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Effects of ulotaront on brain circuits of reward, working
memory, and emotion processing in healthy volunteers with
high or low schizotypy
Francesca Perini 1, Jadwiga Maria Nazimek1, Shane Mckie1, Liliana P. Capitão 2, Jessica Scaife2, Deepa Pal2, Michael Browning2,3,
Gerard R. Dawson 3, Hiroyuki Nishikawa4, Una Campbell4, Seth C. Hopkins 4✉, Antony Loebel4, Rebecca Elliott 1,
Catherine J. Harmer 2, Bill Deakin 1,5 and Kenneth S. Koblan4,5

Ulotaront, a trace amine-associated receptor 1 (TAAR1) and serotonin 5-HT1A receptor agonist without antagonist activity at
dopamine D2 or the serotonin 5-HT2A receptors, has demonstrated efficacy in the treatment of schizophrenia. Here we report the
phase 1 translational studies that profiled the effect of ulotaront on brain responses to reward, working memory, and resting state
connectivity (RSC) in individuals with low or high schizotypy (LS or HS). Participants were randomized to placebo (n= 32), ulotaront
(50 mg; n= 30), or the D2 receptor antagonist amisulpride (400 mg; n= 34) 2 h prior to functional magnetic resonance imaging
(fMRI) of blood oxygen level-dependent (BOLD) responses to task performance. Ulotaront increased subjective drowsiness, but
reaction times were impaired by less than 10% and did not correlate with BOLD responses. In the Monetary Incentive Delay task
(reward processing), ulotaront significantly modulated striatal responses to incentive cues, induced medial orbitofrontal responses,
and prevented insula activation seen in HS subjects. In the N-Back working memory task, ulotaront modulated BOLD signals in brain
regions associated with cognitive impairment in schizophrenia. Ulotaront did not show antidepressant-like biases in an emotion
processing task. HS had significantly reduced connectivity in default, salience, and executive networks compared to LS participants
and both drugs reduced this difference. Although performance impairment may have weakened or contributed to the fMRI
findings, the profile of ulotaront on BOLD activations elicited by reward, memory, and resting state is compatible with an indirect
modulation of dopaminergic function as indicated by preclinical studies. This phase 1 study supported the subsequent clinical
proof of concept trial in people with schizophrenia.

Clinical trial registration: Registry# and URL: ClinicalTrials.gov NCT01972711, https://clinicaltrials.gov/ct2/show/NCT01972711
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INTRODUCTION
Ulotaront is a trace amine-associated receptor 1 (TAAR1) agonist
with serotonin 5-HT1A agonist activity, but without affinity for D2

or serotonin 5-HT2A receptors, the targets of current antipsycho-
tics1. TAARs are a family of G-protein-coupled receptors; the
TAAR1 subtype, expressed in multiple brain regions including key
dopaminergic nuclei (ventral tegmental area [VTA]) and seroto-
nergic (dorsal raphe nuclei [DRN]), modulates monoaminergic and
glutamatergic neurotransmission2. In mice, ulotaront exerts
inhibitory effects on VTA neuronal firing1 and attenuates the
ketamine-induced increase in striatal dopamine synthesis capa-
city3. In addition, ulotaront prominently suppresses rapid eye
movement (REM) sleep in rodents and humans, similar to many
antidepressants4. Ulotaront has demonstrated broad efficacy in
preclinical models of psychosis1 and is currently in phase 3 clinical
trials evaluating its safety and efficacy in the treatment of
schizophrenia, with positive results available from both an initial
acute treatment study5 and a 6-month continuation study6. Here
we review the phase 1 studies that led to phase 2 clinical
development.

Schizotypy is a dimensional personality trait that shares genetic,
neuroanatomical, neurobiological, and cognitive characteristics
with schizophrenia and schizophrenia spectrum disorders7–9.
Subjects with personality trait scores demonstrating high schizo-
typy (HS) versus low schizotypy (LS) were recruited to widen the
magnitude of the changes in reward processing and executive
function analogous to those seen in schizophrenia, but in people
who are entirely healthy and without the confounds of drug
treatment and psychotic symptoms.
In light of the preclinical results, we undertook phase I

translational studies, using functional magnetic resonance ima-
ging (fMRI) in healthy volunteers with high or low schizotypy, that
were designed to evaluate the effects of ulotaront compared to
the D2 receptor antagonist amisulpride10 on neurocognitive
processes implicated in the pathogenesis of schizophrenia,
including brain circuits of reward, working memory and emotional
processing, resting state connectivity (RSC), and cerebral blood
flow (CBF).
The primary outcome was blood oxygen level‒dependent

(BOLD) responses in ventral striatum (VS) during the anticipation
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phase of the monetary incentive delay (MID) task. This task has
been widely used in fMRI studies to investigate reward circuitry in
response to anticipation of wins or losses and their occur-
rence11–13. Cues that predict monetary wins elicit increased BOLD
responses in the VS that are mediated by increased dopamine
release and thus attenuated by postsynaptic dopamine receptor-
blocking antipsychotics. It is thought that high-tonic dopamine
release obscures contingent release and results in random
learning of incentive salience and thus the positive symptoms of
schizophrenia14. Increased VS activity appears to be a shared
neuronal correlate of positive symptoms in schizotypal people and
unmedicated first episode patients15. We hypothesized that
ulotaront would attenuate VS BOLD responses in the anticipatory
phase of the MID task in view of its preclinical actions in
decreasing dopamine neuronal firing and synthesis capacity1,3.
Secondary outcomes included ulotaront and amisulpride effects

on fMRI responses during N-Back working memory task and
neurocognitive processes of identification and recall of
emotionally-valenced faces or words in the emotional test battery
(ETB). The N-Back signal detection task has been used to assess
impairments of working memory, associated with poor social and
occupational functioning in schizophrenia16. We previously
showed that amisulpride (400 mg) reversed impaired performance
in high schizotypes performing this task17 and hypothesized
ulotaront would have the same effect. We used the ETB to assess
possible antidepressant efficacy given the antidepressant-like
preclinical findings. Using the ETB, acute or 7-day administration
of antidepressants, SSRIs or SNRIs, was shown to increase the
recall of positive self-referent words and the perception of
ambiguous faces as happy18–21 in healthy volunteers and patients
with major depressive disorders.
Finally, we conducted exploratory analyses of RSC and arterial

spin labeling. There is evidence of abnormal RSC22,23 within the
default mode network (DMN, self-referential processing), execu-
tive control network (ECN, goal-directed activity) and anterior
salience network (ASN, detecting and orienting towards salient
stimuli)24–26 in schizophrenia. In addition, arterial spin labeling
(ASL) provides absolute measures of CBF, reflecting regional
neuronal activity. A recent study found a specific association
between increased CBF in striatum and the negative symptom,
apathy27. Another study found alterations in striatal and prefrontal
CBF may precede onset of psychosis28.

MATERIALS AND METHODS
Participants
The study was designed and conducted in accordance with the
principles of the Declaration of Helsinki (1964) and registered with
ClinicalTrials.gov, identifier: NCT01972711. This was a double-
blind, placebo-controlled, randomized study performed at the
Universities of Manchester and Oxford, UK between March 27,
2014 and July 7, 2015. The study was approved by the National
Research Service (Northwest). Three amendments to the protocol
were approved to clarify the population to be studied, amend
timing of the interim analysis, and permit greater flexibility in
scheduling. All participants gave informed consent. Baseline and
final visit health checks included physical and neurological
examinations; electrocardiography; renal, liver and thyroid func-
tion blood tests; and suicide risk assessment. Adverse drug effects
were monitored. One hundred thirty-three individuals were
screened online using the Schizotypal Personality Questionnaire
(SPQ)29 to recruit those with low (<10) and high (≥40) schizotypy
scores who were aged 18–45 years. Current psychiatric disorder
was excluded with the Structured Clinical Interview for DSM-IV30.
Mental state assessments included: Brief Psychiatric Rating Scale31,
Positive and Negative Syndrome Scale (PANSS)32, Launay-Slade
Hallucination Scale33 and Columbia-Suicide Severity Rating Scale

(C-SSRS)34. Intelligence quotient was assessed with the National
Reading Test35. One hundred five participants were randomized, 2
did not complete the study, and 96 had acceptable fMRI/cognitive
task data and were included in the analysis. Participants with LS
(n= 51) and HS (n= 45) received placebo (n= 32), ulotaront
(n= 30; single dose, 50 mg) or amisulpride (n= 34; single dose,
400mg) (dosages chosen as the highest that did not cause side
effects) (Fig. 1A). Randomization was stratified by site and
schizotypy according to a 1:1:1 code accessible only to pharmacy
staff, producing groups with similar demographics (Fig. 1B).
Participants underwent fMRI scans 2 h posttreatment. Full clinical
assessments were carried out each visit and patients were asked
about side effects.

Monetary incentive delay task
Each trial consisted of a cue indicating trial type (win, loss, or
neutral) followed by a target cue requiring a rapid button press,
which triggered win, loss, or neutral outcomes (Fig. 1C)36. There
were three trial types: possible reward, possible punishment, and
neutral, spread across 120 trials and with a winning rate of 63%. In
reward trials, fast response to the target resulted in monetary gain
(win) and slow response had no consequence. In loss trials, fast
response had no consequence, while slow response led to loss of
money. In neutral trials, responses had no consequence. Winning
and losing cues also indicated whether participants could win/lose
either £1 or £5. The amount won or lost was displayed. fMRI
responses were recorded in the: (1) anticipatory phase, from the
initial cue to the response to the target; and (2) outcome phase,
from the win/loss display.

N-Back
Subjects viewed a series of letters and were asked to indicate if
the letter presented was an “x” (0-Back) or if it matched letters
shown in one (1-Back), two (2-Back) and three (3-Back) previous
trials, with increasing difficulty level17 (see Supplementary material
for full details).

Emotional test battery
ETB tasks presented stimuli of differing emotional valence
(positive/negative words or face stimuli) and tested ability to
remember words and identify face emotions. Participants
completed standard emotional word-based memory recall (EREC)
and face-based emotional categorization (ECAT) tasks37,38. Instruc-
tions were presented on screen for participants to read before task
completion. The psychometric properties of these tasks have been
assessed previously39, with intraclass correlation coefficients of
0.4–0.8. Previous studies showed that antidepressant treatment
led to improved identification and recall for positive relative to
negative stimuli40.

Functional magnetic resonance imaging (fMRI)
Scanner details and sequences, acquisition of field maps, data
production and anatomical reference image acquisition, time-
correction, realignment, normalization, and smoothing were
carried out as described in Supplementary material. For primary
region of interest (ROI) analyses, ROIs were predefined using 10-
mm radius spheres centered on coordinates from a meta-analysis
of MID studies41 (Fig. 1C) and for dorsolateral prefrontal cortex
(DLPFC) in the N-Back task16. Anatomical masks were used to pre-
define other ROIs in the N-Back task. The methodologies for RSC
and ASL are described in Supplementary material.

Statistics
A formal sample size calculation was not attempted for this
2-center fMRI MID paradigm. Based on a statistical investigation of
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our previous fMRI studies42 and the MID literature14 a target of 36
subjects per treatment arm was selected, requiring a sample of
108 to complete. The primary endpoints were BOLD fMRI
responses in key ROIs while performing the MID, N-Back, and SD
tasks after a single-dose of study medication. The ROIs are
specified in the text and in Supplementary methods. The
secondary endpoints were the performance measures in
each task.
In the MID task, reaction time was measured in milliseconds and

analyzed with repeated measures ANOVA with trial type (win, loss,

neutral) as a within-subject factor, schizotypy and treatment as
between-subject factors, and site and gender as covariates. After
checks for equivalence of group standard deviations, analysis of
variance (ANOVA) of BOLD signal task responses in ROIs (Fig. 1D)
was carried out with treatment and schizotypy as fixed effects,
without factors or covariates for site, task, phase or gender.
Primary comparisons were placebo versus ulotaront, followed by
placebo versus amisulpride and ulotaront versus amisulpride. The
same design was used to analyze N-Back ROI BOLD responses.
There was no correction for repeated group comparisons in

High Schizotypy (HS) > 40 (n=45)
Low Schizotypy (LS) < 10    (n=51)

Allocated to intervent on
SEP-363856 – 50 mg  (n=30)

HS=14; LS=16

Assessment
MID task

N-Back task
ETB task

RSC
ASL

Recruitment 
Internet recruitment using SPQ

(n=133)

Not eligible (n=39)

Assessment
MID task

N-Back task
ETB task

RSC
ASL

Assessment
MID task

N-Back task
ETB task

RSC
ASL

A)

B)
Treatment Placebo (n=32) Ulotaront (n=30) Amisulpride (n=34)
Schizotypy LS HS LS HS LS HS
Number 17 15 16 14 18 16
Age (years) 30.7 + 8.4 27.4 + 7.5 26.1 + 6.2 28.9 + 5.4 26.7 + 5.4 28.6 + 9.0
Male/ female 7/10 7/8 7/9 9/5 10/8 11/5
SPQ 3.4 + 3.1 53.4 + 9.7 3.5 + 2.1 49.1 + 3.7 3.0 + 2.5 53.7 + 7.0

Allocated to intervent on
Placebo  (n=32) 
HS=15; LS=17

Allocated to intervent on
Amisulpride 400 mg (n=34)

HS=16; LS=18

Regions of interest

Insula
VS
mOFC

D)

Cue: Win, lose or 
no change

Response

Feedback: Win, lose 
or no change<10 s/trial

60 trials/run
180 trials total

An�cipatory
phase

Outcome 
phase

+

+

Win £1
Total £10

MID task procedureC)

Randomizat oni

i i i

Fig. 1 Study design and task procedures. A Experimental workflow diagram showing screening for schizotypy and allocation to treatment
groups for selected volunteers. B Demographic data, including treatment group, age, gender, and level of schizotypy in the MID task. C Design
of the MID task. Participants were presented with a cue predicting either monetary gain, loss, or no change, and asked to press a button in
response to a following target as fast as possible. There were three types of trial: possible reward, possible punishment and neutral,
depending on whether participants responded on time to the target. D ROI used in the MID task. Masks were created in bilateral striatum,
bilateral insula and mOFC. All masks were 10-mm radius spheres based on previously reported coordinates from the meta-analysis of Liu
et al.41. Specific coordinates of ROI used for the anticipatory phase were 38 20 –8, and -32 18 –6 for right and left insula, 12 10 –4 and –12
10 –6 for right and left striatum, and 2 50 –16 for mOFC. For the outcome phase, coordinates were 36 22 –8 and –28 24 –8 for right and left
insula, 12 10 –6 and 10 8 –4 for right and left striatum and –2 56 –6 and 2 48 –14 for mOFC. ASL arterial spin labeling, ETB emotional test
battery, MID monetary incentive delay, mOFC medial orbital frontal cortex, RSC resting state connectivity, SPQ Schizotypal Personality
Questionnaire, VS ventral striatum.
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several ROIs. However, in small volume family-wise error (FWE)
correction, ROIs were combined into a single set of voxels to
threshold statistical significance for activated voxels. Whole-brain
voxels were used to threshold significant activations outside
predicted ROIs.
For the N-Back task, difficulty (0, 1, 2 or 3-Back) was a within-

subject factor in repeated measures ANOVAs of accuracy and
reaction time. Two primary effects tested were treatment and
treatment × task difficulty. Equivalent effects were tested in
analyses of schizotypy and schizotypy × treatment interactions.
Significant effects were followed-up by post hoc tests. BOLD signal
responses in predefined ROIs contrasted all levels of task difficulty
with the 0-back condition using the same ANOVA design as for
the MID task.
ETB data were tested using repeated measures ANOVA (within-

subject factor= positive/negative valence of stimuli and between-
subject factor coded for treatment). For each task, the primary
contrasts were interaction between treatment group and within-
subject factors to test for emotion-specific treatment effects on
performance. The primary prediction was that ulotaront would
induce positive changes in ETB endpoints relative to placebo.
ANOVA was also performed to determine the effects of schizotypy
across treatments. Significant effects were followed-up by post
hoc tests.

RESULTS
MID task
ANOVA of MID task behavioral data showed participants were
significantly faster on win and loss compared with neutral trials
with no effect of schizotypy (Supplementary Fig. 1). Repeated
measures ANCOVA of trial type × schizotypy × treatment using site
and sex covariates revealed an effect of trial type [F
(1.70,149.48)= 5.69; p= 0.006] with participants significantly
faster on win (p < 0.001; CI: –16.34, –7.72) and loss (p < 0.001; CI:
–15.51, –6.70), compared to neutral trials (Supplementary Fig. 1).
There was a main effect of treatment [F (2,88)= 3.98, p= 0.02],
with participants in the ulotaront group showing a significant
slowing of reaction time compared to placebo (p= 0.049; CI: 0.9,
42.96) and amisulpride (p= 0.048, CI: 0.14, 42.31) groups.
Nonsignificant differences were observed between placebo and
amisulpride.
The MID task changed BOLD signals bilaterally in prespecified

ROIs (phase × valence × ROI interaction; p < 0.001) (Fig. 2A). During
the anticipation phase, VS was activated and medial orbitofrontal
cortex (mOFC) deactivated in win and loss trials (Fig. 2A). In the
outcome phase, BOLD responses in insula and mOFC were
substantially greater than in the anticipation phase, with mOFC
responding more to win and insula to loss outcomes (Fig. 2A).
There were no main effects of schizotypy in win or loss versus
neutral trials.
The pattern of treatment effects on BOLD responses was similar

for anticipation of wins and losses (see Supplementary Table 1 for
all comparisons). Striatal BOLD responses were smaller in both
treatment groups, and significantly so for the ulotaront group in
anticipation of loss (striatum left, p= 0.03; right p= 0.06) (Fig. 2B),
compared with placebo. The statistical effect of ulotaront on left
or right striatal responses to loss was unaffected by including
reaction time in the model as a covariate that did not approach
significance. Reaction time did not correlate with left or right
striatal BOLD responses (r < –0.11; n= 96). Insula responses were
not significantly affected by treatment. In mOFC, win and loss
anticipation evoked small negative BOLD responses that became
positive in the ulotaront group in win trials compared to placebo
(left and right mOFC, p < 0.01) (Supplementary Table 1) and in loss
trials (i.e., loss-avoidance trials) compared to amisulpride (left,
p= 0.029) (Fig. 2B); (right, p= 0.048) (Supplementary Table 1). In

the outcome phase, there were no treatment effects in striatum or
mOFC. In left insula, ulotaront increased responses to wins
(p= 0.004) and losses (p= 0.035), compared to amisulpride
(Fig. 2B). In right insula, HS, but not LS subjects, responded to
anticipation of loss under placebo and this was prevented by
ulotaront treatment; treatment × schizotypy was significant both
in ROI (p= 0.021; not shown) and small volume corrected (SVC)
(Fig. 2C) analyses (p= 0.021; FWE-corrected, t= 3.54). In contrast
to HS responses in anticipation of potential losses, both LS and HS
groups responded to loss outcomes in right insula, which was
enhanced by ulotaront treatment (ROI, p= 0.043; SVC, p= 0.017)
(Fig. 2C).

N-Back
Participants receiving ulotaront were less accurate compared to
placebo (p < 0.001) and amisulpride (p= 0.011) (Fig. 3A). Schizo-
typy did not affect accuracy. N-Back performance activated the
task-positive ROIs (DLPFC, ACC and precuneus; Fig. 3B) but this
was not affected by treatment. HS had smaller DLPFC BOLD
responses to the task than LS participants in ROI and SVC analyses,
but these were not modified by treatment (Fig. 3Ci). The expected
hippocampal deactivation at all 3 levels of task difficulty was
prevented on the right by ulotaront but unaffected by amisulpride
(Fig. 3Cii). This was corroborated by SVC analysis (Supplementary
Fig. 2). Similarly in the whole-brain analysis, de-activations in
postcentral gyrus and right hippocampus were attenuated by
ulotaront. Both drugs induced deactivation in left frontal pole,
compared to placebo (Fig. 3D). A main effect of schizotypy
showed greater activation in frontal pole in HS compared to LS
groups. In 2 regions, HS versus LS differences seen under placebo
were reversed in ulotaront treated participants. (Supplementary
Fig. 3A–C).

Emotional test battery
There was a main effect of treatment on reaction times in the
ECAT (p= 0.015) (Fig. 3E). Participants receiving ulotaront
(average= 882.02 ms) were slower than those receiving placebo
(average= 785.21 ms). Although the effect of amisulpride versus
placebo was similar, this was not significant ( > 0.10). There were
no other significant treatment effects or interactions with
schizotypy. In the EREC, there was an effect of treatment for total
number of correct words recalled [F (1,55)= 4.867, p= 0.032].
Participants receiving ulotaront recalled fewer correct words
compared to placebo (average 3.78 versus 4.83), regardless of
valence (Fig. 3E). Comparing amisulpride and placebo showed an
interaction between treatment and valence (p= 0.039; data not
shown). Post hoc tests revealed participants receiving amisulpride
recalled fewer correct positive words (p= 0.014). No differences
were seen for negative words. There was an effect of schizotypy
(p= 0.002) with HS recalling fewer words than LS participants,
regardless of valence (Supplementary Tables 2 and 3).

Resting state connectivity
Treatment × schizotypy × site ANOVA for pair-wise treatment
comparisons of RSC showed a significant schizotypy effect
(p= 0.002) with HS having significantly reduced DMN, ASN, and
right ECN connectivity compared to LS participants. Both drugs
tended to reduce schizotypy effects (Fig. 4). In DMN, there was a
significant treatment ×schizotypy interaction, with connectivity in
HS subjects under placebo increased by amisulpride to equal LS
connectivity (p= 0.017) (Fig. 4A). In contrast, in the ASN, the effect
of schizotypy was reversed by ulotaront (treatment × schizotypy,
p= 0.003) but not amisulpride, especially in insula (Fig. 4B). A
similar pattern was seen in right ECN but there were no
statistically significant treatment × schizotypy interactions in
whole ECN (Fig. 4C). However, the right inferior frontal cortical
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component of the ECN showed markedly reduced connectivity in
HS participants that was abolished by ulotaront (p= 0.005) and by
amisulpride treatment at trend level (p= 0.063) (Supplementary
Fig. 4). In left ECN, the effect of schizotypy was not modified by
ulotaront or amisulpride.

Arterial spin labeling
Ulotaront significantly reduced CBF compared to placebo in
posterior cingulate (p= 0.003) (Fig. 5A), right thalamus (Supple-
mentary Fig. 5A) and right DLPFC (p= 0.003) (Supplementary Fig.
5B). In DLPFC, greater reductions in CBF occurred in HS compared
to LS participants in the ulotaront versus placebo (Fig. 5B) and
ulotaront versus amisulpride (Fig. 5C) comparisons. Amisulpride-
induced reductions in CBF were significant in right DLPFC and

bilateral superior temporal cortex and did not differ in HS and LS
participants in any region. Compared with amisulpride, ulotaront
produced greater reduction in CBF in HS than the LS group in
anterior cingulate (Supplementary Fig. 5C), bilateral DLPFC and
insula, in right thalamus and left supramarginal gyrus. Mean CBF
under placebo did not differ between HS and LS groups.

Safety
For participants receiving ulotaront, the most commonly reported
(≥10%) treatment-emergent adverse events (TEAEs) were somno-
lence (60.0%), nausea (34.3%), dizziness (28.6%), dry mouth (14.3%),
and headache (11.4%) (Supplementary Table 4). There were no
deaths or TEAEs leading to discontinuation from the study and no
clinically meaningful changes in the safety parameters.
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DISCUSSION
In summary, ulotaront partially met the primary endpoint in
reducing anticipatory VS responses in the MID and reversed
aberrant right insula responses to anticipated loss in HS
participants. On the secondary endpoints, reductions in perfor-
mance accuracy and speed were seen with ulotaront in the ETB
and N-Back tasks. In HS participants, ulotaront improved reduced
RSC and exerted regionally selective effects on cortical CBF.

In the MID task, the finding that participants were significantly
faster on win or loss trials compared with neutral trials suggested
that performance was controlled by appropriate motivational
drives to win or avoid losing. The task engaged neural activity in
prespecified ROIs during anticipation of monetary win or loss,
consistent with previous studies43–45. The finding that VS
responded more to anticipation of possible wins than win
outcomes is consistent with the role of dopamine in prediction
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error learning, in which cues predicting rewards elicit anticipatory
dopamine neural activity46. Cues allowing avoidance of aversive
outcomes acquire incentive salience in the same way, albeit
motivated by threat. This may account for striatal BOLD responses
to cues predicting possible loss. We predicted ulotaront would
attenuate striatal anticipatory BOLD responses through indirect
actions in modulating dopamine neural activity. The effects of
ulotaront occurred bilaterally in striatum but were significant only
in anticipation of loss in left striatum. In contrast, amisulpride did
not attenuate striatal responses, despite its D2 receptor affinity, as
recently reported by Grimm et al.47, possibly due to competing
presynaptic disinhibition of dopamine release at low doses10. In
the MID task, ulotaront treatment achieved the primary outcome
in modulating striatal responses to incentive stimuli. Psychotic
symptoms in schizophrenia may be moderated by normalizing
salience abnormalities in the reward system48. Thus, ulotaront may
modulate dopaminergic incentive circuitry relevant to improve-
ment of positive schizophrenia symptoms.
Compared with a quiescent, deactivated state under placebo,

mOFC showed bilateral positive BOLD responses induced by
ulotaront in win and loss anticipation. This contrasts with reduced
anticipatory responses in VS following ulotaront pretreatment. These
regionally contrasting effects between mOFC and VS could indicate
that ulotaront lessens transfer of incentive to the cue. The action of
ulotaront might normalize aberrant learning and delusion formation
in hyper-dopaminergic psychotic states. No drug effects were seen
in the outcome phase in mOFC, suggesting no modification of
outcome value, thought to be encoded in this brain region.
We found effects of schizotypy only in insula, a key component

of the salience network. Anticipation of loss activated right insula
only in HS subjects and this was normalized by ulotaront. This
treatment × schizotypy interaction in ROI analysis was robust to
FWE correction in the SVC analysis. The differing responses may
reflect aberrant salience processing in anticipation of potential
loss, which was reversed by both drugs. Aberrant salience
processing has been implicated in positive symptoms of schizo-
phrenia49. These results in HS are consistent with evidence
implicating aberrant right insula structure and function in
schizophrenia pathogenesis50–52. In left insula, ulotaront enhanced

activations to wins and losses compared with attenuations after
amisulpride. In right insula, ulotaront significantly enhanced loss
responses but not wins. Enhanced insula responses to outcomes
could predict beneficial effects of ulotaront on affective blunting,
a key component of the negative syndrome53.
Considering the secondary objectives, in the N-Back task, neither

ulotaront nor amisulpride modulated BOLD signals in prespecified
ROIs associated with cognitive function54,55. Ulotaront reduced
hippocampal deactivation compared to placebo, and LS participants
showed reduced activation in prefrontal cortex, confirming task
sensitivity to schizotypy56. Several studies corroborate stronger
negative connectivity between prefrontal cortex and right hippo-
campus during working memory as an endophenotype of schizo-
phrenia, and thus reduced right hippocampal deactivation in our
N-back task would be compatible with an antipsychotic action of
ulotaront57. However, ulotaront affected task performance by
reducing accuracy across several conditions, including 0-Back trials.
These findings may be partially due to a high proportion of
participants (60%) experiencing somnolence/sedation. The reduced
hippocampal deactivation may indicate decreased ability to switch
off this region of the DMN in engaging executive networks for
successful task completion58.
In RSC analyses, HS subjects showed reduced network intensity

in dorsal and ventral DMN, ASN and right ECN. Each network is
defined by the functional anatomy of the voxels whose low
frequency BOLD fluctuations correlate with a shared underlying
time series; the correlations being taken to reflect connectiv-
ity59,60. Recent studies suggested that schizophrenia is character-
ized by reduced connectivity within these networks52,61–63. HS
participants generally showed reduced connectivity compared to
LS under placebo, and both ulotaront and amisulpride reduced or
abolished LS-HS differences with some selectivity for different
networks. Ulotaront was effective in reversing decreased con-
nectivity in HS participants in ASN (principally bilateral insula) but
not significantly in DMN or ECN, whereas amisulpride was
effective selectively in DMN. The selective effect of ulotaront in
HS subjects in insula was remarkably convergent with the MID
task finding that ulotaront reduced aberrant responses to losses in
HS participants in this ROI and in keeping with other studies
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indicating a key role of insula in schizophrenia dysconnectiv-
ity52,62,64. Notwithstanding the interest of these results, it should
be noted that there is considerable uncertainty about the unitary
nature of schizotypy in the general population, how it is best
measured, and its relationship to psychosis risk9. We suggest that
the utility of cognition in schizotypy as a surrogate for psychosis in
drug-development remains experimental.
There was little evidence of a schizotypy effect on regional CBF.

Both ulotaront and amisulpride tended to reduce CBF in similar
ROIs in LS and HS subjects. However, ulotaront treatment reduced
CBF in DLPFC, posterior cingulate, insula and other regions to a
greater extent in HS than LS subjects, producing significant
interactions with schizotypy compared to placebo or amisulpride.
This suggested ulotaront differentially affects CBF in HS subjects.
Combined with RSC data, it appears that ulotaront and
amisulpride affect CBF in structures prominent in overlapping
networks, such as anterior cingulate (DMN), insula (ASN) and
DLPFC (ECN). In each region, ulotaront reduced connectivity and
CBF more in HS than LS subjects, suggesting it may engage
processes underlying HS, and potentially those in schizophrenia. In
contrast, neither ulotaront nor amisulpride showed an
antidepressant-like profile on the ETB.
There are limitations to the current study. The investigation was

designed to profile effects of ulotaront across a range of cognitive
and connectivity biomarkers relevant to schizophrenia and to the
antipsychotic and antidepressant behavioral profiles detected in
preclinical development1. There is a problem of multiple compar-
isons inherent in profiling and maximizing the information extracted.
This is exacerbated by analyzing factors other than treatment that
could influence performance, including site, sex, schizotypy, task,
behavioral measures, and ROIs. We attempted to mitigate this by
selecting a primary outcome measure (decreased VS response in
reward/loss anticipation) and powering sample size to 36/treatment
arm. The study was not designed or powered to detect efficacy on a
limited number of exploratory endpoints but rather to profile the
effects of the new drug, ulotaront, on a range of measures of
potential relevance to clinical development for schizophrenia.
The interpretation of some results is complicated by drowsiness

reported by 60% of those taking ulotaront and their reduced
response speed and accuracy in some of the tasks. In the MID task,
minimally slower responses of the ulotaront group did not prevent
the speeding induced by the prospect of winning and not losing
and this suggests a full engagement in the task. Furthermore, the
reduced activation in striatum after ulotaront was not due to the
8% increase in reaction time since it was unaffected by covarying
reaction time in the ANOVA. In the N-Back task, covarying for
poorer accuracy did not abolish the drug effects on fMRI
responses in a post hoc analysis (data not shown). These
mitigations notwithstanding, drug-induced sedation remains a
potential confound in the task-evoked responses. However,
ulotaront reversed the effect of HS versus LS in the insula both
on BOLD responses to loss anticipation in the MID task, and in
insula connectivity within the salience network. Differential HS
versus LS effects of ulotaront were also seen in non-ROI regions in
the N-Back task and in RSC. These HS selective effects would seem
relatively immune from the confound of drowsiness.
In conclusion, the results indicated that ulotaront’s ability to

reduce presynaptic dopamine function in preclinical development
translated to phase 1 effects in modifying dopamine-related fMRI
responses in the MID task. Furthermore, ulotaront reduced the
effects of HS in insula in the MID and RSC and in other regions in
the N-Back task. This translational evidence of functional target
engagement by ulotaront together with the absence of effects in
the ETB, led to phase 2 studies prioritizing efficacy trials in
schizophrenia. Antipsychotic efficacy was subsequently reported
in a phase 2 clinical trial (4) and ulotaront is currently undergoing
evaluation for treatment of schizophrenia in randomized con-
trolled phase 3 clinical trials.
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