-
cutaneous/visceral adipose tissue for type 2 diabetes. We used bulk
and single-cell type data from different molecular levels, including
expression (eQTL), protein (pQTL), chromatin accessibility (caQTL),
methylation (mQTL) and splicing (sQTL). For the eQTLs from the
brain cortex, summary statistics were available for different
ancestries separately. GTEx v8 expression and splicing QTL datasets
consist of multi-ancestry samples, the majority (85.3%) of which are
of European ancestry. All other data sets are from individuals of
European ancestry only. A detailed list of the employed QTL
datasets including sample size can be found in Table 1.
For the brain caQTL, fetal brain mQTL, pancreatic islets sQTL and

liver pQTL, only genome-wide significant or nominally significant
results were available. We performed a lift-down from GRCh38 to
GRCh37 using the R package CrossMap (version 0.5.4) for all eQTL
datasets from MetaBrain and the fetal brain eQTL dataset33. We
extracted regional expression and splicing QTL data from GTEx v8
by querying the eQTL catalogue’s RESTful application programming
interface (API) v2 in R34. Subsequently, leveraging the liftOver
function from the R package rtracklayer (version 1.22.0)35, we
conducted a genomic mapping from GRCh38 to GRCh37. For GTEX
v8, splicing QTLs were defined as leafcutter splice junction QTLs.
Leafcutter quantifies RNA splicing variation using short-read RNA-
seq data.

Quantification and statistical analysis
Genetic overlap between type 2 diabetes and schizophrenia. We
quantified genetic correlation between type 2 diabetes and
schizophrenia by conducting a linkage disequilibrium (LD) score
regression analysis using the LDSC software (v1.0.1) with –rg
flag36. We used the multi-ancestry GWAS summary statistics from
the meta-analyses for type 2 diabetes and schizophrenia to
enhance our discovery power. Since the European ancestry
proportion is the largest one, we used the pre-computed LD
scores from the 1000 Genomes European ancestry haplotypes37. A
sensitivity analysis was conducted using exclusively European
subset summary statistics. The complete results for the primary
and the sensitivity analyses can be found in Table S1.

Causal inference analysis between schizophrenia and type 2
diabetes. To assess whether schizophrenia and type 2 diabetes
have a causal relationship, we performed bi-directional two-sample
Mendelian randomization analyses using the multi-ancestry GWAS
summary statistics to enhance predictive power38 (Table S2A). We
used the TwoSampleMR R package (version 0.5.7), which is curated
by MR-Base39. We selected independent genome-wide significant
(p-value < 5 ´ 10�8) variants as instrumental variables (IVs). Inde-
pendence was defined as LD-based clumped variants with a strict
LD threshold of R2= 0.001 over a 10Mb window on either side of
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the index variant. Since the largest proportion of the samples in
both type 2 diabetes and schizophrenia GWAS summary statistics
are from European ancestry, we used the European reference LD
panel from 1000 Genomes. As a sensitivity analysis for the estimated
direction of effect, we applied Steiger-filtering to ensure that the IVs
were more strongly associated with the exposure than the outcome
(Table S2B). Additionally, we performed sensitivity analyses on the
European ancestry subset only to compare the direction of effect
(Table S2C).
To assess whether the IVs were strongly associated with the

exposure, we calculated the F-statistic for each IV and selected only
those that were larger than ten for the Mendelian randomization
analyses to minimise bias due to weak IVs. F-statistic was estimated
from summary level data as ðbeta2=se2Þ, where beta is the effect size

and se is the standard error38. After the removal of weak IVs, we
calculated the overall F-statistic asmeanðbeta2=se2Þ. We applied the
inverse variance weighted (IVW) method, which performs a
random-effects meta-analysis of the Wald ratios for each SNP. As
a first sensitivity analysis, we applied the weighted median (WM)
and the MR-Egger regression methods to ensure consistency of the
effect size direction. The intercept of MR-Egger regression was used
to assess horizontal pleiotropy. Finally, we tested for heterogeneity
using the Q-statistic, which was calculated using the mr_heter-
ogeneity function from the TwoSampleMR R package. To account for
multiple testing, we corrected the p-values separately for each
Mendelian randomization method employed by using the Bonfer-
roni method. We extended the causal inference analyses to other
psychiatric traits (Table 1) and endophenotypes related type 2
diabetes including adiposity-related traits.

Causal inference using childhood and adulthood body mass index as
exposures. We performed causal inference analysis using univari-
ate and multivariate two-sample Mendelian randomization with
childhood and adulthood BMI as exposures. For childhood BMI, we
used the IVs derived from a genetically predicted early life body size
GWAS calculated based on recall data, from the UK Biobank40.
Firstly, we estimated the total effect of each life-stage BMI value by
conducting univariate Mendelian randomization analyses using
each genetically predicted BMI value as a separate exposure and
type 2 diabetes and schizophrenia as outcomes (Table S3). For this
analysis, we applied two-sample Mendelian randomization with the
IVW, WM and MR-Egger regression methods using the TwoSam-
pleMR R package, as described above39.
Subsequently, we performed a multivariate Mendelian rando-

mization analysis to estimate the direct effects of each life-stage
BMI value using both childhood and adulthood BMI simulta-
neously as exposures (Table S4). We used the LD independent
IVs from the univariate analyses. We applied the IVW method
from the MVMR R package (version 0.4)41. To assess the effect of
heterogeneity due to pleiotropy on the causal estimates, the
MVMR R package calculates an adapted heterogeneity Q-statistic
and estimates the causal effect of each exposure on the
outcome accounting for heterogeneity, pleiotropy, and weak
instrument bias. For both univariate and multivariate analyses
we conducted sensitivity analyses for the direction of effect
using only the European subset of the type 2 diabetes and
schizophrenia GWAS (Table S3B and Table S4B).

Genetic colocalization analysis. For both type 2 diabetes and
schizophrenia, we defined genomic regions spanning 2 Mb
windows centered on independent genome-wide significant lead
SNPs from the individual GWAS summary statistics. Within each
identified region, we performed statistical colocalization analysis
between type 2 diabetes and schizophrenia using the estimated
regression coefficients (effect sizes) and standard errors (Table S5).
We used the coloc.abf function from the coloc R package (version
3.2.1) for the analyses42. This function calculates the posterior
probability for a set of five association hypotheses under the
assumption of a single causal variant per trait in the region. Our
investigative emphasis lay primarily upon the broader genetic
landscape encompassing these regions, rather than a focused
endeavour to identify a precise causal variant. Thus, the single-
variant assumption of coloc.abf was not an issue here. The
hypotheses are summarized below:

H0: no trait has a genetic association in the region
H1: trait 1 has a genetic association in the region
H2: trait 2 has a genetic association in the region
H3: both traits have a genetic association in the region, but

with different causal variants
H4: both traits share a genetic association (single causal

variant) in the region

Table 1. Overview of molecular quantitative trait loci (QTL) summary
statistics employed in this work.

Tissue/cell type QTL type Sample size Reference

Cortex Europeans Expression 2683 MetaBrain95

Cortex East Asians Expression 208 MetaBrain95

Cortex Africans Expression 319 MetaBrain95

Basal ganglia Expression 208 MetaBrain95

Hippocampus Expression 168 MetaBrain95

Cerebellum Expression 492 MetaBrain95

Brain (prefrontal
cortex)*

Chromatin
accessibility

292 PsychENCODE51

Brain (prefrontal
cortex)

Protein 330 PsychENCODE51

Brain (dorsolateral
prefrontal cortex)

Methylation 411 Ng et al.96

Brain amygdala Splicing 129 GTEx v897

Brain cerebellum Splicing 209 GTEx v897

Brain cortex Splicing 205 GTEx v897

Brain frontal cortex Splicing 175 GTEx v897

Brain hippocampus Splicing 165 GTEx v897

Brain hypothalamus Splicing 170 GTEx v897

Brain amygdala Expression 129 GTEx v897

Brain hypothalamus Expression 170 GTEx v897

Brain cells (single cell
data)

Expression 192 Bryois et al.98

Fetal brain (prefrontal
cortex, striatum and
cerebellum)*

Methylation 166 Hannon et al.99

Fetal brain (no specific
region)

Expression 120 O’Brien et al.100

Pancreatic islets Expression 420 InsPIRE101

Pancreatic islets* Splicing 399 Atla et al.102

Liver Expression 208 GTEx v897

Liver* Protein 287 He et al.103.

Liver Splicing 208 GTEx v897

Subcutaneous adipose
tissue

Expression 581 GTEx v897

Subcutaneous adipose
tissue

Expression 434 METSIM54

Subcutaneous adipose
tissue

Splicing 426 METSIM104

Subcutaneous adipose
tissue

Splicing 581 GTEx v897

Visceral adipose tissue Expression 469 GTEx v897

Visceral adipose tissue Splicing 469 GTEx v897
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We used the default prior probabilities of the coloc R package
for our analyses. We considered evidence for colocalization if the
posterior probability of H4 (PP4) > 0.8. In addition to the posterior
probability, we calculated a 95% credible set for the causal variant
by taking the cumulative sum of the variants’ posterior
probabilities to be causal, conditional on H4 being true. LD
between the estimated lead causal variant and the other variants
in the region was calculated using PLINK (version 2.0 alpha)43

based on the UK Biobank data32 and was used for visualizing the
results in regional association plots. In regions where we find
evidence of colocalization (PP4 > 0.8), we ran sensitivity analyses
using GWAS summary statistics for type 2 diabetes and schizo-
phrenia derived from samples of European ancestry only.

Knockout mouse phenotypes. We performed a schematic search
for each gene located within the vicinity (2 Mb window) of the
genomic loci that colocalized between type 2 diabetes and
schizophrenia to screen for knockout mice showing phenotypes
related to each of the conditions. The databases used in this scope
were the International Mouse Phenotyping Consortium (IMPC)
(https://www.mousephenotype.org/), Mouse Genome Informatics
(MGI) (http://www.informatics.jax.org/) and Rat Genome Database
(RGD) (https://rgd.mcw.edu/) databases. For IMPC and RGD
we extracted the knockout mice phenotypes for each analysed
gene using the programmatic data access via their API. For MGI,
we used the MGI batch query.
For type 2 diabetes, we looked for insulin and diabetes-related

phenotypes that included the following terms: insulin, glucose,
diabetes, hyperglycaemia, pancreas, pancreatic, obesity, BMI, body
weight, body mass, body fat, beta cell, and glucosuria. For
schizophrenia, we included neuropsychiatric-related phenotypes
including brain and craniofacial morphology44–46, behaviour and
psychiatric traits. As a sensitivity analysis we have extended the list
of phenotypes related to schizophrenia to motoric phenotypes. A
full list of the included phenotypes can be found in Table S9A and
Table S9B.

Rare and syndromic human diseases. For every gene located
within the vicinity of genomic regions that show evidence of
genetic colocalization between type 2 diabetes and schizophrenia,
we extracted data from the Online Mendelian Inheritance in Man
(OMIM) (https://omim.org/) via its API. We looked up whether any
rare and syndromic diseases linked to those genes showed any
phenotype related to type 2 diabetes or schizophrenia. We
defined association with schizophrenia if the disease showed any
neurological phenotype. The full list of rare and syndromic human
diseases associated with type 2 diabetes and schizophrenia can be
found in Table S9A and Table S9B respectively.

Differential gene expression. For the genes in the regions of
colocalization between type 2 diabetes and schizophrenia, we
conducted a lookup on publicly available summary statistics of
differential expression RNA-seq datasets related to the studied
conditions. For type 2 diabetes, we used RNA-seq data from
surgical pancreatic tissue samples from 57 metabolically pheno-
typed pancreatectomized patients, from which 39 were previously
diagnosed with type 2 diabetes and 18 were non-diabetes
patients47. The differential expression analysis was based on a
linear model with age, sex, and BMI as covariates. We defined
genes as differentially expressed if they changed more than
1.5 fold in either direction and had an adjusted p-value < 0.05, as
in the original publication. For schizophrenia, we retrieved
differential gene expression data based on RNA-seq and genotype
data of post-mortem brains (frontal and temporal cortex) from
PsychENCODE that includes 559 schizophrenia patients and 936
controls48. Differential expression was assessed using a linear
mixed effects model accounting for known biological, technical

and surrogate variables as fixed effects as well as subject-level
technical replicates as random effects. Genes were defined as
differentially expressed at a false discovery rate (FDR) < 0.05.

Multi-trait colocalization analysis with QTL data. Within the
genomic loci exhibiting evidence of colocalization between type
2 diabetes and schizophrenia, we performed multi-trait colocaliza-
tion analyses between type 2 diabetes GWAS summary statistics,
schizophrenia GWAS summary statistics and each molecular QTL
summary statistics from disease-relevant tissues or cell types
summarized in Table 2. The analyses were performed within a
2 Mb window around the lead variant of the 95% credible set from
the colocalization analysis between type 2 diabetes and schizo-
phrenia.
To perform the multi-trait colocalization analyses, we used the

R package HyPrColoc (version 1.0)49. Similarly to the coloc.abf
function from the coloc R package, HyPrColoc estimates posterior
probabilities for the above-mentioned colocalization hypotheses
and identifies a putative shared causal variant. To assess
whether all traits colocalize together without grouping them,
we switched off the Bayesian divisive clustering algorithm
(bb.alg= FALSE). As instructed by the developers, we assumed
no sample overlap between all the input summary statistics.
Evidence of colocalization was defined for a PP4 > 0.8. LD
between the lead causal variant and the other variants in the
genomic locus was calculated using PLINK (version 2.0 alpha)43

based on the UK Biobank data32.
Since we know a priori that schizophrenia and type 2 diabetes

signals colocalize in the analysed genomic loci, we adapted the
prior probabilities of the HyPrColoc algorithm accordingly. For
the first parameter, prior.1, which denotes the probability of a
variant being associated with a single trait, we kept the default
value of 10�4 since most regions that colocalize between type 2
diabetes and schizophrenia are genome-wide significant
(p-value < 5 ´ 10�8) for only one of the conditions. We slightly
increased the conditional colocalization prior parameter, prior.c,
from the default of 0.02–0.05 due to the evidence of
colocalization between type 2 diabetes and schizophrenia in
the region. This parameter represents the prior probability that a
variant is associated with an additional trait given that it is
associated with one trait.
As for the colocalization between type 2 diabetes and

schizophrenia, we calculated a 95% credible set for the causal
variant for each colocalized genomic locus by taking the
cumulative sum of the variants’ posterior probabilities to be
causal conditional on H4 being true. We considered relevant
evidence of colocalization between distinct QTL datasets and
both type 2 diabetes and schizophrenia if the 95% credible set
of the HyPrColoc colocalization overlapped at least by one

Table 2. Direction of effect of the six variants included in the 95%
credible set from the colocalization between type 2 diabetes and
schizophrenia.

Effect allele T2D SCZ Cortex Cerebellum Islets

rs72951506 T - + + + +
rs72951548 T - + + + +

rs80196932 C - + + + +

rs9401019 G - + + + +

rs1501474 T - + + + +

rs10782188 G - + + + +

The table depicts the direction of effect of six variants for type 2 diabetes
(T2D), schizophrenia (SCZ), gene expression in the cortex, cerebellum and
pancreatic islets.
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variant with the 95% credible set of the type 2 diabetes-
schizophrenia colocalization analysis.

Scoring of potential effector genes. Firstly, we scored all genes
within the vicinity (2 Mb window centered on the lead causal
variant) of genome loci that colocalize (PP4 > 0.8) between type 2
diabetes and schizophrenia using four biological lines of evidence
based on multi-omics and functional biological data:

1. Colocalization with at least one molecular QTL from disease-
relevant tissues/cell types

2. Differential gene expression from pancreatic islets or brain
3. Knockout mice with phenotypes related to type 2 diabetes

or neuropsychiatric traits
4. Rare and syndromic human diseases with phenotypes

related to the type 2 diabetes or schizophrenia

For colocalization with methylation QTLs, we used the
getMappedEntrezIDs function from the missMethyl R package
(version 1.32.1) using annotation data from the Illumina’s
HumanMethylation450 platform to map CpG sites to genes50.
We excluded the following genes from the analysis due to
inconsistent gene identifiers: SNORA40, snoU13 and Y_RNA.
We constructed one score for each condition. Each score was

extended by information on established effector genes for the
corresponding condition extracted from the literature. For type 2
diabetes, we retrieved a list of 135 high-confidence effector genes
from the curated T2D Effector Prediction Summary from the Type
2 Diabetes Knowledge Portal (https://t2d.hugeamp.org/
method.html?trait=t2d&dataset=egls) that scored at least 3. For
schizophrenia, we used a list of 321 prioritized effector genes from
PsychENCODE that were supported by more than two evidence
sources51. Since our analysis overlaps with criteria used to define a
gene as effector genes for the individual conditions, we followed
an orthogonal approach to incorporate this information: if a gene
is an prioritized effector gene for a condition, but scored zero in
our analysis, we updated the respective condition score to one.
As an additional line of evidence, we looked up whether any

variant in the 95% credible set from the colocalization analysis
between type 2 diabetes and schizophrenia was a missense
variant for any of the analyzed genes on Ensembl GRCh37 release
11052. The total score was defined as the sum of the type 2
diabetes, schizophrenia and missense score. If the missense
variant score was the only line of evidence for a gene, the total
score was kept at zero since this information is not directly related
to the studied comorbidity.
We scored the genes based on the outlined six biological lines

of evidence that were integrated in an orthogonal manner
(Table S6). Genes that scored at least one point in the type 2
diabetes score and one point in the schizophrenia score and had a
total score of at least 3 in the total score were defined as genes
showing evidence of involvement in both conditions simulta-
neously. A subset of those that scored at least 4 were defined as
putative effector genes.

Causal inference analysis using multi-omics data. To query
whether the putative genes have a causal effect on type 2
diabetes or schizophrenia, we performed two-sample Mendelian
randomization analyses between the expression QTL summary
statistics and each disease GWAS summary statistics (Table S7A).
We conducted Mendelian randomization analyses with different
molecular QTL of tissues or cell types that show evidence of
colocalization with both conditions simultaneously. We used the
same software and sensitivity analyses described above for the
causal inference analysis between type 2 diabetes and schizo-
phrenia. If only one IV was available after clumping, harmonizing
the data and filtering weak IVs through the F-statistics, we
employed the Wald ratio method. We were only able to perform
MR-Egger regression in instances where there were more than

three independent IVs. If the IVs from the QTL datasets were
absent in the disease GWAS, we ran the Mendelian randomization
analysis with a LD proxy variant calculated on the European
ancestry 100 genome reference panel instead. To search for LD
proxies, we used the R package LDlinkR that queries the web-
based LDlink tool and based the calculations in the European
ancestry 100 genome reference panel53. The adjusted significance
threshold for the eQTL data from adipose tissue from METSIM was
set to p-value < 5 ´ 10�5, as defined in the original publication54.
We performed sensitivity analyses within the European ancestry
subset only to compare the direction of effect (Table S7B).

Pathway analysis. On the derived genes showing evidence of
involvement in both type 2 diabetes and schizophrenia, we
performed gene set enrichment analysis using the human
resources and the enrichment software from the Consensus-
PathDB (http://cpdb.molgen.mpg.de/)55 (Table S8). We did not
perform the analysis on the putative effector genes due to the
small number of genes on this set. For the enrichment analysis, we
used the Gene Ontology human networks including following
subcategories up to level 5: molecular function, biological
processes, and cellular component. Finally, we required a
minimum overlap of 2 genes for enrichment and set the
significance threshold at FDR < 0.05.

Druggable genome. We queried the druggability status of the
genes showing evidence of involvement in type 2 diabetes and
schizophrenia using two databases. Firstly, we used the Druggable
Genome database that consists of 4479 genes classified into three
tiers based on their progress in the drug development pipeline56.
Tier 1 consists of 1427 genes that are targets or clinical-phase drug
candidates of already approved small molecules and biother-
apeutic drugs. Tier 2 includes 682 genes that encode targets with
known bioactive drug-like small-molecule binding partners and
genes with ≥ 50% identity (over ≥ 75% of the sequence) with
approved drug targets. Tier 3 comprise 2370 genes that encode
secreted or extracellular proteins, proteins with more distant
similarity to approved drug targets, and members of key
druggable gene families that were not included in Tier 1 or 2.
Tier 3 was further subdivided to prioritize genes in proximity (+
−50 kbp) to a GWAS risk variant based on data from the GWAS
catalog and had an extracellular location (Tier 3 A). Tier 3B consists
of the remaining genes.
For genes showing evidence of involvement in type 2 diabetes

and schizophrenia included in Tier 1 from the Druggable Genome,
we further examined the approved or clinical trial drugs using the
DrugBank database (https://www.drugbank.com, accessed on the
9th of August 2023) and the Open Targets platform57.

RESULTS
Insights into shared genetics between type 2 diabetes and
schizophrenia
We assessed the genetic correlation between type 2 diabetes
(Ncases ¼ 180; 834, Ncontrols ¼ 1; 159; 055) and schizophrenia
(Ncases ¼ 74; 776, Ncontrols ¼ 101; 023) on a genome-wide scale
using multi-ancestry data from the largest published GWAS
summary statistics for the individual conditions. Using the same
data, we assessed the potential causal relationship via Mendelian
randomization analyses between type 2 diabetes and schizo-
phrenia on a genome-wide scale. Genetic instruments for non-
continuous exposures capture liability to the exposure rather than
variation58. Hence, in Mendelian randomization, if the exposure is
a disease, i.e. a non-continuous trait, the results should be
interpreted in terms of liability to the disease. We find nominal
evidence for a negative genetic correlation (rg=−0.04, standard
error= 0.02, p-value= 0.023) (Table S1) and no evidence of a
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causal relationship between type 2 diabetes and schizophrenia
(Table S2A). Insulin resistance has been shown to play a role in
schizophrenia pathogenesis15,19 and weight gain, a risk factor for
type 2 diabetes, is a consequence of some antipsychotic
medications12. Hence, to assess the effect of different biological
mechanisms involved in type 2 diabetes on schizophrenia, we
expanded the Mendelian randomization analysis to endopheno-
types of type 2 diabetes including adiposity-related traits.
Interestingly, we find no evidence of causality between insulin-
related traits and schizophrenia. We find evidence that schizo-
phrenia liability is protective against increased BMI (schizophrenia
→ BMI: OR= 0.98, 95% CI= (0.96,0.99), p.adj= 0.03). The protec-
tive direction of effect remained consistent in the Steiger-filtered
analysis (Table S2B) and in the analysis using only the European
subset of the schizophrenia GWAS summary statistics (Table S2C).
Although we find evidence that increased BMI is protective
against schizophrenia (BMI → schizophrenia: odds ratio (OR)=
0.81, 95% CI= (0.74,0.89), adjusted p-value (p.adj)=2:26 ´ 10�4),
the direction of effect did not remain consistent after Steiger-
filtering (Table S2B). The results of the Steiger-filtered analysis
tackle the issue of reverse causation and suggest that the
Mendelian randomization analysis has robust evidence of
potential causality only for the direction schizophrenia liability to
low BMI.
To further dissect the effect between BMI and type 2 diabetes as

well as schizophrenia, we performed causal inference analyses
using Mendelian randomization in a univariate and multivariate
setting with childhood and adulthood BMI as exposures (Fig. 1).
For type 2 diabetes, we find that both childhood and adulthood
BMI are potentially causal for the disease when studied
individually (childhood BMI: OR= 2.59, 95% CI= (2.23,3.01),
p.adj= 1:39 ´ 10�35; adulthood BMI: OR= 3.58, 95% CI=
(3.09,4.16), p.adj=4:51 ´ 10�63) (Table S3). We replicated previous
results59 and show that the effect of childhood BMI is completely
attenuated in the multivariate setting (childhood BMI: OR= 1.19,
95% CI= (0.95,1.5), p.adj= 0.18; adulthood BMI: OR= 3.27, 95%
CI= (2.68,3.99), p.adj=1:26 ´ 10�30) (Table S4). For schizophrenia,
we find that only adulthood BMI has a significant protective effect
against the condition in both the univariate (childhood BMI:
OR= 0.88, 95% CI= (0.72,1.06), p.adj= 0.17; adulthood BMI:

OR= 0.75, 95% CI= (0.64,0.87), p.adj= 1:99 ´ 10�4) (Table S3)
and multivariate setting (childhood BMI: OR= 1.04, 95% CI=
(0.8,1.34), p.adj= 0.79; adulthood BMI: OR= 0.77, 95% CI=
(0.61,0.96), p.adj= 0.046) (Table S4). All directions of effect
remained consistent in the Stiger-filtered analysis.
To identify shared genetic signals, we performed Bayesian

colocalization analysis on genome-wide significantly associated
type 2 diabetes and schizophrenia risk loci (p-value < 5 ´ 10�8)
using the GWAS summary statistics for each condition. We find
evidence of colocalization (posterior probability of a shared causal
variant (PP4) > 0.8) in 11 genomic loci (Table S5). Six of these
genomic loci have opposing directions of effect for type 2
diabetes and schizophrenia. For two loci, the 95% credible set for
the causal variant of the colocalization analysis consists of only
one genetic variant, narrowing down the common genetic risk to
a single variant.
To resolve colocalizing signals, we incorporated multi-omics

and functional biology information to score the 444 genes located
within the 11 genomic loci that colocalized between type 2
diabetes and schizophrenia (Fig. 2). We performed multi-trait
colocalization analyses with bulk and single-cell molecular QTL
from disease-relevant tissues and cell-types, namely several brain
regions for schizophrenia, and pancreatic islets, liver, and
subcutaneous adipose tissue for type 2 diabetes, respectively
(Fig. 2). Our analyses included data from expression, protein,
splicing and chromatin accessibility QTLs. In addition, we assessed
whether these genes were differentially expressed in pancreatic
islets or brain. We further conducted an extensive phenotypic
search on knockout mice and rare and syndromic human diseases
databases. Finally, we annotated missense variants in the 95%
credible sets from the colocalization. 37 genes showed at least
one line of evidence linking them to type 2 diabetes and at least
one linking them to schizophrenia and were defined as potential
effector genes for the comorbidity. Of these, we defined 15 genes
showing evidence of involvement in both type 2 diabetes and
schizophrenia with a total score of at least three, and three
putative effector genes that displayed at least four different lines
of evidence, namely EGR2, LAMA4 and NUS1 (Table S6). None of
the three putative effector genes has been previously defined as
effector gene for either type 2 diabetes or schizophrenia.

Insights gained from putative effector genes
NUS1. NUS1 (nuclear undecaprenyl pyrophosphate synthase 1
homolog) is the highest-scoring effector gene. This genomic locus
colocalizes between type 2 diabetes and schizophrenia with a PP4

Fig. 1 Mendelian randomization results of childhood versus
adulthood BMI analysis. Forest plot depicting the direct and
indirect effects for genetically predicted childhood and adulthood
BMI on type 2 diabetes and schizophrenia. The effect is shown in
odds ratio (OR) per unit increase in the BMI category, namely
childhood and adulthood BMI. The results of the univariate analysis
are represented by triangles and the multivariate results are
represented by circles.

Fig. 2 Study design for scoring genes around colocalized regions.
Created with BioRender.com.
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of 0.96 and includes six variants in the 95% credible set for the
shared causal variant from the colocalization (Fig. 3A). All six
variants have opposing risk-increasing alleles for type 2 diabetes
and schizophrenia. The lead causal variant, rs72951506, is located
in the intron of NUS1 and reaches nominal significance for

schizophrenia (p-value= 2:3 ´ 10�6) and genome-wide signifi-
cance for type 2 diabetes (p-value= 9:93 ´ 10�11). Additionally,
type 2 diabetes and schizophrenia colocalize with genetic variants
associated with the expression of NUS1 in the cerebellum
(PP4= 0.94), cortex (PP4= 0.89) and pancreatic islets (PP4= 0.96).

Fig. 3 Regional plots of colocalized regions that yielded a putative effector gene. A NUS1 region, B EGR2 region, C LAMA4 region.
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The variants in the 95% credible set from the colocalization are
associated with increased expression of NUS1 in these tissues,
increased risk of schizophrenia and decreased risk of type 2
diabetes (Table 2).
NUS1 encodes a type I single transmembrane domain receptor,

which is a subunit of cis-prenyltransferase, and serves as a specific
receptor for the neural and cardiovascular regulator Nogo-B60. It is
involved the regulation of intracellular LDL-derived cholesterol
trafficking61. Variants in the NUS1 gene are associated with type 2
diabetes, epilepsy and intellectual disability. NUS1 has not been
previously defined as a putative effector gene for type 2 diabetes
nor schizophrenia and is not a target of any approved drug.
NUS1 shows significantly higher expression in brains from

schizophrenia patients compared to controls48. Nus1 knockout
mice show increased circulating triglyceride levels, abnormal brain
vasculature morphology and abnormal lipid homeostasis.
Increased levels of circulating triglycerides have been shown to
be associated with increased risk of type 2 diabetes in humans62.
Two rare and syndromic human diseases are associated with
mutations in NUS1. The first, congenital disorder of glycosylation
type 1aa, is a severe neurodevelopmental disorder with symptoms
including seizures, developmental delay and hypotonia60 caused
by a homozygous mutation in the NUS1 gene. The mutation
results in an Arg290His substitution at a residue in the highly
conserved C-terminal domain. The second syndromic disease
associated with NUS1 is intellectual development disorder-55 with
seizures. It is caused by de-novo heterozygous mutations in the
NUS1 gene63. The mutations leading to both disorders result in
autosomal-dominant loss-of-function variants in NUS164,65, which
contradicts the findings from the differential gene expression
analysis in brains of schizophrenia patients compared to controls.
Fibroblasts with silenced NUS1 show increased accumulation of
free cholesterol60.
We performed Mendelian randomization between the expres-

sion of putative effector genes and type 2 diabetes or
schizophrenia (Table S7A). Our analysis results suggest an
opposing direction of causal effect of NUS1 expression on type
2 diabetes and schizophrenia risk. Increased expression of NUS1 in
the brain and in pancreatic islets has a potentially causal effect on
schizophrenia (cortex: OR= 1.22, 95% CI= (1.09,1.37), p.adj=
0.002; cerebellum: OR= 1.05, 95% CI= (1.02,1.09), p.adj= 0.002;
islets: OR= 1.21, 95% CI= (1.12,1.3), p.adj <9 ´ 10�6). Differential
expression analysis in brain supports this evidence, as NUS1 is
over-expressed in schizophrenia patients. Increased expression of
NUS1 in brain and pancreatic islets is potentially protective against
type 2 diabetes (cortex: OR= 0.92, 95% CI= (0.85,0.99), p.adj=
0.06; cerebellum: OR= 0.94, 95% CI= (0.94,0.97), p.adj < 7 ´ 10�6;
islets: OR= 0.86, 95% CI= (0.82,0.9), p.adj= 6 ´ 10�9).

EGR2. A genomic locus on chromosome 10 that encompasses a
putative effector gene colocalizes between type 2 diabetes and
schizophrenia with a PP4 of 0.84 (Fig. 3B). This region shows
PP4= 0.082 and PP3= 0.82 in the European ancestry-only
sensitivity analysis. The 95% credible set from the colocalization
analysis contains 56 variants. Synthesis of the orthogonal lines of
evidence from functional genomics data point to EGR2 (early
growth response-2) as the putative effector gene for this region.
For all shared causal candidate variants, the risk-increasing alleles
for type 2 diabetes and schizophrenia are opposite.
Egr2 knockout mice show decreased body weight, weight loss,

decreased nerve conduction velocity, decreased neuron number,
delayed eye opening, and abnormal neuron physiology and
differentiation. In humans, these phenotypes are associated with a
lower risk of type 2 diabetes and a higher risk of schizophrenia.
EGR2 shows significantly lower expression in the brain of
schizophrenia patients compared to healthy controls48.
Mutations in the EGR2 gene are associated with three rare and

syndromic human diseases: Charcot-Marie-tooth disease type 1D,

a sensorineural peripheral polyneuropathy that affects both motor
and sensory nerve function; Dejerine-Sottas syndrome, a demye-
linating peripheral neuropathy with onset in infancy that results in
delayed motor development; and Congenital hypomyelinating
neuropathy, which is characterized clinically by onset of hypotonia
at birth, areflexia, distal muscle weakness, and very slow nerve
conduction velocities. In all these diseases, the mutation of EGR2
leads to a decrease or a complete loss of gene function.
EGR2 encodes a transcription factor that is a prime regulator of

Schwann cell myelination66. It is involved in the development of
the jaw opener musculature by playing a role in its innervation
through trigeminal motor neurons67. EGR2 has been reported to
also play a role in hindbrain segmentation and development66

and in adipogenesis, possibly by regulating the expression of
CEBPB68. Variants in EGR2 gene are associated with serum
triglycerides and cholesterol levels, temperament and adventure-
ness.
Mendelian randomization analysis shows evidence of potential

causality between increased expression of EGR2 in the cortex and
schizophrenia (OR= 1.21, 95% CI= (1.09,1.35), p.adj= 0.002)
(Table S7A). There was no evidence of a causal effect of EGR2
levels in disease-relevant tissues on type 2 diabetes.

LAMA4. We identify LAMA4 (laminin, alpha 4) as a putative
effector gene underpinning a colocalizing genomic locus on
chromosome 6 (PP4= 0.89). The 95% credible set for the causal
variant from the colocalization analysis consists of 36 variants
(Fig. 3C). All variants show opposing risk-increasing alleles for type
2 diabetes and schizophrenia. Variants in the 95% credible set for
the causal variant from the colocalization are associated with
trunk fat mass as well as depressive and maniac episodes in
bipolar disorder69,70.
Laminins are a family of extracellular matrix glycoproteins that

constitute basement membranes71. They have been implicated in
multiple biological processes including attachment, migration and
organization of cells into tissues during embryonic development.
LAMA4 encodes the laminin subunit alpha-4 protein, a structural
component that contributes to cell adhesion and tissue organiza-
tion in various biological processes72. Heterozygous mutations in
LAMA4 are causal to the syndromic disease dilated
cardiomyopathy-1JJ. In addition, variants in this gene are
associated with various phenotypes including BMI, insulin, bipolar
disorder and myocardial infarction. LAMA4 is the target of
ocriplasmin, a drug indicated for the treatment of symptomatic
vitreomacular adhesion73.
Lama4 knockout mice show decreased body size and weight

and abnormal neuromuscular synapse morphology and lethargy.
In humans, decreased body weight and lethargy are associated
with decreased risk of type 2 diabetes and increased risk of
schizophrenia, respectively. LAMA4 shows differential expression
in pancreatic islets from healthy versus diabetes patients and in
brains from schizophrenia patients versus controls47,48. It is over-
expressed in diabetes patients and down-regulated in schizo-
phrenia patients. The observed direction of effect of LAMA4 on
each investigated condition in knockout mice and in differential
gene expression is concordant.

Insights into disease biology and treatment targets
We conducted pathway enrichment analyses on the set of genes
showing evidence of involvement in both type 2 diabetes and
schizophrenia (Table S8) and find “homeostatic process” and
“intracellular lipid transport” to be the most significantly enriched
biological processes. These genes exhibited enrichment in further
pathways related to lipids, for instance “lipid transport”, “lipid
localization” and “lipid homeostasis”, as well as pathways related
to the regulation of metabolic processes (Fig. 4). These findings
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point toward a potential involvement of lipid metabolism in the
comorbidity of type 2 diabetes and schizophrenia.
The 15 genes showing evidence of involvement in both type 2

diabetes and schizophrenia represent relevant candidates for
further functional and clinical investigation. Thus, we queried the
druggability status of these genes and find that five are included
in the druggable genome56. Of these, four genes (ATP1A1, GRIN2B,
LAMA4 and TK1) are tier 1 druggable targets, i.e., their products are
targets of existing drugs with market authorization or in clinical
development, and one (ACACA) is a tier 2 druggable target, i.e., its
product has known bioactive drug-like binding partners.
ACACA (acetyl-CoA carboxylase alpha) codes for the enzyme

acetyl-CoA carboxylase alpha (ACC-alpha), which plays a role in
fatty acid synthesis in humans, a process that impacts energy
balance and lipid metabolism. In cases of impaired ACC-alpha
function, biotin supplementation can help support proper enzyme
activity as a cofactor, leading to better overall metabolic health74.
An ACC inhibitor was tested in a phase II clinical trial for type 2
diabetes and there is evidence that the ACC-alpha pathway in
pancreatic alpha cells could be a therapeutic strategy in type 2
diabetes by limiting glucagon secretion75.
ATP1A1 (ATPase Na+ /K+ transporting subunit alpha 1)

encodes a subunit of the sodium-potassium pump, which plays
a vital role in maintaining cell membrane potential and various
physiological processes, including nerve impulse transmission76.
Cardiac glycosides drugs, such as digoxin, inhibit the sodium-
potassium pump and have been used to treat heart-related
conditions by enhancing the heart muscle contractions77. Digoxin
was also tested in a phase I clinical trial for epilepsy, depressive
disorder and type 2 diabetes. In type 2 diabetes patients, it
increased glucose intolerance78. Digoxin augmented the effect of
antiepileptic drugs in mice, increased the chances of depression
after a myocardial infarction and was linked to increased risk of
psychosis79–81.
GRIN2B (glutamate ionotropic receptor N-methyl-D-aspartate

type subunit 2B) encodes a subunit of the N-methyl-D-aspartate
(NMDA) receptor ion channel in the brain that plays a role in
synaptic plasticity, learning, memory, and various neurological
functions82. There are several approved drugs that modulate
NMDA receptor activity, including felbamate and haloperidol.
Felbamate, an anticonvulsant used to treat severe epilepsy, has an
antagonistic effect on NMDA receptors, reducing their activity83.
Haloperidol is an antipsychotic used in the treatment of
schizophrenia that has been shown to inhibit the NMDA
receptor84. Two further clinically approved NMDA antagonists,
ketamine and acamprosate, have been tested for schizophrenia
treatment with inconclusive results85,86. Although GRIN2B is not
rated as a putative effector gene for schizophrenia, it has been
shown that variants in this gene are associated with this condition
in a Siberian and a Han Chinese population87,88.
LAMA4 is classified as a Tier 1 target in the druggable genome

as the protein product of this gene is a target of the proteolytic
enzyme ocriplasmin. Ocriplasmin is approved to treat sympto-
matic vitreomacular adhesion and was in clinical trial for stroke
and diabetic macular edema treatment73 (www.clinicaltrials.gov).
LAMA1, LAMA3 and LAMA5, other laminins, are targets of the

approved drug lanoteplase, used in the treatment of myocardial
infarction but with unknown mechanisms of action89. In an
analysis aimed at identifying potential drug candidates based on
perturbed transcriptomic pathways in Parkinson’s disease, lanote-
plase emerged as the candidate with strongest enrichment90.

DISCUSSION
In this work, we dissect the genetic etiology shared between type
2 diabetes and schizophrenia. In line with smaller-scale previous
studies, we find evidence of a weak negative genetic correlation
and no evidence of a causal relationship between the two
comorbid conditions18,27. Considering the sample sizes of the
disease GWAS employed in this study, our study provides robust
evidence of a non-causal relationship between type 2 diabetes
and schizophrenia. These results point to common pathways
underlying type 2 diabetes and schizophrenia that act in opposite
direction on each condition. Most schizophrenia patients have had
long-term exposure to antipsychotics. We show that Mendelian
randomization results using schizophrenia GWAS data not
adjusted for antipsychotic use finds no evidence of a causal effect
of schizophrenia liability on type 2 diabetes. More research taking
data on medication use into account is needed to further dissect
the effect of antipsychotics on type 2 diabetes.
Type 2 diabetes and schizophrenia are epidemiologically

positively correlated. However, it has been previously shown,
and we have validated this observation here, that the conditions
have a negative genetic correlation. There are multiple potential
reasons behind this. Firstly, there is a large gap between the age
of onset of type 2 diabetes and schizophrenia. Secondly,
comorbidities are often underdiagnosed among schizophrenia
patients91. In addition, analyses aimed at dissecting the associa-
tion between schizophrenia and BMI yield inconsistent results
partly due to the weight gain effect of some antipsychotics. Our
analyses rely on integrating data from population-based studies
for type 2 diabetes and smaller clinical studies for schizophrenia.
For type 2 diabetes, GWAS results are biased towards individuals
with very prevalent symptoms with a formal disease diagnosis.
This liability threshold bias can lead to different and even
opposing patterns between observational and GWAS-based
studies. It is worth noting that our findings support the estimated
negative genetic correlation between type 2 diabetes and
schizophrenia, and that the derived putative effector genes as
well as high BMI have opposite direction of effect on the studied
conditions.
We provide evidence of a potential protective effect between

schizophrenia liability and BMI. This association is in the opposite
direction to the well-established causal effect between BMI and
type 2 diabetes, pointing to potentially different adiposity-related
mechanisms underpinning each condition. We replicated previous
results showing that the causal effect of genetically predicted
childhood BMI on type 2 diabetes is almost entirely attenuated
when adjusting for adulthood BMI59. When looking at the causal
effect of life-stage BMI to schizophrenia, we show evidence that
adulthood BMI is protective against schizophrenia, but not
childhood BMI. In this analysis, we find no evidence of reverse
causation. Schizophrenia is associated with low late-pregnancy
maternal BMI, low birth weight and being thin during childhood92.
Thus, we hypothesize that the effect of body size on schizophrenia
might be mediated earlier in development and is not fully
captured by our analysis using genetically predicted data for early
life BMI at 10 years old. Unhealthy lifestyle and medication use
might be underlying causes of the shown relationship between
adulthood BMI and schizophrenia.
By leveraging recent large-scale GWAS for type 2 diabetes and

schizophrenia, we find evidence of colocalization at 11 genomic
loci. We score genes in the vicinity of the colocalized regions by
incorporating multi-omics and functional genomics information

Fig. 4 Results of enrichment analysis on the set of genes showing
evidence of involvement in type 2 diabetes and schizophrenia.
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and derive a list of 15 genes showing evidence of involvement in
both type 2 diabetes and schizophrenia, which are enriched for
biological pathways associated with lipid regulation. We highlight
the putative effector genes, which show the highest score of
involvement in both type 2 diabetes and schizophrenia in our
data-based statistical genetic approach. For these genes, we have
derived the effect on each condition mainly based on causal
inference analysis using expression QTL data from relevant tissues.
The putative effector genes involved simultaneously in type 2
diabetes and schizophrenia derived in this work have not been
established as effector genes for the individual conditions based
on previous publications. There are various factors that can lead to
a gene not having been defined as a high confidence effector
gene for a disease previously, for example due to a lack of
comprehensive post-GWAS analysis or insufficient evidence in
single-disorder discovery efforts. We show that the three putative
effector genes have opposite direction of effect on type 2 diabetes
and schizophrenia risk. These results are in support of a causal
effect of BMI on both conditions in opposite directions.
We have run the genetic colocalization with the assumption of a

single causal variant per region because we are primarily
interested in finding regions where type 2 diabetes and
schizophrenia share signals. To relax the single variant assumption
an LD reference panel is mostly needed, which is not straight-
forward in the case of multi-ancestry data with different ancestry
compositions. This has an influence on downstream analyses that
rely on the variants included in the 95% credible set of the
colocalization analysis, which is a limitation of the present work.
We have defined regions to run genetic colocalization analysis
based on at least one of the studied conditions having a genome-
wide risk signal (p-value < 5e-8). Hence, we also ran the analysis on
regions where only one of the conditions shows evidence of
association. This approach was selected to address potential
power limitations stemming from varying sample sizes in the
individual GWAS. Subsequently, we embellish the colocalization
findings by delving deeply into biological lines of evidence that
indicate the involvement of putative effector genes within these
colocalized regions.
The biological function of the putative effector genes NUS1 and

LAMA4 as well as the result of the enrichment analysis highlight
adipogenesis and cholesterol trafficking as potential biological
mechanisms influencing the comorbidity between type 2 diabetes
and schizophrenia. These mechanisms might reflect the presence
of an underlying metabolic vulnerability in a subset of individuals
with schizophrenia beyond the side effects of antipsychotics.
The genomic locus that yields LAMA4 as a putative effector

gene does not reach nominal significance (p-value < 1 ´ 10�6) in
the multi-ancestry GWAS for type 2 diabetes (Fig. 3C). The lead
causal variant rs6568685 is an intron variant of TRAF3IP2-AS1. This
variant reaches a p-value of 1.7 ´ 10�6 in the European-ancestry
type 2 diabetes GWAS and a p-value of 0.26 in the East Asian
ancestry GWAS. Hence, this may be a European-specific associa-
tion or a low frequency variant in East Asians. Alternatively, the
association in this locus may reach genome-wide significance in
diverse non-European ancestry datasets once sample sizes are
large enough.
Human genetics evidence has been shown to support the

majority of FDA-approved drugs in 202193. We investigated the
potential for drug development or repurposing for genes
prioritized by our analyses, for the comorbidity between type 2
diabetes and schizophrenia. We highlight two interesting candi-
dates for drug repurposing opportunities that could be investi-
gated for schizophrenia treatment: lanoteplase, which targets
laminins and is currently used in the treatment of myocardial
infarction; and felbamate, an NMDA receptor inhibitor used to
treat severe epilepsy. On the one hand, digoxin, a drug targeting
ATP1A1, has been shown to increase glucose tolerance in type 2
diabetes patients78, but on the other hand increase risk of

psychosis81,94. To avoid complications, drugs targeting genes with
opposing direction of effect for different diseases should be
administered with caution and alongside with monitoring of
comorbidity risk and progression.
As a result of great efforts from the GWAS community, both the

type 2 diabetes and schizophrenia GWAS summary statistics are
meta-analyses that expand beyond European-centric data, by
including data from diverse global populations. However, the vast
majority of primary tissue molecular QTL data is derived from
European-ancestry individuals. Hence, our analyses with statistical
genetics methods that rely on LD estimations, such as Mendelian
randomization, were constrained to using LD from European-
ancestry populations, which still constitutes the majority (>70%) of
samples contributing to GWAS. It will be important for future
studies to generate molecular QTL data from a wide array of
tissues across multiple diverse populations.
Mental health disorders are often accompanied by metabolic

disorders that ultimately lead to premature death. Here we have
studied the shared genetic underpinning between type 2 diabetes
and schizophrenia and provide insights into the potential
common biological mechanisms and shared effector genes. We
have shown that the derived set of shared putative effector genes
have opposing direction of effect on the individual conditions. Our
findings emphasize that treatments targeting those genes should
be tempered with caution regarding exasperation of the
comorbidity.
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