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Graph-based analysis of EEG for schizotypy classification
applying flicker Ganzfeld stimulation
Ahmad Zandbagleh 1, Sattar Mirzakuchaki 1✉, Mohammad Reza Daliri1, Alexander Sumich 2, John D. Anderson 2 and
Saeid Sanei3

Ganzfeld conditions induce alterations in brain function and pseudo-hallucinatory experiences, particularly in people with high
positive schizotypy. The current study uses graph-based parameters to investigate and classify brain networks under Ganzfeld
conditions as a function of positive schizotypy. Participants from the general population (14 high schizotypy (HS), 29 low schizotypy
(LS)) had an electroencephalography assessment during Ganzfeld conditions, with varying visual activation (8 frequencies of
random light flicker) and soundscape-induced mood (neutral, serenity, and anxiety). Weighted functional networks were computed
in six frequency sub-bands (delta, theta, alpha-low, alpha-high, beta, and gamma) as a function of light-flicker frequency and mood.
The brain network was analyzed using graph theory parameters, including clustering coefficient (CC), strength, and global efficiency
(GE). It was found that the LS groups had higher CC and strength than the HS groups, especially in bilateral temporal and
frontotemporal brain regions. Moreover, some decreases in CC and strength measures were found in LS groups among occipital
and parieto-occipital brain regions. LS groups also had significantly higher GE in all Ganzfeld conditions compared to the HS groups.
The random under-sampling boosting (RUSBoost) algorithm achieved the best classification performance with an accuracy of
95.34%, specificity of 96.55%, and sensitivity of 92.85% during an anxiety-induction Ganzfeld condition. This is the first exploration
of the relationship between brain functional state changes under Ganzfeld conditions in individuals who vary in positive schizotypy.
The accuracy of graph-based parameters in classifying brain states as a function of schizotypy is shown, particularly for brain activity
during anxiety induction, and should be investigated in psychosis.
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INTRODUCTION
Positive schizotypy (or psychosis proneness) refers to personality,
cognitive, and perceptual traits akin to psychosis but observed at
subdiagnostic threshold in the general population1–3. People high
in positive schizotypy are more likely to experience pseudo-
hallucinations under Ganzfeld conditions4, that is, a uniform and
unstructured perceptual field created by translucent eye covers
and often combined with random stimulation (e.g., light flicker at
various frequencies)5,6. Such conditions induce pseudo-
hallucinatory imagery and may alter states of consciousness in
the general population6,7, mostly in people high in positive
schizotypy. Recent work investigating brain function, using
electroencephalography (EEG), under Ganzfeld conditions and in
relation to psychosis proneness has implicated alterations in the
production of occipital alpha activity4. On the other hand, the
occurrence of psychotic experiences in the general population,
with concepts such as schizotypy, is more frequent than
schizophrenia diagnosis8. Treatment delay in the psychosis-like
symptoms has led to poorer outcomes in psychosis9. So, drawing
the bridge between research into the neurobiology of schizo-
phrenia and psychosis proneness leads psychologists to develop
novel psychosocial interventions10. Our group is developing signal
processing techniques that facilitate the estimation of brain
complexity measures, such as connectivity11. The current study
applies these methods to understand and classify neurophysiolo-
gical function in relation to positive schizotypy during Ganzfeld
conditions.

Schizotypy has been studied using resting state12–16 and time-
locked EEG17–20. For example, alteration in frontal alpha asym-
metry12, reduced right frontal P30017, lower occipital alpha power
under Ganzfeld conditions4, lower gamma power at rest15,
significantly lower ERP amplitude in some brain regions19, lower
occipital alpha and frontal theta power during praise and
criticism20 have been associated with high positive schizotypy.
Connectivity in complex brain networks21 has been examined in
relation to psychopathology and schizotypy using graph the-
ory22,23. Graph theoretical analysis is a powerful method to
evaluate and characterize the topological structures and func-
tional brain networks. According to graph theory, complex brain
networks are modeled mathematically as a graph which includes
sets of nodes and edges that represent EEG channels and their
correlations24. Converging evidence confirms that the connectivity
of brain networks is specifically influenced by psychiatric disorders
(e.g., schizophrenia patients showed reduced connectivity
strength, characteristic path length, and clustering coefficient
(CC) compared to healthy control individuals and the gray matter
lesions are concentrated both in frontal and temporal cortical
hubs in schizophrenia patients25). Although schizotypy symptoms
are less clear, compared to negative schizotypy and healthy
controls, positive schizotypy is associated with a smaller difference
in CC and node strength in frontal-occipital and central-occipital
regions (indicating more widespread networks), whilst negative
schizotypy was associated with a larger difference in central-
occipital regions (indicating localized occipital focuses in brain
network)22.
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Hardly any analytically detailed machine learning approach for
schizotypy can be seen in the literature. One study26 attempting
to classify brain states in schizotypy and healthy control groups
during an audio-visual emotion task using a shrinkage linear
discriminant algorithm, achieved a zero false-positive rate.
Trajkovic et al.16. classified high and low schizotypy (LS) group
with 74.3% accuracy by combining measures of right posterior
alpha activity (speed and amplitude) and connectivity (right
frontoparietal alpha). Higher accuracy (89.21%) was obtained by
examining effective brain connectivity, namely directed transfer
function, using multivariate autoregressive coefficients27. Even
higher accuracy (93.1%) was obtained using machine learning
methods to differentiate schizotypy-associated brain states based
on the P300 subcomponents derived using tensor factorization
during an auditory oddball task18.
The current study applied a graph-based representation of

phase locking value (PLV) to EEG data recorded under Ganzfeld
conditions4 in order to assess functional brain connectivity and
determine EEG-based brain networks in high schizotypy (HS) and
LS groups. Then, two steps are conducted for statistical analysis. In
the first step, weighted functional brain networks are compared
statistically between the two groups before thresholding. In the
second step, a statistical comparison of some graph parameters,
including CC, strength, and global efficiency (GE), is performed
using weighted connectivity matrices after thresholding. Finally,
our proposed method is evaluated using influential graph-based
features and some conventional classifiers, including decision tree
(DT), support vector machine (SVM), K-nearest neighbor (KNN),
linear discriminant analysis (LDA), and random under-sampling
boosting (RUSBoost). To the best of our knowledge, this is the first
study that examines the relationship between graph theory
parameters of weighted networks associated with Ganzfeld
stimulation and positive schizotypy. It is hypothesized that diffuse
patterns of brain connectivity, as well as a lack of synchronization
between different brain regions, can be utilized to classify HS and
LS groups based on previous research on more advanced
psychosis such as schizophrenia or Alzheimer’s25,28,29. For
exploratory purposes, we also measured the differences between
HS and LS in certain graph-based parameters in three Ganzfeld
conditions.

MATERIALS AND METHODS
Participants
The current study uses the dataset reported by Sumich et al.4,
which received ethical approval from the College of Business, Law
and Social Science Research Ethics Committee at Nottingham
Trent University (No. 2013/05). Data were collected through the
BIAL Fellowship Programme [66/12] to Alexander Sumich, kindly
supported by Fundação BIAL, Portugal. Forty-six participants (16
males, aged 18–57 years, mean= 24.15 ± 9.26) were recruited
from the general and academic populations. All participants
completed self-report scales for trait mental imagery (shortened
Betts’ questionnaire upon mental imagery30) and perceptual
anomalies to assess positive schizotypy (Cardiff anomalies
perceptual scale, CAPS31) before taking part in the Ganzfeld
imagery task. In addition, they provided informed consent prior to
their involvement in the study. Based on the CAPS scores,
participants were divided into LS (n= 29) and HS (n= 14) groups.
Table 1 indicates the demographic characteristics and scores
based on the CAPS.

Ganzfeld imagery task
In order to induce Ganzfeld conditions, participants wore plastic
whiteout goggles to create a homogeneous visual field. An
apparatus comprising 300 strips of red, green, and blue light-
emitting diodes (RGB-LEDs) mounted on a curved panel (width:

51 cm, height: 32 cm) was positioned in front of the participants.
An LM324N (quad Op-Amp) was used to control the panel of LEDs
by converting auditory waves into light signals. Red light flickers
were presented at eight target frequencies, including the lower
band (8–16 Hz with 2 Hz step length) and higher band (20, 22, and
24 Hz). In addition, three emotion-induction blocks were created
using soundscapes (serenity, anxiety) and pink noise (neutral)
presented through headphones. In each block, the same sequence
of eight target frequencies was used. Each frequency lasted for
30 s and was repeated 5 times per block. In each block,
participants indicated, with a button press, whenever they
observed simple (e.g., spirals, lines, and zigzags) or complex
images (e.g., objects, animals, and human body parts)32. Further
information about the designed instruments and the Ganzfeld
imagery task has been explained in4.

EEG recording and preprocessing
EEG was recorded throughout using BioSemi Active-Two amplifier
(64 channels, sampling rate= 2048 Hz; Biosemi Inc., Amsterdam,
Netherlands). The artifacts were reduced using the EEGLAB
toolbox33. After down-sampling to 256 Hz, a common average
reference was performed to re-reference the data channels. All the
channels were bandpass filtered using a 0.5–40 Hz finite impulse
responses (FIR) zero-phase filter. Additionally, artifactual time
points were removed by visual inspection. Then, an independent
component analysis (ICA) using the logistic Infomax ICA algo-
rithm34 was implemented to remove EOG artifacts. Finally, 20 non-
overlapping 4-s epochs were extracted from the continuous EEG
data from the onset of each Ganzfeld target frequency. Conse-
quently, both statistical and machine-learning approaches were
conducted by exploiting functional brain networks. The analysis
framework of our proposed method is shown in Fig. 1. As shown
in Fig. 1, each epoch of 4 s was used to estimate PLV, and their
average was statistically compared with the surrogated PLV. A
surrogate algorithm was then applied to eliminate weak or
spurious connections. The actual PLV values were subsequently
used for further analysis, including graph theory and machine
learning.

Brain network analysis
The functional brain connectivity based on the PLV is estimated, as
a phase synchronization measure, between pairs of EEG channels
in six frequency bands, including delta (2–4 Hz), theta (4–8 Hz),
alpha-low (8–10 Hz), alpha-high (10–13), beta (13–30 Hz), and
gamma (30–40 Hz). Furthermore, some indices are estimated
based on graph theory for brain network quantification.
Subsequently, the two schizotypy groups are evaluated based
on these measures. The differences between HS and LS groups are
estimated using Welch’s t-test (two-sample)35,36. A one-sample
Kolmogorov–Smirnov37 is applied for the normality test. Then,
the false discovery rate (FDR) correction of 0.05 is used to control
the effect of multiple comparisons. A p-value lower than 0.05 is
considered a significant level for all tests. The PLV details and
graph parameters are presented in the following subsections.

Table 1. Demographic characteristics and scores on the CAPS.

HS (n= 14) LS (n= 29) F/Chi-square (df) p-value

Age 20.42 (2.53) 25.37 (10.04) 3.26 (1,42) 0.078

Sex (male/
female)

7/7 8/21 2.088 (1) 0.148

CAPS 14.92 (3.58) 2.93 (2.25) 180.45 (1,42) ≪0.001
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Phase synchrony analysis
Suitable techniques have been developed to assess the phase
synchronization between channel (or brain region) pairs11,24. PLV,
as a widely used method, is used for assessing the statistical
dependency of neural time series in the frequency domain38.
Before computing the PLV, an FIR bandpass filter is employed to

acquire narrowband signals for each conventional EEG frequency
band. Then, the Hilbert transform is used for estimating the
instantaneous phase time series. The complex analytic form of
signals x1 tð Þ and x2 tð Þ can be obtained as:38

z1 tð Þ ¼ x1 tð Þ þ jHTðx1 tð ÞÞ (1)

z2 tð Þ ¼ x2 tð Þ þ jHTðx2 tð ÞÞ (2)

where z1 tð Þ and z2 tð Þ are the complex analytic form of signals
x1 tð Þ and x2 tð Þ, respectively. HT represents the Hilbert transform
operator and defined as11,38:

HT xi tð Þð Þ ¼ 1
π

Z þ1

�1

xi τð Þ
t � τ

dτ (3)

The relative phase between two analytic signals z1 tð Þ and z2 tð Þ
is defined as38:

φ12 tð Þ ¼ arctan
HTðx1 tð ÞÞ

x1

� �
� arctan

HTðx2 tð ÞÞ
x2

� �
(4)

Considering the above definitions, the PLV can be computed
as11,38:

PLV x1; x2ð Þ ¼ 1
N

XN�1

k¼0

eiφ12 tkð Þ
�����

����� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1

k¼0

sinðφ12 tkð ÞÞ
" #2

þ 1
N

XN�1

k¼0

cosðφ12 tkð ÞÞ
" #2

vuut

(5)

where N is the number of time points. The PLV value varies
between zero and one. Zero and one values represent unsyn-
chronized phases and perfect synchronization, respectively.

A surrogate data technique39 is used to identify statistically
significant connectivity values and remove fake connections. The
surrogate values are calculated in each individual and condition
by shuffling the phase information of the signal x1 tð Þ while leaving
the phase of signal x2 tð Þ intact. So, the surrogate PLV can be
defined as40:

PLVsurr tð Þ ¼ 1
M

XM
m¼1

1
N

XN�1

k¼0

eiðφx1
tkð Þ�φx2 ;perm

tk;mð Þ
�����

����� (6)

where φx2;perm is the permuted phase of signal x2 tð Þ. Also, M
indicates the number of surrogates. In this study, 100 surrogates
were used to identify statistically significant PLV values. The
connections were evaluated by comparing original PLV values to
obtained surrogate PLV values. So, only the connections above the
significance threshold of 0.05 were selected, while any non-
significant PLV values were set to zero.

Graph parameters
In this study, graph theory parameters were determined after
constructing the undirected weighted brain network. In graph
theory, the brain is represented mathematically as a connected
graph composed of nodes and links in which the nodes represent
EEG channels (or brain regions), and the links between the nodes
represent the connectivity values24,41. The threshold value can be
chosen based on data distributions or the sparsity of the
adjacency matrix42. Selecting an optimal threshold value to
eliminate insignificant links and to keep the same density in the
graphs is still an open question43. To avoid the arbitrary selection
of thresholds, it is advisable to apply a range of thresholds in
practice44. To achieve this goal, sparsity thresholds ranging from
0.01 to 0.5 with 0.01 step length were considered in the current
study. This range is chosen based on statistical results as well as
the minimum density observed across all networks for all
individuals in all Ganzfeld frequency bands. It is worth noting
that we employed a surrogate technique to remove fake and weak
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Fig. 1 The block diagram of the overall proposed method for the statistical analysis and classification of LS and HS individuals. A Data
acquisition and pre-processing block. B Functional brain network estimation block. C Visualization of significant differences before
thresholding. D Mapping connectivity estimates to a graph after thresholding. E Statistical analysis and classification block.
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connectivities beforehand to ensure the validity of our findings. It
is important to note that graphs can be investigated at different
levels of scale, with specific measures capturing attributes at either
local or global scales. Nodal measures refer to simple statistics that
capture attributes of individual nodes, while global measures
express network-wide attributes that reflect the overall structure
and connectivity of the entire graph45. Then, two local graph
parameters were calculated from the weighted adjacency
matrices, namely strength as a basic measure and CC as a
measure of segregation. In addition, a global graph parameter was
determined from the same matrices, namely GE, as a measure of
integration21. To estimate these parameters, the Brain Connectiv-
ity Toolbox was used21. Also, the visualization of brain space
graphs was performed using the BrainNet Viewer toolbox46.
Concerning the statistical test results, a fixed density level of 0.08
is used for extracting the graph parameters for subsequent
analysis.
The degree of each node is determined by the number of links

connected to it, which is equal to the number of its immediate
neighbors. The strength of a node is defined as the sum of link
weights connected to the node, which is equal to the weighted
degree of the node. So, the node strength is expressed as21:

swi ¼
X
j2N

Wij (7)

where i and N show the node’s index and the number of nodes,
respectively. Wij is the weighted connection link connecting node
i to its neighbor j.
Measures of segregation that describe the presence of clusters

within a network are interpreted as an organization of segregated
neural processing in functional networks. CC, as a measure of
segregation, is determined as the portion of a particular node’s
neighbors that are also neighbors of each other. In other words,
the fraction of triangles around each node denotes CC. The
weighted CC of node i is defined as21:

CCw
i ¼ 1

N

XN
i¼1

2twi
kiðki � 1Þ (8)

where ki is the degree of node i. The geometric mean of triangles
around node i (i.e., twi ) is written as21:

twi ¼ 1
2

X
j;h

ðWijWjhWihÞ
1
3 (9)

Considering the concept of a path, measures of integration
in the brain can be used for evaluating the ability to rapidly
integrate the information among the brain regions. The GE is
determined as the average of the shortest path length inverse in
networks. Thus, the network-weighted GE is calculated as21:

GEw ¼ 1
NðN � 1Þ

XN
i¼1

XN
j¼1;i≠j

1
dwp ði; jÞ

(10)

where dwp refers to the shortest weighted path between the node i
and the node j.

Feature extraction and classification
Three graph theory parameters, including CC, strength, and GE, were
derived from the PLV adjacency matrix in the six mentioned
frequency bands. These features were acquired for each of the three
emotion inductions (i.e., neutral, serenity, and anxiety), while each
emotion induction was divided into eight Ganzfeld target frequen-
cies. Then, the informative and significant features were chosen
using Welch’s t-test as a filtering technique for feature selection. So,
the selected features are the most discriminative ones to use in the
classification models47. Finally, the informative features to distinguish
between schizotypy groups were evaluated using leave-one-out

cross-validation (LOO-CV) via some conventional classifiers, including
DT, SVM, KNN, LDA and RUSBoost48. In the LOO-CV performance
evaluation approach, one individual is used for the test process,
while other individuals are used for the training procedure49.
RUSBoost, as a fast hybrid boosting classification algorithm, is

highly recommended in the literature for the performance
evaluation of imbalanced data50. RUSBoost integrates RUS and
AdaBoostM1 algorithm. In this algorithm, resampling is executed
based on the weights given to samples contained in the training
datasets. So, RUS randomly excludes samples from the majority
class until the desired balance between the class distributions is
achieved. Additionally, This outperforms AdaBoostM1, which is a
boosting algorithm that uses an ensemble method with a DT as a
learner50. So, it sequentially trains a next learner model on the
samples misclassified by previous learners.
The assessment of the model performance was evaluated by

accuracy, sensitivity, specificity, and F1-score measures18. The
number of informative features was chosen based on a trial-and-
error approach to minimize the classification error.

RESULTS
Statistical analysis
The statistical analysis was performed in two steps. Firstly, we
compared the functional connectivity networks between the two
schizotypy groups before applying the threshold. Then, we
compared the graph parameters (after thresholding) between
the two schizotypy groups.
The significant differences in functional brain networks for

anxiety conditions between HS and LS groups are shown in Fig. 2
(p < 0.05 after FDR correction). The Ganzfeld target frequencies are
represented in columns, while each row represents one of the
frequency bands. From Fig. 2, a large number of brain connections
are significantly different between HS and LS groups during
anxiety-induced Ganzfeld condition. Compared with anxiety-
induction, the neutral and serenity-induced Ganzfeld conditions
show lower significant connections between the two schizotypy
groups (see Supplementary Fig. S1).
The channels with significant differences between HS and LS

groups during an anxiety condition for graph-based parameters (i.e.,
CC and strength) are shown in Fig. 3 for each frequency band
separately. The target Ganzfeld frequencies are represented in
columns, while each row represents one of the frequency bands. As
shown in this figure, the LS groups have higher CC and strength than
the HS groups. These alterations are observed in bilateral temporal
and frontotemporal brain regions. Furthermore, some decreases in
CC and strength indices are found in LS groups among occipital and
parieto-occipital brain regions. Neutral and serenity-induced Ganz-
feld conditions show lower significant connections between the two
schizotypy groups compared with anxiety induction (see Supple-
mentary Figs. S2 and S3). Table 2 demonstrates the meaningful
statistical differences (p-value < 0.001) between HS and LS groups
during an anxiety condition for graph-based parameters. Also, the
meaningful statistical differences (p-value < 0.001) between HS and
LS groups during serenity and neutral conditions for graph-based
parameters are available in our Supplementary materials (Table S1).
A comparison of GE in HS and LS groups during an anxiety

condition is represented in Fig. 4 as a function of density for each
frequency band separately. Each row represents one of the
frequency bands, whereas the Ganzfeld target frequencies are
shown in columns. Comparing network efficiency in two
schizotypy groups shows that GE is significantly different in beta
(anxiety, p-value= 0.0018, t-value=−3.402; serenity, p-value=
0.0095, t-value=−2.743; neutral, p-value= 0.0046, t-value=
−3.088) and gamma (anxiety, p-value= 0.019, t-value=−2.453;
serenity, p-value= 0.007, t-value=−2.905; neutral, p-value=
0.0166, t-value=−2.497) frequency bands in most of these
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results, while GE is significantly different during anxiety-induced
Ganzfeld condition for some density levels in the delta
(p-value= 0.0049, t-value=−3.057) and alpha-high (p-value=
0.0117, t-value=−2.649) frequency bands (see Supplementary
Fig. S4 for serenity and neutral conditions).

Classification
In the present study, the EEG signals from 43 individuals (29 LS
and 14 HS) were used to evaluate the machine learning
performance using LOO-CV. Collectively, each Ganzfeld condition
generates 48 graph-based features (8 Ganzfeld target frequencies
times 6 frequency bands) for each EEG channel. It is worth
mentioning that the GE features were acquired for the whole
brain. After ranking graph-based features using Welch’s t-test, a
set of features with large t-statistic values in the training process
was used to evaluate the testing set. These optimal features with

lower dimensions are expected to have sufficient discriminative
ability to be included in the classification model. The classification
performances of the proposed method for each Ganzfeld
condition in all graph-based features are shown in Table 3.
Among all Ganzfeld conditions, the highest classification perfor-
mance is achieved by the anxiety-induced Ganzfeld condition vis
RUSBoost classifier. In this condition, the accuracy, sensitivity, and
specificity are as high as 95.34%, 92.85%, and 96.55%, respectively.
Evidently, the serenity Ganzfeld condition with 86.04% accuracy,
86.20% specificity, and 85.71% sensitivity has the second-highest
performance in distinguishing between HS and LS individuals
using the RUSBoost classifier. Figure 5 presents a three-
dimensional feature space of the principal components for all
participants in the anxiety Ganzfeld condition. This space was
obtained through dimensionality reduction using principal com-
ponent analysis (PCA). As shown in the figure, the features of the
two classes are sufficiently separable.
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Fig. 2 The functional brain networks of significant differences between LS and HS individuals during an anxiety condition for each
frequency band (p < 0.05, FDR corrected). Note: The Ganzfeld target frequencies are represented in columns, while each row represents one
of the frequency bands. The red and blue lines indicate significantly higher and lower functional brain connectivity in HS versus LS individuals,
respectively. n.s. indicates no significant difference.
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DISCUSSION
For the first time (to the best of our knowledge), the current study
examines the relationship between weighted functional brain
networks under Ganzfeld conditions as a function of positive
schizotypy. Graph theory parameters derived from the PLV

adjacency matrix were used to accurately classify brain states
using a machine learning approach.
The two schizotypy groups were accurately differentiated based

on functional brain networks, especially in delta, theta, and beta
frequency bands and during anxiety mood-induction conditions.

Fig. 3 Channels with significant differences between LS and HS individuals during an anxiety condition for each frequency band
separately in CC and strength (p < 0.05). Note: The Ganzfeld target frequencies are represented in columns, while each row represents one of
the frequency bands. The red and green colors indicate that this graph-based index is significantly higher and lower in HS versus LS
individuals, respectively.
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Compared to the LS individuals, phase synchrony was decreased
in the HS individuals in most connections, although some
increases in functional brain networks of HS individuals were
observed. Such results are in line with those studies in the first
episode of psychosis, which show diffuse connectivity patterns
and lack of synchronization between brain regions22,27,51.
Furthermore, abnormal functional connectivity in the anterior
cingulate cortices has previously been found during hallucina-
tions52,53. Similar to schizophrenia symptoms, these deficits
possibly indicate a decrease in regional computation processing
or insufficient information flow between specific cortical regions28.

Table 2. The meaningful differences (p-value < 0.001) of statistical
comparison between HS and LS groups during an anxiety condition
for CC and strength.

Ganzfeld
condition

Frequency Ganzfeld target
frequency (Hz)

Channel p-Value t-Value

Anxiety
(clustering
coefficient)

Delta 8 'FT7' 3.13E−05 −4.679

'FC5' 0.0002 −4.179

'T7' 0.0008 −3.654

10 'FC5' 8.96E−07 −6.266

12 'FC5' 0.0006 −3.687

'C5' 4.26E−05 −4.843

'T7' 0.0001 −4.232

14 'FT7' 1.66E−07 −6.905

'FC5' 1.27E−06 −6.137

'T7' 6.07E−05 − 4.713

16 'FT7' 2.56E−05 −4.742

'FC5' 2.22E−06 −5.696

'C5' 6.68E−06 −5.521

'T7' 3.24E−05 −4.722

20 'FT7' 1.12E−04 −4.273

'T7' 1.51E−05 −5.223

24 'C5' 5.55E−05 −4.524

'T7' 4.34E−05 −4.610

Theta 10 'FT7' 0.0002 −4.043

'FT8' 0.0005 –3.803

12 'C5' 5.91E−05 −4.722

'T7' 0.0004 −3.846

14 'FT7' 1.97E−04 −4.092

'C5' 2.41E−04 −4.136

16 'FT7' 1.32E−05 −4.983

'C5' 1.47E−05 −5.233

'T7' 0.0002 −4.119

'FT8' 1.99E−06 −5.967

20 'FT7' 0.0003 –3.952

'C5' 5.87E−05 −4.622

22 'FT7' 6.48E−04 −3.696

'C5' 3.64E−04 −3.920

Alpha_low 10 'FT7' 0.0006 −3.730

12 'FT8' 7.88E−04 −3.639

14 'C5' 3.81E−04 −4.036

'T7' 0.0005 −3.890

16 'C5' 0.0001 −4.297

'T7' 0.0005 −3.931

20 'C5' 0.0004 −3.961

'T7' 0.0006 −3.810

22 'T7' 0.0006 –3.841

24 'T7' 0.0008 –3.716

Alpha_high 14 'T7' 0.0005 –3.932

16 'T7' 0.0007 −3.802

20 'C5' 0.0003 −4.105

22 'POz' 3.56E−04 4.154

24 'CP4' 0.0008 −3.642

Beta 16 'FC5' 0.0001 −4.275

Gamma 14 'FC3' 0.0007 −3.646

2 'FC5' 0.0001 −4.397

24 'FC5' 9.20E−05 −4.561

Anxiety
(strength)

Delta 8 'F7' 0.0003 −3.991

'FC5' 0.0001 −4.214

10 'F7' 0.0001 −4.248

'FC5' 5.01E−05 −4.565

'C5' 0.0005 −3.780

'T8' 0.0006 −3.703

12 'FT7' 0.0007 −3.647

'FC5' 4.55E−05 −4.617

'C5' 2.16E−05 −4.876

'T7' 5.14E−05 −4.526

'FT8' 0.0001 −4.165

'T8' 0.0007 −3.662

Table 2 continued

Ganzfeld
condition

Frequency Ganzfeld target
frequency (Hz)

Channel p-Value t-Value

14 'F7' 0.0005 −3.752
'FT7' 6.42E−05 −4.452

'FC5' 7.20E−06 −5.172

'C5' 0.0007 −3.660

'T7' 0.0003 −3.931

'Oz' 0.0004 4.035

'FT8' 0.0001 −4.204

16 'FC5' 3.15E−05 −4.678

'C5' 0.0001 −4.320

'T7' 0.0008 −3.608

'FT8' 0.0001 −4.182

'T8' 0.0001 −4.295

20 'FC5' 1.93E−05 −4.834

'C5' 4.41E−05 −4.607

'T7' 0.0001 −4.180

'FT8' 0.0003 −3.953

22 'FC5' 0.0006 −3.704

24 'FC5' 7.33E−05 −4.437

'C5' 5.50E−05 −4.510

'T7' 0.0003 −3.948

Theta 10 'FC6' 9.00E−05 −4.397

12 'FT7' 0.0006 −3.724

'FC5' 2.14E−05 −4.799

'C5' 0.0004 −3.821

14 'C5' 0.0004 −3.848

'T7' 0.0005 −3.760

'FT8' 0.0001 −4.211

'T8' 0.0006 −3.686

16 'FC5' 0.0004 −3.845

'C5' 3.98E−05 −4.617

'T7' 0.0005 −3.748

'FT8' 0.0006 −3.739

20 'FC5' 0.0005 −3.731

'C5' 0.0005 −3.735

'FT8' 0.0003 −3.931

Alpha_low 20 'C5' 6.94E−05 −4.441

Alpha_high 12 'T8' 0.0006 −3.764

16 'C5' 0.0007 −3.671

20 'T7' 0.0008 −3.623

24 'C5' 0.0001 −4.374

'T8' 0.0006 −3.736

Beta 8 'FC5' 0.0004 −3.817

12 'FC5' 0.0009 −3.624

'PO4' 0.0009 3.769

14 'FC5' 0.0002 −3.990

'C6' 0.0005 −3.748

16 'FC5' 8.07E−05 −4.425

'FT8' 0.0001 −4.190

'T8' 0.0005 −3.776

22 'FC5' 0.0009 −3.550

Gamma 22 'FC5' 0.0006 −3.745

24 'FC5' 0.0007 −3.650
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In other words, decreases in brain connectivity might represent an
absence of synchrony between brain regions22.
LS groups generally have higher CC and strength than HS

groups. However, these differences were most prominent in
bilateral temporal and frontotemporal, as well as medial frontal
regions. This is in line with theories indicating the importance of
frontal and temporal regions in psychosis54,55 that extend to

schizotypy17,54,56,57. Furthermore, the finding that anxiety and
neutral-induced Ganzfeld stimulation were shown to have the
most and the slightest differences between groups, respectively,
points to the role of emotion in schizotypy.
In comparison, other regions showed greater CC and strength

indices in HS groups among prefrontal (anxiety and serenity
conditions only), occipital, and parieto-occipital brain regions.
Prefrontal connectivity might reflect a hypersensitivity to affect in
the HS group. Future studies might investigate whether the
opposite occurs in relation to negative schizotypy, which is often
characterized by emotional blunting and anhedonia. The effect at
posterior sites is in line with the proposal of a hyperactive occipital
cortex under Ganzfeld conditions in relation to schizotypy4.

Fig. 5 Three-dimensional feature space of the principal components
for all participants in the anxiety Ganzfeld condition.

Table 3. The classification performances for different Ganzfeld
conditions using different classifiers.

Ganzfeld
condition

Classifier Accuracy Sensitivity Specificity F1-score

Neutral DT 67.44 50 75.86 0.5

KNN (K= 5) 74.41 57.14 82.75 0.59

LDA 76.74 64.28 82.75 0.64

Linear-SVM 76.74 64.28 82.75 0.64

RUSBoost 72.09 78.57 68.96 0.64

Serenity DT 72.09 50 82.75 0.53

KNN (K= 5) 69.76 71.42 68.96 0.6

LDA 69.76 57.14 75.86 0.55

Linear-SVM 74.41 57.14 82.75 0.59

RUSBoost 86.04 85.71 86.20 0.8

Anxiety DT 90.69 85.71 93.1 0.85

KNN (K= 5) 90.69 85.71 93.1 0.85

LDA 93.02 85.71 96.55 0.88

Linear-SVM 93.02 85.71 96.55 0.88

RUSBoost 95.34 92.85 96.55 0.92

The best performances are highlighted in bold.

Fig. 4 GE of the brain networks as a function of density levels during an anxiety condition for each frequency band for LS (green line)
and HS (red line) individuals. Note: The Ganzfeld target frequencies are represented in columns, while each row represents one of the
frequency bands. Shaded regions around the mean values indicate the standard deviation; * represents significant differences (p < 0.05)
between HS and LS individuals.
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Despite some support for the disconnection hypothesis in
schizophrenia, there have been inconsistent findings in the studies
of schizotypy16,22,23,27. Similar to schizophrenia, some schizotypy
studies demonstrate reduced brain connectivity16,22,27. In compar-
ison, greater structural connectivity, measured using diffusion
tensor MRI, in HS individuals was previously interpreted as
reflecting a protective mechanism against developing pathology23.
Alternatively, degeneration of myelinated axons might reflect
illness-related damage rather than cause23. Furthermore, Messar-
itaki and colleagues observed that the HS individuals showed
higher degrees and CC in the default mode network (DMN) and
sensorimotor areas23. This divergence of results between our study
and Messaritaki et al.23. may be due to not only the differences
between the resting state used by Messaritaki and colleagues and
the current Ganzfeld conditions but also the differences in the
selected areas in DMN and sensorimotor. It should be mentioned
that our results in some brain regions, including frontal, occipital,
and parieto-occipital are in line with the study by Messaritaki et al.
for CC and strength indices. It may also be due to the correlation
between these brain regions and the related areas in DMN.
Finally, our machine learning results show that anxiety-induced

Ganzfeld stimulation is a reliable task for accurate diagnosis of HS
individuals in the general population. Figure 5 presents compelling
evidence supporting the assertion that features extracted from
graph-based measures are highly distinct. These distinctive features
can be leveraged to design a reliable diagnostic system during
anxiety-induced Ganzfeld stimulation. To achieve optimal classifica-
tion rates, several well-known classifiers were applied to the extracted
features. As can be seen from Table 2, the RUSBoost classifier has the
best performance among all the classifiers. These findings reveal that
our ensemble classifier correctly diagnoses the severity of schizotypy
in individuals. This may prove the claim that this algorithm is a
powerful classification method for imbalanced data.
Some crucial limitations of the present study should be

declared. Our analysis was based on forty-three positive schizo-
typy individuals. So, future studies should consider not only a
larger number of participants but also balanced data in sex, age,
and data samples. Future studies may benefit from involving other
important demographics, such as ethnicity and education level.
Considering the cross-cultural differences in brain activities, it
would be beneficial to consider more individuals with different
ethnic backgrounds to improve the system’s reliability and
robustness to be suitable as a clinical diagnostic tool. In addition
to ethnicity, exploring the impact of other demographic risk
factors, including a history of psychological trauma, cannabis use,
urbanicity, and social isolation, could be promising directions for
future research. Selecting an optimal threshold is one of the most
critical steps in graph theory studies. To enhance the reliability
and robustness of the results, we suggest that, for future studies, a
more suitable thresholding technique is developed. EEG network
analysis can be influenced by the reference choice58,59. To
improve the validity and robustness of future studies, it is
recommended to use advanced re-referencing techniques such
as the reference electrode standardization technique (REST)60.
Finally, other measures of brain complexity, such as entropy,
should be considered in future studies.
In conclusion, the present study is the first of its kind to

investigate the weighted functional brain network in positive
schizotypy individuals during Ganzfeld-induced hallucinatory ima-
gery stimulation. We examined some graph network parameters for
an accurate diagnosis of HS and LS individuals using a machine
learning method. These findings show that anxiety-induced
Ganzfeld stimulation has the most vital and discriminatory role
among three Ganzfeld conditions in schizotypy classification based
on graph parameters. The highest difference between HS and LS
groups was observed in bilateral temporal and frontotemporal,
occipital, and parieto-occipital brain regions. HS groups showed
lower CC and strength values in both temporal and frontotemporal

brain regions while revealing higher values of these measures in the
occipital and parieto-occipital brain regions than LS groups.
Considering integration measures, HS groups in almost all frequency
bands showed lower GE than LS groups. These outcomes are very
useful in assessing schizotypy in its early stage of development.
Therefore, our study may provide new insights into an accurate
diagnosis of the first episode of psychosis based on brain networks
during the pseudo-hallucinatory imagery task.
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