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Temporal changes of gene expression in health, schizophrenia,
bipolar disorder, and major depressive disorder
Arsen Arakelyan 1,2,3✉, Susanna Avagyan2, Aleksey Kurnosov2, Tigran Mkrtchyan3, Gohar Mkrtchyan 1, Roksana Zakharyan1,3,
Karine R. Mayilyan 1,4 and Hans Binder 2,5

The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major
depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene
expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-
mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene
modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression
quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene
modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple
hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed
functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in
gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating
time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric
disorders.
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INTRODUCTION
Mental disorders, such as schizophrenia (SCZ), bipolar disorder
(BD), and major depressive disorder (MDD), are complex and
heterogeneous conditions thought to arise from an interplay of
diverse genetic and environmental factors1. Over the past decade,
numerous studies have investigated the genetic and epigenetic
changes that contribute to the development and progression of
these disorders2–5. While it is clear that the molecular events
contributing to disease manifestation and progression are
distributed through embryonic to late stages of life6–8, relatively
little is known about the temporal perturbations of the brain
transcriptome that occur before onset and during each psychiatric
disease. Because the age of onset of those neuropsychiatric
disorders corresponds to adolescence and early adulthood, the
clinical samples are always thresholded to the relatively older age.
Thus, a direct comparison of clinical and control datasets is limited
by the age of onset and does not include prenatal and early
postnatal age ranges. This triggered multiple studies to under-
stand the transcriptome dynamics across development9–11, and
attempts have been made to overcome this issue by analyses of
transcription of the disease-associated genes in pre- and postnatal
control brains11 or by analyses of temporal changes in the samples
with age-matched controls10. However, they are not free from
limitations. Indeed, the first approach completely undermines the
environmental factor-related epigenetic control. The second
largely disregards the causative transcriptional perturbations
during early neurodevelopment, contributing to a psychiatric
disease later in life.
In the present study, we aimed to investigate the time-related

changes in gene expression landscape and functional processes in
the normal aging brain, schizophrenia, bipolar disorder, and major

depressive disorder throughout the entire lifespan. First, we used
a neural network-based self-organizing maps (SOM) machine
learning and dimension reduction approach to transform multi-
dimensional gene expression data into 2-dimensional transcrip-
tome landscapes (or expression portraits) for each sample defined
as a quadratic grid of microclusters of co-expressed genes called
metagenes. Due to the self-organizing properties of the algorithm,
metagenes with similar characteristics are located in adjacency on
the grid, thus forming larger clusters of metagenes referred to as
‘spots’ or gene modules. Conversely, metagenes with differing
profiles are located at distant grid locations. Notably, single genes
are distributed over the metagenes of the portraits in an identical
way, meaning that the portraits can be directly compared with
one another12,13. As a part of the oposSOM R package14, the SOM
method is complemented by comprehensive downstream analysis
tools including visualization of individual samples and groups
using expression heatmaps, differential expression analysis,
diversity analysis, and biological function mining. oposSOM has
been used in a large number of applications so far, such as
transcriptomic studies of complex diseases including cancers15–18,
aging19,20, and multi-omics integrative investigations21,22. Next, we
used a Gaussian Process Regression approach23,24 to regress and
impute the temporal perturbation points for the characteristic
functional gene modules (or spots) in the brain transcriptome,
contributing to these mental disorders from early postnatal life
onwards. We also investigated the relationship of time-related
transcriptome changes with brain cell population shifts and GWAS
risk factors that may promote the development and progression
of these disorders. Our results provide new insights into the
contribution of different pathophysiological processes that may
drive these conditions.
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RESULTS
Gene expression landscape in health, aging, and mental
disorders
This study used eight publicly available datasets to analyze
postmortem gene expression in the brain prefrontal cortex (PFC)
of controls (CNTRL) and subjects with mental disorders (SCZ, BD,
and MDD) generated using the Affymetrix Human Genome U133
Plus 2.0 microarray platform. Batch adjustment (for dataset batch,
sex, pH, and post-mortem interval) considerably removed
unwanted variability in gene expression data of the combined
dataset, making it suitable for downstream analyses (Supplemen-
tary Fig. S1).
Next, using the SOM method, we generated gene expression

“portraits”12,13 across healthy and diseased (SCZ, BD, and MDD)
samples spanning different age groups. These portraits visualize
clusters of co-expressed genes in terms of gene (spot) modules
within a “50 × 50” SOM grid image. Gene expression in each
sample portrait is visualized using a color gradient, from blue to
red, referring to under- and over-expression relative to the log-
mean expression of each gene across all samples, respectively. It
should be noted that the location of genes on SOM portraits is
identical across all samples, which makes them directly compar-
able. For visualization purposes, we defined age category groups
based on stages of normal brain PFC development and aging25,26.
However, it should be emphasized that SOM training was
performed in an unsupervised way, and age categories did not
affect the localization of metagenes on the SOM grid and the
clustering of genes on the transcriptome landscape12,13. Group-
wise averaging of the expression portraits provides mean group
portraits that highlight group-specific changes in gene expression
landscapes (Fig. 1). For example, genes forming a spot on the left
upper corner are downregulated (blue) in the CNTRL_(0-1] group,
while the same gene spot is upregulated in controls after age 65
(Fig. 1).
The results of gene expression profiling within nine age groups

revealed temporal alterations, which were exclusive or shared by
the transcriptome of the healthy and diseased brains. Concordant
to our recent report, we observed transcriptional drifts of aging,
suppressing the gene clusters activated before and activating the
clusters that were “silent” at the early developmental stages20 (see
Fig. 2 of corresponding publication). Particularly, SOM portraits
demonstrate a complete shift in transcriptional activity in the
control samples between 0-18 and 65+ years of age (Fig. 1).

It was also evident from SOM portraits that transcriptional
abnormalities were differential across mental illnesses after the
clinical manifestation of the diseases (Fig. 1). Compared to
controls, the mean portraits for SCZ and BD in maturing (18-35
years) and early aging (35–50 years) brains showed considerably
different distributions of high- and low-expressed gene modules.
These differences became less pronounced in later aging stages
(>50 years). Notably, the transcriptional landscape of SCZ patients
aged between 50-65 years (Pearson r= 0.70, p < 2.2e−16) and
65-80 years (Pearson r= 0.84, p < 2.2e−16) closely resembled that
of the senior controls (age >85). In contrast, the SOM portrait of
BD at 50-65 years was considerably different from the corre-
sponding control portrait (Pearson r= 0.17, p < 2.2s−16), while
MDD (18-35 years) showed the closest profile to the young
controls (Supplementary Fig. S2).
Further gene-wise analysis showed that schizophrenia and

major depressive disorder were characterized by an age-
dependent decline in the number of differentially expressed
genes (DEGs). In contrast, differentially expressed gene counts in
BD increased with age. On the other hand, we observed more
downregulated DEGs in SCZ compared with BD and MDD (Fig. 2).

Dissecting SOM transcriptome landscape into functional gene
modules
The entire gene expression landscape (global summary map) in
the healthy and diseased aging brains was obtained by super-
position of group SOM portraits12. It was then visualized in terms
of gene expression variance, indicating regions (spots) of the
highly variable and invariant genes, and, in addition, as an
overexpression summary map where spots are visualized in terms
of their expression values (Supplementary Fig. S3). The entire
landscape was divided into 18 gene modules (spots) that were
assigned to letters from “A” to “R” (Fig. 3A). Each spot is
characterized in terms of the list of genes included and their
mean expression profile in studied groups compared to the global
average expression. This allows comparison of spots’ mean
expression across groups (e.g., control vs. schizophrenia) as well
as functional interpretation using enrichment or overrepresenta-
tion analysis methods12–14.
To decipher the biological functions of the genes in spots, we

performed a gene set enrichment analysis using gene sets
implemented in the oposSOM package as well as using curated
14 neuronally-associated functional categories from the previous

Fig. 1 Group-specific (mean) transcriptome landscapes in control and mental disorder groups across age. The expression states of genes
on portraits are represented in terms of color textures from blue to red, corresponding to under- and over-expression, respectively. The green
areas on maps represent invariant genes. The same gene locations across portraits allow for a direct comparison. CNTRL Control (healthy
brain), SCZ Schizophrenia, BD Bipolar Disorder, MDD Major Depressive Disorder.
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report27 (Fig. 3B, Supplementary Table S1). Our results showed
multiple spot associations with neuronal molecular functions, such
as neurodevelopment, migration, calcium signaling, axon gui-
dance, action potential, postsynaptic density, dendrite develop-
ment, glutamate signaling, GABA signaling, postsynaptic
organization, postsynaptic membrane, presynaptic membrane,
and synaptic plasticity (Fig. 3A and B). These spots were located on
the left part of the SOM portrait. In contrast, immune system-
related spots were localized on the right side of the SOM variance
map, which reflects anticorrelated gene activity compared with
the neuronal functions. We also studied the association of cell
senescence-related processes28 with spot expression. Mitochon-
drial function, DNA damage and repair processes, autophagy,
lysosome, and proteasome genes also showed association with
multiple spots and were co-localized with neuronally-associated
spots. Stem cell maintenance was associated with spots A, C, I, L,
and N. We also noticed multiple spot associations with the viral
process (spots B, G, C, D, N, L), which reflect the activation of genes
involved in RNA processing and immune system response. In
terms of aging the healthy brain, the landscape suggests a

consecutive activation/deactivation of neurodevelopmental, stem-
ness, neuronal maturation, and inflammatory processes with
increasing age (Fig. 1). These dynamics of healthy brain
transcriptome allowed imputing time-perturbations of deregu-
lated gene modules in the disease groups (see following
subsections).
Recently published single-cell (sc) RNA sequencing studies of

brain regions and cell populations provided detailed insight into
the composition of brain cell populations in health and disease
(for review see29), as well as into their expression signatures27,30.
Moreover, it has been demonstrated that changes in cell
populations in the brain were associated with SCZ, BD, and
MDD31. To correlate functional gene modules with the brain-
specific cell populations, we calculated Gene Set Z-scores for brain
cell gene sets from recent scRNA-seq publication27, and projected
them on the generated SOM landscape (Fig. 4, Supplementary
Fig. S4). Excitatory and inhibitory neuron populations were highly
correlated with the expression of spots C, D, E, M, I, and G
associated with neurodevelopment, axon and synapse develop-
ment, neuron migration, signal transduction, neuron projection,

Fig. 2 Distribution of differentially expressed genes across age groups in studied diseases. Red and blue bars indicate the number of over-
and under-expressed genes in pairwise comparison of diseases and control samples of corresponding age groups. logFC ≠ 0 and FDR-
adjusted p < 0.05 was used as a criterion for differential expression.
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Fig. 3 Functional dissection of transcriptome landscape. A The coloring gradient from blue to dark red indicates an increase in the variance
of spot expression across all samples. Spots are indicated with blue lines, top Gene Ontology terms associated with spots presented in the
corresponding boxes. B Mapping neuronally-associated gene sets onto the SOM spots (highlighted by bold black circles). It can be seen that
the individual gene sets split across multiple spots. While in most instances these spots are closely positioned (as seen with dendrite
development or presynaptic membrane gene sets), there are occasions when they appear on distant spots, such as with the “viral processes”
gene set.
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and neurotransmitter secretion. The expression of glial cell
signatures was correlated with spots A (neuronal stem cell
population maintaining, cell adhesion - astrocytes, endothelium,
oligodendrocyte precursor cells), L (inflammation, cellular and
humoral immune response - microglia), B (myelination, oligoden-
drocyte development, cytokines - oligodendrocytes), G (cell cycle,
growth factors - oligodendrocyte precursor cells), and P (cell
metabolism, transcription, and translation - oligodendrocyte
precursor cells).

Temporal changes in gene expression in diseases and non-
diseased brains
Next, we evaluated the age dependence of module expression in
the healthy brain. The results indicate that neurodevelopment and
neuronally-associated spots A, B, E, H, J, and M showed a strong
negative association with age (Supplementary Fig. S5). We
observed the loss of neuronal gene signatures and the increase
of glial cell signatures with advancing age, in line with previous
observations3,20 (Supplementary Fig. S6). In addition, we also
noted several gene spots (F, G, I, K, O, R) that demonstrated
increasing expression variance along the age axis without much
changing the mean expression, which reflects higher transcrip-
tomic volatility of the associated processes between the
individuals. This increase of gene expression heterogeneity upon
aging has been previously reported in several studies32,33 and was
linked to the number of transcription factors that regulate
expression on a single gene level34, somatic mutation accumula-
tion35, and epigenetic alterations36. On the SOM transcriptome
landscape, the spots with an increased gene expression variance
but invariant mean expression were linked to regulation of cellular
response (spots F, R, and P), neurotransmitter signaling and
autophagy (spot I), immune response (spot K), cell cycle (spot G),
and regulation of metabolism (spot O).

The expression of spots in corresponding age groups between
the healthy and diseased brain samples was then compared using
linear regression adjusted for age as a covariate. We observed
significant upregulation of genes associated with neurogenesis
(p= 0.004), cellular defense (p= 0.03), and translation (p= 0.00004)
(spots A, L, and Q), and downregulation of neuronal plasticity
(p= 0.0001), neuronal physiology (p= 0.00004), neuronal morpho-
genesis (p= 1e−6), cellular energetics (p= 0.03), and neuroprotec-
tion (p= 0.007) (spots C, D, E, M, N) in schizophrenia. In BD, the
overexpression of neurogenesis (p= 0.0004), DNA damage
(p= 0.05), and mitochondrion (p= 0.0008) (spots A, G, and H)
were detected. Meanwhile, MDD was characterized by upregulation
of DNA damage (p= 0.005), mitochondrion (p= 0.006), and cellular
energetics (p= 0.015) (spots G, H, and M) and downregulation of
immune response (p < 0.036) (spots F and K).
We also observed an overlap between deregulated spots in

disease groups (Fig. 5), in line with previous results on shared
hereditary and underlying causative biology of mental disorders37

and similar to the results from Lanz et al.38.
Finally, we used the DEtime Gaussian Process Regression R

package to predict the perturbation time of functional module
expression between normal and diseased brains. The spot
expression in SCZ, BD, and MDD as a function of age was
compared to the expression of the normal brain in a pairwise
manner. A likelihood ratio > 1 was used as a soft cut-off
threshold to select time-perturbed differentially expressed
spots24.
Eleven out of 18 functional modules were time perturbed in

schizophrenia (Fig. 6, Supplementary Table S2). Compared to
controls, early gene expression perturbations with a maximum
posterior (MAP) probability age of 0.11 years (40 days after birth)
in schizophrenia include brain development, neural plasticity,
neural physiology, synaptic plasticity, immune response, transla-
tion, and acute phase response (spots A, C, D, E, K, Q, R). On the

Fig. 4 Association brain cell population gene markers with functional modules on transcriptome landscape. Pearson’s correlation
coefficient r > 0.5 was selected as a threshold for visualizing the links between spots and cell signature Gene Set Z-scores.
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other hand, the expression of functional gene modules associated
with neuroprotection, cellular energetics, cellular defense, and
neuronal homeostasis was characterized by late perturbations,
covering adolescence to the elderly period (spots N, M, L, and I).
The perturbation trajectories in schizophrenia suggested early
downregulation of processes related to the maturation and
refinement of the brain PFC circuits. Furthermore, the inspection
of the perturbation profiles showed that the the expression of
functional modules in schizophrenia and controls converge in the
elderly (Fig. 6).
In BD early perturbations were observed in functional modules

associated with brain development (upregulation) and immune
regulation (downregulation), while late perturbations were asso-
ciated with DNA damage and translation (upregulation) and
downregulation of neuronal plasticity and cellular defense
processes (Fig. 7, Supplementary Table S3).
In MDD compared to controls, we observed early down-

regulation of immune response and DNA damage and upregula-
tion of mitochondria-related genes, cellular energetics, and
neuronal homeostasis. The late perturbations in the diseases
included upregulation of neuronal plasticity, transcription, and
downregulation of cellular defense/immune response (Fig. 8,
Supplementary Table S4).
We also noticed an overlap in time-perturbed biological

processes and functional modules (9 out of 18) between studied
diseases (Fig. 9, Supplementary Table S5). However, only four
overlapping spot perturbations were consistent for the age period,

and only two of those had similar perturbation trajectories.
Particularly, SCZ and BD shared overexpression of the brain
development-associated genes (spot A) deregulated at age 0.11
years, and BD and MDD had similar perturbation patterns of
transcription (spot P) at ~ 26 years of age.
Previously established associations of functional gene mod-

ules with brain cell gene signatures made it possible to describe
observed changes in terms of brain cell populations. The time-
perturbed differential expression showed that in schizophrenia,
there were two events of neuronal cell signature loss. At 40 days
after birth, there was downregulation of the gene signatures of
both excitatory and inhibitory neurons, while at a late age, only
the excitatory neuron signature was downregulated. In bipolar
disorder, we didn’t observe early changes in the expression of
neuronal signatures. Instead, late upregulation of both excita-
tory and inhibitory neuronal signatures was observed. Particu-
larly, the neuronal cell signature perturbations were observed at
14 (spot G upregulation) and 35 years of age (spot C with
dynamic down then up fluctuation from the norm), which
involved almost all types of excitatory and inhibitory neurons.
Both SCZ and BD showed marked early perturbation of glial
signatures, especially related to astrocytes, and late perturba-
tions associated with microglia. MDD was characterized by early
upregulation of excitatory neuronal signature and downregula-
tion of inhibitory signatures, while later in age, both signatures
were upregulated.

Fig. 5 Differential expression of functional modules (spots) in SCZ, BD, and MDD. A overlap of the differentially expressed spots in diseases.
B the SOM map with the respective modules associated with diseases. C functional annotation of differentially expressed modules.
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QTL enrichment of functional gene modules
The contribution of genetic factors in the development of
schizophrenia, bipolar disorder, and major depressive disorder is
well documented in many studies39–41. However, functional links

between identified genetic loci and disease mechanisms have not
been extensively explored. Here we explored whether time-
perturbed functional modules on the SOM map were enriched
with expression quantitative trait loci (cis eQTL) genes across 47

Fig. 6 Time-dependent expression divergence of functional modules in schizophrenia. Red dots represent the spot expression in individual
samples in the schizophrenia group, and blue dots represent the spot expression in the control group. The red and blue lines represent the
Gaussian Regression Model fit for the diseased and control groups, respectively. The blue and yellow areas represent the 95% credible area for
the disease and control regression models, respectively. The top panels for each spot show the inferred posterior distribution for the
perturbation time.
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GTEx tissues. The majority of all time-perturbed spots were also
enriched with eQTL signal-containing genes for blood and brain as
well as other tissues (Fig. 9, Supplementary Fig. S7). Furthermore,
the spots enriched with brain cell signatures (A, C, B, G, H, I, N) also
showed enrichment for brain cortex eQTLs. Interestingly, brain
cortex and blood eQTLs were enriched in the same spots, in line
with the comparability of gene expression signatures in the brain
and blood42–44. In addition, whole blood eQTLs were enriched in
spots (D - Fc-epsilon receptor signaling, L - celular defense/
immune response, and Q - translation).
Finally, we extracted eQTL genes from spots and performed

gene set analysis against known GWAS resources (GWAS Catalog,
DisGenNet, UK biobank), and others using the Enrichr and DOSE
gene set analysis tool45–47. The analysis demonstrated that eQTL
genes were also significantly associated with SCZ, BD, and MDD
(padj < 0.05, see the term associations in Supplementary Table S6).

DISCUSSION
In this study, we used a combination of SOM and Gaussian Process
Regression approaches to characterize time-related changes in
gene expression and functional processes in the normal aging
brain and mental disorders and to infer the temporal windows of
their initial divergence. Our SOM analysis approach allowed for
transforming the complexity of the expression of tens of

thousands of genes into several dozens of co-expressed functional
gene modules. This facilitated the association of these modules
with diseases, as well as enabled the exploration of their biological
functions. Using Gaussian Process Regression we were able to
infer the temporal aspects of perturbations in these modules in
comparison with healthy brain postnatal development, matura-
tion and aging.
Our results showed that the entire transcriptome landscape in

patients could be decomposed into partially overlapping age and
disease-associated functional gene modules (spots).
First, using a larger set of control samples spanning a wider

postnatal age range, we replicated our previous finding showing
the dynamic changes in neurodevelopment, synaptic plasticity,
and decline of neuronal function during lifespan20. Particularly,
aging was paralleled with the increase of glial cell signatures and
the decline of brain neuronal cell signatures indicating loss of
neurons48. These results on temporal dynamics of gene expression
in the human prefrontal cortex also correspond to the changes in
DNA methylation levels reported previously and, in part, can be
linked to the epigenetic alterations across the postnatal lifespan3.
Particularly, the widespread methylome changes in the prefrontal
cortex that occur during the transition from fetal into postnatal life
appear to track first the loss of immature neurons before birth,
followed by the rise of non-neuronal cell types through
adulthood3.

Fig. 7 Time-dependent expression divergence of functional modules in bipolar disorder. Red dots represent the spot expression in
individual samples in the bipolar disorder group, blue dots represent the spot expression in the control group. The red and blue lines
represent the Gaussian Regression Model fit for the diseased and control groups, respectively. The blue and yellow areas represent the 95%
credible area for the disease and control regression models, respectively. The top panels for each spot show the inferred posterior distribution
for the perturbation time.
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Fig. 8 Time-dependent expression divergence of functional modules in major depressive disorder. Red dots represent the spot expression
in individual samples in the major depressive disorder group, blue dots represent the spot expression in the control group. The red and blue
lines represent the Gaussian Regression Model fit for the diseased and control groups, respectively. The blue and yellow areas represent the
95% credible area for the disease and control regression models, respectively. The top panels for each spot show the inferred posterior
distribution for the perturbation time.
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The transcriptome landscapes in schizophrenia, bipolar dis-
order, and major depressive disorder showed considerable
parallels with the aging brain. However, those were shifted
toward younger age in patients in terms of biological processes
such as loss of neurons49,50, DNA methylation3,51,52, immune
response53–56, and loss of cognitive function57,58. Thus, our results
support the concept of accelerated brain aging in SCZ, BD, and
MDD59. However, the timing of gene expression perturbations
suggests the primary role of neurodevelopmental aberrations in
the development of those psychiatric disorders6–8.
We also observed an overlap in deregulated functional gene

modules/processes between schizophrenia, bipolar disorder, and
major depressive disorder. Both schizophrenia and bipolar
disorder were characterized by the up-regulation of functional
gene sets associated with astrocyte function, such as myelination,
and brain development60. BD and MDD shared deregulation in
oxidative stress61,62, hypoxia63, and oligodendrocyte function64,65.
On the other hand, schizophrenia and MDD shared deregulation
in gene modules for ER-protein misfolding, cell cycle, and other
processes associated with excitatory and inhibitory neurons66,67.

However, the direction of the changes differed across studied
conditions in line with the previous results68.
Another worth noting observation is that there is a gradual

decline in the number of differentially expressed genes in SCZ and
MDD with aging. Our results correspond with the model
developed by Demro et al. (2022) that showed no difference
among people with psychiatric illnesses or their relatives
compared to controls in advanced age69. The impaired cognitive
and general functioning associated with advanced age in
combined samples was not observed, which again emphasizes
the major contribution of neurodevelopment-driven structural
brain abnormalities69. In line with these findings, our results
prompt the question of whether mental disorder studies in
advanced age groups are feasible, and emphasize the importance
of investigating time-dependent perturbations in gene expression.
While the lower age limit in diseased groups in this study was
similar to other reports, we used the Gaussian Process Regres-
sion24 to study the temporal perturbations of functional gene
modules in the brain transcriptome of schizophrenia, bipolar
disorder, and major depressive disorder prior to the age of onset.

Fig. 9 The simplified timeline of perturbations of gene functional modules in mental disorders. One can see that despite the overlap of
the perturbed modules in these diseases, in the majority of cases, they are not consistent for the age period and perturbation trajectories.
Additionally, most of the time-perturbed spots were enriched with eQTL signal-containing genes for blood and brain (adjusted Fisher Exact
p value < 0.05; see Supplementary Fig. S7).
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Inferring the time-perturbation from transcriptome data
showed that mental disorders are characterized by early, mid-,
and late deregulation of identified functional spots. The early
perturbations in schizophrenia were linked to neurodevelopment
and synaptic plasticity, while late events included a marked
fluctuation in microglial and immune markers in the brain70. In
bipolar disorder, the early events were associated with T cells,
which are known to play a crucial role in the fetal-to-adult brain
transition71, as well as the elevation of astrocyte markers, while the
late events were associated with neurodegeneration and neu-
roimmune modulation. The early events in MDD were mostly
associated with inhibitory neurons, consistent with the previous
results72,73.
Overall, our results align with the hypothesis that two or more

‘hits’ are required over the lifespan rather than only one early-life
event for disease manifestation74. Maynard et al. (2001) reported
that the cell-cell signaling pathways involved in nonaxial
induction, morphogenesis, and differentiation in the brain could
be considered a “first hit”, while destruction of the neuronal
network might serve as a “second hit”75. Moreover, these
observations are in agreement with previous studies indicating
the involvement of both early and later neurodevelopmental
alterations in the etiology and pathogenesis of schizophrenia76.
Time-perturbation analysis brought several worth-noting obser-

vations about the association of immune response with studied
diseases. In the four gene modules enriched for immune
processes (i.e., spots F, K, L, and R, see Supplementary Table S5),
transcriptome perturbations occurred in the very early days of
postnatal life except in module L. The gene clusters F and R,
unique for MDD and SCZ, respectively, were enriched for
biological processes such as regulation of immune response,
cellular defense response, negative regulation of neuronal death,
positive regulation of transcription by RNA polymerase II, negative
regulation of TNF production and signal transduction. The
downregulation of the gene module K enriched for innate
immune response, negative regulation of cell proliferation, and
signal transduction precede MDD, while its upregulation in the
same period is observed for SCZ. Thus, none of those transcrip-
tional perturbations can serve as hallmarks of neuroinflammation
and aging, but rather as a result of the genetic/epigenetic
response to early developmental adversities77,78. In all three
psychiatric illnesses, the only late and incoherently complex
perturbations were observed by the gene module L with distinct
cellular indexing to the components of the blood-brain barrier
(BBB), i.e. endothelial cells and microglia79․ Thus, the effect of
medication80 and poor hygiene81 should also be considered
together with the genetic load for perturbations in this immune
cluster. Remarkably, during the initial deregulation periods, the
BBB cellular components were decreasing relative to the norm in
all three mental disorders (Supplementary Table S5). In schizo-
phrenia, these data corroborate the recent in vivo findings of
altered function or lower density of brain immune cells in the
frontal cortex of the patients82. However, the upregulation of this
cluster in SCZ after age 65 is likely to be secondary to the disease
pathophysiology, treatment, and other environmental factors and
probably can not contribute to the disease causative biology83.
Our results also indicate that the time-perturbed functional

spots were enriched with eQTL genes, implying the contribution
of genetic variance in developing a disease phenotype. Moreover,
our gene set enrichment analysis showed that a significant portion
of these eQTL genes was also associated with the genetic risk of
developing studied diseases. Indeed, numerous studies reported
the association between common and rare genetic variants with
schizophrenia84, bipolar disorder85, and major depressive dis-
order86. Thus, the early perturbations could suggest the contribu-
tion of genetic components, while late perturbations could be
more attributed to the effect of environmental factors and
maturation. The previous study based on neurodevelopmental

transcriptome and genotype association data showed early events
strongly associated with schizophrenia than with bipolar dis-
order11. The same results have been observed for schizophrenia
and MDD87. It is also notable that there is an overlap in functional
modules between all three disorders, again emphasizing overlaps
in molecular mechanisms and genetic associations88.
Collectively, our results indicate that psychiatric disorders are

associated with the deregulation of multiple biological processes
covering various aspects of cellular physiology and functions in
the brain that are distributed over time. Our findings align with
outcomes from other co-expression cluster identification studies.
For instance, Gandal et al. pinpointed roughly 400 uniquely
enriched gene sets (both GO and KEGG) within 13 co-expression
modules shared across autism, schizophrenia, bipolar disorder,
depression, and alcoholism (as detailed in Supplementary Data
Table S2 of the cited reference)88. Likewise, Kang et al.‘s research
identified approximately 370 unique enriched gene sets across 29
WGCNA clusters, detailing the transcriptomic changes in different
brain regions throughout aging (refer to Supplementary Table 9 of
the cited reference)89.
Several limitations of this study have to be considered. Firstly,

we only included post-mortem samples from the prefrontal cortex.
It is well documented that the different brain regions are
characterized by variability of gene expression perturbations90.
For example, a study showed considerable differences in gene
expression and associated pathways in the striatum compared to
the prefrontal cortex in patients with SCZ, BD, and MDD38.
However, transcriptome changes in PFC can provide an important
insight into the development of mental diseases as it is considered
the control hub of the brain and involved in diverse functions
related to information processing, memory, cognitive and emo-
tional processes91.
Secondly, we did not consider the temporal changes in blood,

though the involvement of systemic immunity/inflammation is
evident in these diseases92. It could be beneficial to include a
different “control” disease in our dataset to control downstream
“non-causative” biological processes such as oxidative stress and
inflammation. Nevertheless, by analyzing temporal profiles, we
were able to map perturbations in biological processes over time
thus differentiating between early (possible “driver”) and late
(possible “passenger”) processes.
Third, we used microarray data in our analysis. While there are

RNA sequencing datasets available for schizophrenia, BD, and
MDD, to our knowledge, there were no publicly available datasets
that could be combined to form a dataset with demographic
characteristics comparable to our integrated dataset. On the other
hand, to get comprehensive functional insight from bulk
microarray data, we incorporated the information on gene sets
associated with biological processes and cell populations from
scRNA sequencing studies into our analyses. scRNA sequencing
has inherent limitations on the number of samples to be analyzed,
and combining it with the multiple sample processing capacity of
microarray can strengthen the analysis.
Fourth, we acknowledge that some vital information was

missing for patients, such as medication, disease duration, etc.
Including this information would improve our model for temporal
changes in gene expression.
Despite the mentioned limitations, our machine learning

approach was able to trace normal aging and mentally ill brain
transcriptome dynamics specific for each disorder, and distinguish
genetic, functional, cellular and temporal characteristics. This
study demonstrated that there are several transcriptome and
functional process perturbations in mental disorders across the
lifetime, which supports the multi-hit hypotheses of the disease
development and progression. Moreover, our data indicate that
early perturbation events can be more associated with genetic
variation, while environmental factors can drive later events.
Particularly, the causative transcriptional perturbations during
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early neurodevelopment largely contribute to schizophrenia and
major depressive disorder later in life, while for bipolar disorder,
transcriptional perturbations from the norm prevail in adolescence
and early adulthood, emphasizing a major role of the relatively
later interactions between causative genes and environmental
factors in this disorder. Lastly, our results underline the age limit
(<65 years) that should be applied for brain transcriptome studies
of psychiatric diseases of neurodevelopmental origin, as, later in
life, the brain transcriptome landscape of mental illnesses tends to
unify to that of the normal aging brain profile.

MATERIALS AND METHODS
Datasets
We used six datasets from Gene Expression Omnibus (GSE21138,
GSE53987, GSE92538, GSE17612, GSE11512, GSE13564)93 and two
datasets from The Stanley Medical Research Institute Online
Genomics Database (Chen_study4, Dobrin_study5)94. GSE11512
and GSE13564 datasets contained gene expression profiles from
post-mortem prefrontal cortex tissue from healthy individuals of
varying ages 0-81 years. The GSE21138, GSE53987, GSE92538, and
GSE17612 contained gene expression profiles of post-mortem
brain samples from patients with schizophrenia (SCZ), bipolar
disorder (BD), major depressive disorder (MDD), and matching
controls ranging from 18 to 81 years. Chen_study4 and
Dobrin_study5 contained gene expression profiles in the pre-
frontal cortex from mental disorder cases and matching controls.
Common phenotypic characteristics of samples across all

datasets included primary diagnosis, age, sex, post-mortem
interval in hours, and pH of the post-mortem brain tissue.
Gene expression in all datasets was measured with Affymetrix

Human Genome U133 Plus 2.0 arrays (GEO Platform GLP570). The
platform contains 54675 probes spanning the majority of protein-
coding genes and transcripts.

Data preprocessing, harmonization, and age grouping
Raw Affymetrix CEL files have been downloaded for all the
datasets. Probe signal intensity conversion, background correc-
tion, RMA normalization, and log transformation were performed
using the “affy” R package95. The resulting gene expression
matrices were harmonized using RemoveBatchEffects from the
“limma” R package96, controlling for dataset batch, brain pH, post-
mortem interval, and sex. The resulting dataset was normalized by
subtracting the log expression value for a gene from the mean
value of that gene across all samples, which resulted in obtaining
log fold change values relative to the average gene expression.
Samples were assigned to age groups according to the following
ranges based on stages of normal brain PFC development and
aging25,26:
(0-1], (1-5], (5-10], (10-18], (18-35], (35-50], (50-65], (65-85], (85-

100] years (Table 1).

Clustering, identification of co-expressed modules, and
functional analyses
The analysis of gene expression was performed with the
“oposSOM” self-organizing maps (SOM)-based transcriptomic
pipeline described in detail elsewhere12,14. Briefly, SOM training
transforms the N (genes) x M (samples) gene expression matrix
into a K x M metagene matrix, where metagenes represent the
clusters of genes with a similar expression profile across all
samples. The SOM algorithm initializes a k x k = K grid of nodes
(metagenes) each described with a 1 x M weight vector. During
the training phase, SOM clusters genes into metagenes based on
the similarity between metagene’s weight vector and gene profile
vector (the expression of a gene across the samples in the dataset)
using the Euclidean distance metric. Thus, gene locations in the

SOM grid are the same for all samples. Because of the linear
initialization of SOM weight vectors, the profiles of adjacent
metagenes are more similar to each other than to the distant
ones. Consequently, if weights for a single sample are selected
from all metagenes’ weight vectors they will form a K x 1 vector
that represents the state of metagene expression for a given
sample (sample SOM heatmap portrait). The metagene values for
each sample can be visualized on a two-dimensional k x k grid by
using a color code for expression values (from blue to red for
underexpressed and overexpressed metagene values, respec-
tively), which highlights clusters of up- and down-regulated genes
from neighboring metagenes collectively referred to as spots or
modules13. Sample-specific spots are then transferred to the
global expression or variance summary map that allows direct
sample- or group comparisons. The oposSOM analysis algorithm
offers several criteria to select differentially expressed gene
modules (spots) from the global summary map14, which we used
to dissect our transcription landscape into functional gene
modules.
Functional analysis of spots was performed using the Fisher’s

Exact test and Gene Set Z-score against a gene set collection
available in the “oposSOM” package14 as well as additional gene
sets from a recent single-cell RNA sequencing publication27.
REVIGO was used to simplify lists by grouping GO terms with
similar functions97.

Regressing time-dependent changes in modules in health and
disease
Inference of perturbation time in gene modules on the SOM
transcriptome landscape was performed using the DEtime R
package24. Briefly, it is a Bayesian approach that uses non-
parametric Gaussian Process Regression (GRP) to detect the time
points of gene expression perturbations between controls and
disease groups. GPR sets a Gaussian Process Prior over potential
functions and then updates those based on observed data to
obtain a posterior distribution. GPR is particularly powerful due to
its inherent flexibility, allowing it to model intricate, non-linear
associations without the necessity of a stipulated functional form.
Moreover, compared to spline interpolation, GRP uses a full
probabilistic model, while splines generally provide only point
estimates and require prior knowledge about the number, and
location of knots. In our analysis, instead of genes we used SOM
modules (see above) to derive the time when the expression of
the module changed in a disease compared to the controls.

QTL enrichment
The functional modules showing differential association with age
in controls and diseases were further evaluated for QTL
enrichment in different tissues. Genotype-Tissue Expression

Table 1. The number of samples in studied groups by age.

Age Control SCZ BD MDD

(0-1] 26 – – –

(1-5] 12 – – –

(5-10] 15 – – –

(10-18] 37 – – –

(18-35] 59 25 16 14

(35-50] 6 59 34 18

(50-65] 56 25 21 13

(65-85] 33 33 2 1

(85-100] 9 3 – –

Total 253 145 73 46
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(GTEx)98 single-tissue cis-eQTL dataset (v8) was used as a source.
The enrichment of genes with QTLs in spots was evaluated in 47
tissues using a one-tailed Fisher exact test. Bonferroni correction
was applied to Fisher’s p-values for each spot-tissue comparison.

DATA AVAILABILITY
The data associated with this study is deposited in the Zenodo open repository
(https://zenodo.org/record/7936218/). The code for reproducing the results of this
study is available in the GitHub repository (https://github.com/susieavagyan/
BrainExp-TemporalDynamics).
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