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Low-dose lithium adjunct to atypical antipsychotic treatment
nearly improved cognitive impairment, deteriorated the gray-
matter volume, and decreased the interleukin-6 level in drug-
naive patients with first schizophrenia symptoms: a follow-up
pilot study
Chuanjun Zhuo 1,2,3✉, Shuiqing Hu1, Guangdong Chen2, Lei Yang1, Ziyao Cai2, Hongjun Tian1, Deguo Jiang2, Chunmian Chen2,
Lina Wang3, Xiaoyan Ma3 and Ranli Li3

This study was conducted to investigate the effects of long-term low-dose lithium adjunct to antipsychotic agent use on the
cognitive performance, whole-brain gray-matter volume (GMV), and interleukin-6 (IL-6) level in drug-naive patients with first-
episode schizophrenia, and to examine relationships among these factors. In this double-blind randomized controlled study, 50
drug-naive patients with first-episode schizophrenia each took low-dose (250 mg/day) lithium and placebo (of the same shape and
taste) adjunct to antipsychotic agents (mean, 644.70 ± 105.58 and 677.00 ± 143.33 mg/day chlorpromazine equivalent, respectively)
for 24 weeks. At baseline and after treatment completion, the MATRICS Consensus Cognitive Battery (MCCB) was used to assess
cognitive performance, 3-T magnetic resonance imaging was performed to assess structural brain alterations, and serum IL-6 levels
were quantified by immunoassay. Treatment effects were assessed within and between patient groups. Relationships among
cognitive performance, whole-brain GMVs, and the IL-6 level were investigated by partial correlation analysis. Relative to baseline,
patients in the lithium group showed improved working memory, verbal learning, processing speed, and reasoning/problem
solving after 24 weeks of treatment; those in the placebo group showed only improved working memory and verbal learning. The
composite MCCB score did not differ significantly between groups. The whole-brain GMV reduction was significantly lesser in the
lithium group than in the placebo group (0.46% vs. 1.03%; P < 0.001). The GMV and IL-6 reduction ratios correlated with each other
in both groups (r=−0.17, P= 0.025). In the lithium group, the whole-brain GMV reduction ratio correlated with the working
memory improvement ratio (r=−0.15, P= 0.030) and processing speed (r=−0.14, P= 0.036); the IL-6 reduction ratio correlated
with the working memory (r=−0.21, P= 0.043) and verbal learning (r=−0.30, P= 0.031) improvement ratios. In the placebo
group, the whole-brain GMV reduction ratio correlated only with the working memory improvement ratio (r=−0.24, P= 0.019); the
IL-6 reduction ratio correlated with the working memory (r=−0.17, P= 0.022) and verbal learning (r=−0.15, P= 0.011)
improvement ratios. Both treatments implemented in this study nearly improved the cognitive performance of patients with
schizophrenia; relative to placebo, low-dose lithium had slightly greater effects on several aspects of cognition. The patterns of
correlation among GMV reduction, IL-6 reduction, and cognitive performance improvement differed between groups.
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INTRODUCTION
Schizophrenia is characterized by cognitive impairment, which has
major impacts on functional outcomes, in about 98% of cases1–6.
This impairment can be broad in scope, affecting individuals’
executive functions and related processes, thereby substantially
compromising their ability to plan, reason, solve problems, and
think abstractly7. Many strategies have been proposed to rescue
cognitive impairment in patients with schizophrenia8–11. Cognitive
impairment in patients with schizophrenia has been related to
gray-matter volume (GMV) reduction in key brain regions12–19 and
increased interleukin-6 (IL-6) levels20,21.

GMV reduction is a typical structural change in patients with
various neuropsychiatric disorders, resulting from the alteration of
synaptic pruning and microglial and astrocytic function, and
usually associated with cognitive impairment15,22. For example,
Zierhut et al. 12 reported that GMV reductions in the temporal lobe
and mediofrontal cortex were associated with the impairment of
working memory and other cognitive dimensions.
High levels of the inflammatory factor IL-6 have been associated

with cognitive impairment in first-episode and high-risk schizo-
phrenia cases21,23–34. IL-6 affects neuronal transmission and
survival in the prefrontal cortex and hippocampus and causes
the reduction of gray-matter thickness, and thus cognitive
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impairment, in patients with schizophrenia and other mental
disorders26,27,34–41 Several therapeutic agents, including antipsy-
chotics, reduce the IL-6 level and thus alleviate this effect25,42–47.
However, the ability of IL-6 and its receptor to cross and increase
the permeability of the blood–brain barrier, enabling the entry of
other inflammatory agents, may contribute to poor functional
outcomes and treatment resistance in patients with schizophre-
nia31,48,49. Several mechanisms underlying these effects have been
proposed50–54, but few studies have involved the examination of
associations among IL-6 levels, GMV alterations in the frontal lobe
and hippocampus, and cognitive impairment in such patients.
Lithium can reduce the oxidative inflammatory response, at

least in part through the inhibition of glycogen synthase kinase-3β
(GSK-3β) expression; this effect contributes to its efficacy in the
treatment of mood disorders27,31,43,44,55–58. Through its effect on
GSK-3β, lithium reduces transcription factor activity, thereby
reducing the production of pro-inflammatory mediators [including
interferon (IFN)-γ and IL-6] and increasing that of anti-
inflammatory cytokines58–61; GSK-3β inhibition has the opposite
effects61–64. Lithium’s inhibition of GSK-3β also leads to the
reduction of pro-inflammatory cytokine production via the
reduced activation of the signal transducer and activator of
transcription62,63. In patients with bipolar disorder, 30- and 90-day
lithium regimens reduced the levels of inflammatory markers,
including IL-658,64,65. Similarly, an ex vivo study showed that
lithium reduced the IL-6 production of lipopolysaccharide-
stimulated monocytes from patients with bipolar disorder
ex vivo66–76. Moreover, the effects of lithium on GSK-3β cascade
(AKT/FoxO3a/β-catenin, AKT/GSK-3β/β-catenin, oxidative stress,
and inflammatory factor pathway) activity are neuroprotective.
These cascades play critical roles in brain development and were
found to impair cognitive function in a murine model of
schizophrenia, and their inhibition enhances frontal-lobe neural
activity, improving cognitive function67,68,70,75,76. Lithium also
improves cognitive performance by increasing the cortical N-
acetyl-aspartate concentration69,74.
This evidence converges to support the association of cognitive

impairment in schizophrenia with GMV reduction and increases in
the IL-6 level. Lithium improves such impairment by regulating IL-6.
Exploration of the relationships among these factors will provide
useful information guiding the development of strategies to reduce
cognitive impairment in schizophrenia, especially first-episode
schizophrenia in drug-naive patients. In this double-blind rando-
mized controlled study, we used an IL-6 immunoassay, 3.0-T
magnetic resonance imaging (MRI), and the MATRICS Consensus
Cognitive Battery (MCCB) to investigate the associations among the
IL-6 level, GMV alterations, and cognitive impairment in drug-naive
patients with first-episode schizophrenia. We hypothesized that: 1)
a 24-week regimen of low-dose lithium adjunct to antipsychotic
agent use would improve patients’ cognitive performance relative
to placebo and 2) that the improved cognitive performance would
correlate with alterations of the GMV and/or IL-6 level.

METHODS
Participants and group allocation
For this study, we enrolled 100 consecutive drug-naive patients
with first-episode schizophrenia who were treated at the
psychiatry departments of Tianjin Fourth Center Hospital, Tianjin
Anding Hospital, and Wenzhou Seventh Peoples Hospital,
between December 2019 and December 2022. The inclusion
criteria were: 1) hospital visitation due to the experience of
schizophrenic symptoms for the first time, 2) diagnosis with
schizophrenia according to the Structured Clinical Interview for
DSM-IV axis 1 disorders (SCID-I) by two senior psychiatrists77–79,
and 3) no antipsychotic use prior to hospital visitation. The
exclusion criteria were: 1) psychotic symptoms not meeting the

DSM-IV criteria for schizophrenia, 2) diagnosis of personality
disorder, 3) history of a mental disorder induced by physical
factors (e.g., severe premenstrual syndrome), 4) history of
substance abuse, 5) neurological or other severe physical disease
that could influence mental status, 6) MRI contraindication, and 7)
refusal to participate in the study. The patients were randomly
allocated to two groups receiving placebo and low-dose (250mg/
day) lithium, respectively, adjunct to antipsychotic agents (n= 50/
group, duration = 24 weeks). All patients received antipsychotic
agents to alleviate schizophrenia symptoms. Their liver, thyroid,
and kidney functions were monitored weekly. This study was
approved by the ethics committees of the three hospitals (Tianjin
Fourth Center Hospital IRB no. 2018KY09), and was conducted in
compliance with the Declaration of Helsinki. All participants
volunteered to take part in this study and provided informed
consent.

Clinical assessment
A research assistant arranged clinical visits and MRI examinations
for potentially eligible participants. At the patient visits, two
attending psychiatrists collected demographic and clinical infor-
mation, performed clinical assessments with SCID-I administration,
and established schizophrenia diagnoses80. The Positive and
Negative Syndrome Scale (PANSS)81 was used to assess schizo-
phrenic symptom severity and the MCCB82 was used to assess
cognitive performance.

IL-6 measurement
Serum samples were collected from the patients and stored at
−80 °C. Researchers blinded to participants’ group allocation
measured serum IL-6 levels using a Quantikine® immunoassay
(R&D Systems, Inc., Minneapolis, MN, USA) according to the
manufacturer’s instructions. The intra- and inter-assay coefficients
of variability were 1.6–4.2% and 3.3–6.4%, respectively83–85.

MRI examination and image processing
All study participants underwent 3.0-T MRI examination (Discovery
MR750; General Electric, Milwaukee, WI, USA) 24 h after clinical
assessment. They were given instructions to assure examination
effectiveness and safety. T1-weighted (magnetization-prepared
rapid acquisition gradient echo) sequences were performed with
the following parameters: repetition/echo time (TR/TE), 8.2/3.2 ms;
inversion time, 450ms; flip angle (FA), 12°; field of view (FOV),
256 × 256 mm; matrix, 256 × 256; slice thickness, 1 mm (no gap);
and 188 sagittal slices. An experienced clinician screened the
images for anatomical abnormalities and artifacts. The T1-
weighted images were then processed automatically [with skull
dissection, bias field correction, and alignment to Montreal
Neurological Institute (MNI) standard space (template 152)] using
the Computational Anatomy Toolbox 12 (CAT12, build 1184;
Structural Brain Mapping Group, Jena University Hospital,
Germany) extension of Statistical Parametric Mapping 12 (Institute
of Neurology, University College London, London, UK) in MATLAB
(2018b; MathWorks, Inc., Natick, MA, USA). GM/white matter/
cerebrospinal fluid segmentation was performed. Group-specific
templates were created using a DARTEL algorithm and used as a
reference for the non-linear warping and normalization of the
segmented images in native space. The CAT12 default parameters
and a DARTEL algorithm were used to preprocess the structural
MRI data, with bias correction, clarification of tissue type, spatial
registration, normalization, and segmentation. For all images, the
CAT12 “check data quality using covariance” procedure was
executed for quality control.
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GMV calculation
Following segmentation, affine registration to MNI space and
nonlinear deformation (using exponentiated Lie algebra) of the
GM concentration maps were performed. The data were
resampled (cubic voxel size, 3 mm3), and voxel-wise GMVs were
determined by multiplying the GM map data by the non-linear
determinants from spatial normalization. The GM images were
smoothed with a 6-mm3 full-width-at-half-maximum Gaussian
kernel and preprocessed spatially, yielding smoothed maps for
statistical analysis. Whole-brain GMV alteration ratios were
calculated for the two groups as follows: pretreatment –
posttreatment whole-brain GMV/pretreatment whole-brain GMV.

Statistical analysis
Demographic and clinical variables (age, sex, antipsychotic agent
dosage, and educational level) were compared between groups
using the SPSS software (version 23.0 for Windows; IBM
Corporation, Armonk, NY, USA). Continuous variables are
expressed as means ± standard deviations and categorical values
are expressed as numbers and percentages. They were compared
between groups using repeated-measures analysis of variance, the
Mann–Whitney test, Student’s t test, and the chi-squared test
Bonferroni correction for multiple testing was performed and the
significance level was set to P < 0.05. The threshold of P < 0.05 was
also used for cluster-level familywise error–corrected data after the
application of an initial cluster-forming threshold of P < 0.01.
Analysis of covariance was performed to compare the changes in
variables from baseline to 24 weeks, adjusted by the baseline
levels, between groups. Partial correlation analysis16,18,26,29,86 was
performed to examine the relationships of cognitive performance
to alterations in the whole-brain GMV and IL-6 level and between
the latter, with adjustment for age, education level, schizophrenia
duration, total PANSS score, and antipsychotic agent dosage
(chlorpromazine equivalent).

RESULTS
Participant characteristics
In total, 73 patients (37 in the lithium group and 36 in the placebo
group) with a mean age of 22.5 ± 2.6 years and mean illness
duration of 3.7 ± 1.2 months completed the study. Data from 27
patients were excluded due to the presence of major artifacts or
anatomical abnormalities on MR images, failure to meet the CAT12
image quality criteria, or treatment termination. Chi-squared and t
tests revealed no difference in baseline demographic or clinical
characteristics or cognitive performance between the excluded and
included patients. The 24 weeks’ cumulative antipsychotic agent
dose did not differ significantly between the lithium and placebo
groups (105,336.00 ± 8276.25mg and 106,158.00 ± 8588.287mg,
respectively). The categories of antipsychotic agents and doses

are listed in Table 1. No adverse renal event occurred during the
study period. The patients’ demographic and baseline clinical
characteristics are provided in Table 2.

Decreases in PANSS and MCCB scores
PANSS scores decreased significantly after treatment in both
groups (Tables 2–5), with no significant difference between
groups. MCCB scores in the processing speed and working
memory domains improved significantly in both groups; the
verbal learning score also improved significantly after treatment in
the lithium group, but only processing speed and working
memory were significant in placebo group. The alteration rates
of MCCB scores in attention/vigilance, working memory, reason-
ing/problem solving, and social cognition scores changed more in
the lithium group than in the placebo group (Table 5). However,
no significant within- or between-group difference in the
composite MCCB score was observed.

GMV alterations
At baseline, GMVs did not differ significantly between groups
(Fig. 1). After 24 weeks of treatment, they were significantly lower
in the placebo group than in the lithium group (P < 0.001; Fig. 2).
Relative to baseline, the lithium group showed GMV reductions

mainly in the bilateral occipital, parietal, temporal, and frontal

Table 1. Antipsychotic agents used to treat schizophrenia.

Variables Placebo adjunct antipsychotic agents’
treatment group

Lithium adjunct antipsychotic agents’
treatment group

Antipsychotic agents’ Cumulative dose
(mg)

Antipsychotic agents’ name Number of patients with
schizophrenia

Number of patients with
schizophrenia

Chlorpromazine equivalent (mg)

Risperidone 15 13 99,878.45 ± 5747.00

Olanzapine 4 2 94,550.11 ± 1259.66

Risperidone adjunct
Aripiprazole

3 5 100,377.58 ± 3987.50

Quetiapine 8 10 118,994.63 ± 6959.44

Olanzapine adjunct
Aripiprazole

7 6 101,889.47 ± 6259.40

Table 2. Baseline patient characteristics (ANCOVA).

Placebo group Lithium group F P

Age (years) 22.40 ± 2.12 22.73 ± 1.82 0.452 0.533

Sex (male/female) 12/25 11/25 0.428 0.529

Education (years) 12.54 ± 3.62 14.25 ± 5.20 0.335 0.620

Illness duration
(months)

6.22 ± 0.94 4.57 ± 1.45 6.450 <0.001

IL-6 (pg/mL) 7.98 ± 2.00 8.53 ± 1.28 1.890 0.782

PANSS score 80.42 ± 5.62 82.09 ± 8.92 0.223 0.758

MCCB scores

Processing speed 30.12 ± 2.87 30.60 ± 3.73 1.028 0.066

Attention/vigilance 32.99 ± 6.57 34.69 ± 9.36 0.605 0.471

Working memory 31.22 ± 4.38 32.44 ± 3.70 0.339 0.557

Verbal learning 34.56 ± 3.46 33.39 ± 8.58 0.850 0.100

Visual learning 32.76 ± 9.99 29.35 ± 3.18 1.006 0.091

Reasoning/problem
solving

34.77 ± 3.73 30.36 ± 6.87 0.119 0.852

Social cognition 31.54 ± 2.70 33.31 ± 3.69 0.619 0.333

Composite score 35.39 ± 2.84 29.99 ± 1.85 0.822 0.111

C. Zhuo et al.

3

Published in partnership with the Schizophrenia International Research Society Schizophrenia (2023)    71 



lobes, and GMV increases mainly in the left dorsal frontal, lateral
parietal, and occipital lobes and bilateral frontal and parietal lobes
and thalamus. This group showed 0.46% whole-brain GMV
reduction (P < 0.001; Fig. 3). The placebo group showed GMV
reductions mainly in the bilateral cingulated gyrus and posterior
occipital, temporal, parietal, and frontal lobes and GMV increases
mainly in the bilateral prefrontal, left parietal and frontal, and right
temporal lobes. This group showed 1.03% whole-brain GMV
reduction (P < 0.001; Fig. 4).

IL-6 alterations
The IL-6 level differed significantly between the lithium and
placebo groups after treatment (Tables 3 and 4). Compared with
baseline, this level decreased significantly by 64.01% in the lithium
group and 55.64% in the placebo group; the IL-6 reduction ratio
differed significantly, favoring the lithium group (Table 5).

Correlations among the IL-6 level, whole-brain GMV
alterations, and cognitive performance
In the lithium group, the whole-brain GMV reduction ratio
correlated with the IL-6 reduction ratio (r=−0.19, P= 0.040),
verbal learning improvement ratio (r=−0.17, P= 0.025), working
memory improvement ratio (r = −0.15, P= 0.030), and processing
speed (r=−0.14, P= 0.036). The IL-6 reduction ratio correlated
with the verbal learning (r=−0.30, P= 0.031) and working
memory (r=−0.21, P= 0.043) improvement ratios in this group.
In the placebo group, the whole-brain GMV reduction ratio
correlated only with the working memory improvement ratio
(r=−0.24, P= 0.019) and the IL-6 reduction ratio correlated with
the working memory (r=−0.17, P= 0.022) and verbal learning
(r=−0.15, P= 0.011) improvement ratios.

Fig. 1 Baseline GMVs (Lithium vs. placebo, P= 0.698).

Fig. 2 GMVs after 24 weeks of treatment (Lithium vs. placebo,
P < 0.001).

Fig. 3 GMV alterations in the lithium group (After vs. before
treatment, P < 0.001).

Fig. 4 GMV alterations in the placebo group (After vs. before
treatment, P < 0.001).

Table 3. PANSS and MCCB scores, IL-6 levels, and GMVs in the lithium
group (ANCOVA).

Variable Before
treatment

After treatment F P

PANSS 82.09 (8.92) 50.89 (10.23) 33.11 <0.001

IL-6 (pg/mL) 8.53 ± 1.28 3.07 ± 0.98 6.46 0.002

Decrease in whole-brain GMV 0.46% NA NA

MCCB scores

Processing speed 30.60 ± 3.73 33.85 ± 2.33 3.20 0.036

Attention/vigilance 34.69 ± 9.36 35.88 ± 7.95 0.574 0.455

Working memory 32.44 ± 3.70 39.52 ± 5.99 21.05 <0.001

Verbal learning 33.39 ± 8.58 38.00 ± 4.25 4.88 0.029

Visual learning 29.35 ± 3.18 30.99 ± 3.52 0.097 0.985

Reasoning/problem
solving

30.36 ± 6.87 33.55 ± 3.56 1.571 0.546

Social cognition 33.31 ± 3.69 34.06 ± 1.88 0.200 0.799

Composite score 29.99 ± 1.85 30.79 ± 5.87 0.555 0.439

Data were analyzed by repeated-measures analysis of variance.
Cumulative 24-week doses of lithium adjunct antipsychotics (chlorproma-
zine equivalent of antipsychotic agents, 109,200.45 ± 4500.77 mg; lithium
42, 000mg).
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DISCUSSION
Our findings showed that a low-dose lithium regimen adjunct to
antipsychotic agent use improved some cognitive domains
(processing speed, working memory, and verbal learning) in
drug-naive patients with first-episode schizophrenia, but resulted
in no significant improvement in global cognition. However, our
data provide clues for further investigation to identify the ideal
treatment strategy to reduce cognitive impairment in patients
with schizophrenia.
The PANSS score reductions in both groups indicate that the

relief of the patients’ schizophrenic symptoms can be attributed
mainly to the antipsychotic agents. Regarding the improvement of
the processing speed and working memory in the placebo group,
some research has shown that the second-generation antipsycho-
tics used in this study reduce cognitive impairment87, such as
risperidone, quetiapine, olanzapine and aripiprazole, but results
have been inconsistent88. Our results suggest that the

antipsychotics had protective effects in specific cognition
domains, but the lithium group showed more extensive benefits
for cognitive performance.
Reductions of the whole-brain GMV and IL-6 level were

associated with improved processing speed, working memory,
and verbal learning in both groups. The observed whole-brain
GMV reduction (despite increases in some brain regions) is
consistent with reports that antipsychotic agents can cause brain
impairment while alleviating schizophrenic symptoms89,90. Given
the known positive effects of antipsychotics on cognition, the
effect of lithium on cognitive impairment possibly have been
synergistic, and lithium did not enhance the alleviation of
schizophrenic symptoms. In contrast, low-dose lithium has been
found to protect against mild cognitive impairment (MCI) and
dementia by increasing the GMV91,92. A review showed that
lithium increases the GMV by preventing inflammation, oxidative
stress, apoptosis, and mitochondrial dysfunction via the
phosphatidylinositol-3 (PI3)/Akt/GSK-3β and PI3/Akt/cAMP
response element-binding protein/brain-derived neurotrophic
factor signaling pathways93. Our results are inconsistent with
these findings, as regional GMV increases did not overcome the
reduction of the whole-brain GMV. The reason for this discrepancy
is unclear, and further research on the effects of lithium on the
whole-brain GMV is needed.
We observed substantial reductions of the IL-6 level in both

groups in this study, consistent with previous findings26,94,95. Our
finding that this reduction was significantly greater in the lithium
group than in the placebo group is consistent with the lithium-
induced reduction of the IL-6 level via PI3K/Akt/GSK-3β pathway
regulation observed in animal models of cognitive impairment,
including mouse models of MCI and dementia62,96–102. The
mechanism by which lithium reduces cognitive impairment in
patients with dementia, MCI, and schizophrenia has not been
explored thoroughly, and our results provide a clue for further
study.
We cannot fully explain the complex correlations among whole-

brain GMV and IL-6 level reductions and cognitive alterations
observed in this study. They may be related to mechanisms
involving the PI3K/Akt/GSK-3β pathway, homeostasis, the genetic
modulation of lithium-induced neural progenitor proliferation,
neurotrophic effects, oxidative stress, and/or inflammatory fac-
tors22,26,42–45,62,96–109. These correlations imply the occurrence of
counterintuitive phenomena; for example, adjunct lithium and
antipsychotic agent treatments may both induce whole-brain
GMV reduction. A decrease in the IL-6 level is usually associated
with increased GMV22,110–112, but we observed reductions of both.
Further research is needed to clarify these complex relationships
and underlying mechanisms.

Strengths and limitations
The main strength of the present study is that it was conducted
with drug-naive patients with first-episode schizophrenia, thereby
avoiding the potentially biasing influence of medications. This
work, however, has several limitations. First, we did not examine
the factors underlying the complex correlations among whole-
brain GMV and IL-6 level reduction and cognitive alterations.
Second, we focused on IL-6 alterations, although other inflamma-
tory factors such as IL-12, IL-1β, tumor necrosis factor-α, and
C-reactive protein have crucial effects on the GMV and cognitive
performance of patients with schizophrenia, which may explain
the inconsistencies between our data and previous findings. Third,
the benefits of lithium use in the treatment of schizophrenia have
not been fully acknowledged72,73; we observed no adverse event
in this study, but the benefits and risks of this treatment strategy
need to be examined further. Fourth, the second antipsychotic
agents used in some cases after the failure of primary agents to
alleviate schizophrenic symptoms differed among patients in this

Table 4. PANSS and MCCB scores, IL-6 levels, and GMVs in the placebo
group (ANCOVA).

Variable Before
treatment

After treatment F P

PANSS score 80.42 (5.62) 48.44 (7.23) 19.532 <0.001

IL-6 (pg/mL) 7.98 ± 2.00 3.5 4 ± 0.69 3.984 0.038

Decrease in whole-brain GMV 1.03% NA NA

MCCB scores

Processing speed 30.12 ± 2.87 32.98 ± 1.47 4.256 0.001

Attention/vigilance 32.99 ± 6.57 32.80 ± 2.95 0.900 0.102

Working memory 31.22 ± 4.38 35.80 ± 2.99 5.693 <0.001

Verbal learning 34.56 ± 3.46 37.00 ± 4.25 6.028 <0.001

Visual learning 32.76 ± 9.99 34.99 ± 3.52 4.377 <0.001

Reasoning/
problem solving

34.77 ± 3.73 32.55 ± 3.56 0.589 0.396

Social cognition 31.54 ± 2.70 30.06 ± 3.88 4.822 0.005

Composite score 35.39 ± 2.84 35.00 ± 5.87 0.555 0.439

Data were analyzed by repeated-measures analysis of variance.
Cumulative 24-week antipsychotic dose (chlorpromazine equivalent,
110,376.45 ± 3759.96 mg).

Table 5. PANSS and MCCB score, IL-6, and GMV alteration rates in the
lithium and placebo groups (ANCOVA).

Variable Lithium group Placebo group F P

Decreased PANSS
score

31.23 (3.87) 31.00 (5.99) 1.113 0.884

IL-6 reduction ratio 64.01% 55.64% 6.252 <0.001

Decrease in whole-
brain GMV

0.456% 1.034% 12.639 <0.001

MCCB scores

Processing speed 10.62% 9.50% 5.001 0.013

Attention/vigilance 3.43% −0.58% 1.225 0.074

Working memory 19.90% 6.17% 12.289 <0.001

Verbal learning 4.74% 4.17% 4.233 0.022

Visual learning 5.59% 6.81% 7.255 <0.001

Reasoning/problem
solving

10.50% −6.38% 0.886 0.187

Social cognition 2.25% −4.69% 7.552 <0.001

Composite score 2.67% −1.10% 0.938 0.107
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study; although the dosages were normalized to chlorpromazine
equivalents, different agents target different symptoms of schizo-
phrenia and the diversity of antipsychotic agent regimens may
have confounded our study. Finally, whether lithium interacts with
antipsychotic agents remains unclear, and potential underlying
mechanisms need further study. Further well-designed studies
with large samples are needed to clarify these discrepancies.

CONCLUSION
The two treatments administered in this study improved specific
domains of the cognitive performance of drug-naive patients with
first-episode schizophrenia. Low-dose lithium adjunct to antipsy-
chotic agent use had a nearly significant effect on the reduction of
cognitive impairment relative to placebo. The patterns of
correlation among GMV, and IL-6 level reduction and improved
cognitive performances differed between treatment groups.
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