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Speech characteristics yield important clues about motor
function: Speech variability in individuals at clinical high-risk
for psychosis
Kasia Hitczenko1✉, Yael Segal2, Joseph Keshet 2, Matthew Goldrick3,4,5,6 and Vijay A. Mittal 4,5,6,7,8,9

Background and hypothesis: Motor abnormalities are predictive of psychosis onset in individuals at clinical high risk (CHR) for
psychosis and are tied to its progression. We hypothesize that these motor abnormalities also disrupt their speech production (a
highly complex motor behavior) and predict CHR individuals will produce more variable speech than healthy controls, and that this
variability will relate to symptom severity, motor measures, and psychosis-risk calculator risk scores. Study design: We measure
variability in speech production (variability in consonants, vowels, speech rate, and pausing/timing) in N= 58 CHR participants and
N= 67 healthy controls. Three different tasks are used to elicit speech: diadochokinetic speech (rapidly-repeated syllables e.g.,
papapa…, pataka…), read speech, and spontaneously-generated speech. Study results: Individuals in the CHR group produced
more variable consonants and exhibited greater speech rate variability than healthy controls in two of the three speech tasks
(diadochokinetic and read speech). While there were no significant correlations between speech measures and remotely-obtained
motor measures, symptom severity, or conversion risk scores, these comparisons may be under-powered (in part due to challenges
of remote data collection during the COVID-19 pandemic). Conclusion: This study provides a thorough and theory-driven first look
at how speech production is affected in this at-risk population and speaks to the promise and challenges facing this approach
moving forward.
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INTRODUCTION
Individuals with psychosis exhibit motor abnormalities (e.g.,
tremors, rigidity, dyskinesia, soft-signs) and recent work has
suggested that these behaviors may also represent sensitive
prognostic indicators during the prodromal period1–4. In addition,
motor signs can be objectively measured, in contrast to other
symptom domains which are often subject to observer/rater
bias2,5. However, motor assessments frequently require significant
expertise, as well as time-intensive analyses and/or cumbersome
instrumentation2,6–9. In this work, we explore one potential
solution, examining the feasibility of using the physical properties
of speech to measure motor abnormalities. Speech is a highly
complex motor behavior, involving very fine-tuned movements
that, when distorted in even subtle ways, can produce easily
observable acoustic consequences (e.g., millimeter differences in
placement/movement and millisecond differences in timing/
coordination can substantially change the speech acoustics)10.
Because basal ganglia and cerebellar circuits modulate motor

function and are also implicated in leading models of psycho-
sis11–13, there is good reason to believe that motor signs may be
an early and sensitive biomarker4. Indeed, of the identified early
vulnerability markers seen in children that develop adult
psychosis, motor abnormalities may be the most common14. For
example, a myriad of motor behavior domains have been
demonstrated to predict infants/children that ultimately develop
adult schizophrenia including: delays in achieving motor mile-
stones15, neuromotor deficits and involuntary movements16, and

neurological soft signs17. One study comparing childhood video
tapes of schizophrenia patients with childhood videos of their
healthy siblings as well as healthy community controls, found that
the pre-schizophrenia children showed a higher rate of motor
abnormalities and delays18. In a similar study, Schiffman and
colleagues19 examined video-taped social interactions of 11–13
year old children who later developed schizophrenia and
observed that a high occurrence of movement abnormalities
distinguished the pre-schizophrenia children from matched
controls. In adolescence, neuromaturational factors and environ-
mental stressors can exacerbate underlying vulnerabilities in the
motor and dopamine system20, leading to other outward
manifestations in this age group, including spontaneous dyskine-
sias (i.e., spontaneous jerking and irregular ballistic movements)21.
Indeed, among high-risk groups (i.e., those showing a low level of
symptoms) these particular motor behaviors increase in frequency
and severity as a function of development and increased disease
burden, are associated with increased attenuated positive
symptoms22,23 and strongly predict conversion to psychosis24–26.
As not all at-risk individuals go on to develop a psychotic disorder,
this is highly relevant27. Irrespective of medication (i.e., the motor
abnormalities are present in neuroleptic naïve samples), these
spontaneous jerking movements in the head, face, lips, and torso
can continue to emerge during the adolescent prodromal period,
until onset, when they remain a key clinical feature of the illness28.
At least one cross-sectional study suggests that with advanced
age, all patients with schizophrenia will eventually develop these
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behaviors29. We point readers to recent review articles for more
discussion of motor function in the prodromal syndrome2,27,30–34.
Previous work has examined speech production in schizophre-

nia/psychosis35–44. This work has been promising, but results are
mixed. A recent meta-analysis found three speech measures
(speech rate, pause duration, and proportion spoken time)
differentiated clinical and control groups (individuals with
schizophrenia had slower speech rates, longer pauses, and lower
speaking proportions), but only one (pause duration) showed a
large effect43. In addition, the meta-analysis reported differences
in results depending on the speech task used, generally finding
that more cognitively or socially demanding tasks (e.g., free
speech or dialogues) resulted in larger effects. However, this prior
work has generally not examined individuals at clinical high-risk
(CHR), nor has it focused on motor abnormalities. It also has
largely pursued a data-driven approach. Our work pursues a
hypothesis-driven approach, studying acoustic measures that are
predicted to be disrupted by motor abnormalities in speech
produced by individuals at clinical-high-risk.
We hypothesize that disruptions to motor control will impact

control over vocal articulators (e.g., tongue, lips), leading to more
variable speech in CHR participants when compared to healthy
controls (HC), analogous to what has been observed in speech
disorders45–47. Furthermore, if these speech measures reflect
motor abnormalities, we would expect that increased variability in
speech productions should relate to other measures of motor
abnormalities (e.g., finger-tapping, as a test of convergent validity),
worse symptom severity (as a test of clinical validity), and higher
risk of conversion to psychosis (as a test of predictive validity). To
systematically examine the conditions under which motor
difficulties are observed, we elicit speech in highly-controlled
samples that are specifically designed to measure motor
difficulties (diadochokinetic speech), read speech, as well as more
free-form, naturalistic speech which closely resembles everyday
speech.

RESULTS
We present results by speech task. We focused on acoustic speech
measures that have been extremely well-studied and can be
reliably measured automatically (which allows us to study greater
quantities of speech). The main text focuses on (i) variability in the
voice-onset-time of voiceless (in English: p,t,k) and voiced (in
English, b,d,g) stop consonants, i.e., the primary acoustic measure
of stop consonants, defined as the duration between the release
of the consonant and the onset of the following vowel, (ii)
variability in vowel durations, and (iii) variability in speech rates.
We discuss the remaining speech measures we studied (including
variability in vowel formants and variability in pausing/timing)48–53

in Table 1 and Supplementary Materials 1.3.
N.B.: One CHR participant was identified as clinical high-risk in-

remission and another participant had a 7-months’ gap between
their clinical interview and speech tasks. Supplementary Materials
2.10 includes analyses without these two participants; the results
are qualitatively similar to the analyses of the full dataset reported
below.

Diadochokinetic speech tasks
Participants first completed a diadochokinetic speech task, in
which they produced particular syllable types as quickly and as
accurately as possible54,55. This task consisted of two trial types
that we analyze separately: Alternating Motion Rate (AMR) trials, in
which participants repeated a single target syllable 15 times (e.g.,
pa-pa-pa…, ta-ta-ta…, ka-ka-ka…) and Sequential Motion Rate
(SMR) trials, in which they repeated sequences of three syllables
10 times (e.g., pa-ta-ka…, ka-ta-pa…).

Out of the seven speech measures we studied (Table 1), we
found evidence that CHR individuals produced more variable
voiceless stop consonant voice-onset-times than HC—near
significantly in AMR trials (β= 0.09, s.e.= 0.05, t= 1.95,
p= 0.054; Fig. 1A) and significantly in SMR trials (β= 0.12,
s.e.= 0.05, t= 2.45, p= 0.016; Fig. 1B). CHR individuals also
produced more variable speech rates than HC in both AMR and
SMR trials (AMR: β= 0.36, s.e.= 0.12, t= 2.98, p= 0.004; SMR:
β= 0.26, s.e.= 0.1, t= 2.52, p= 0.013; with one exception, all
other speech measures showed no significant effects). However,
these two measures generally did not correlate with SIPS scores,
finger-tapping, or risk scores (results in Table 2 and Supplemen-
tary Materials 2.1).

Read speech
Participants then read a standardized passage aloud at a
comfortable pace (full text in Supplementary Materials 1.1). As in
the diadochokinetic speech task, we found that CHR individuals
produced more variable voiceless stop consonant voice-onset-
times (β= 0.08, s.e.= 0.04, t= 2.23, p= 0.028) and speech rates
(β= 0.11, s.e.= 0.05, t= 2.1, p= 0.038) than HC (Fig. 1C; all other
speech measures showed no significant effects). Variation in
speech rate (but not consonant voice-onset-time) was significantly
positively correlated with another motor measure, variability in
finger-tapping rate in the non-dominant hand (β= 0.93,
s.e.= 0.32, t= 2.86, p= 0.006), but not in the dominant hand
(β= 0.28, s.e.= 0.37, t= 0.74, p= 0.465; Fig. 2). However, these
measures did not correlate with clinical or risk measures (results in
Table 2 and Supplementary Materials 2.2).

Spontaneous speech
Finally, we elicited spontaneous speech, by asking participants to
describe how to make a peanut butter and jelly sandwich for
~2min. In contrast to the diadochokinetic and read speech
samples, we found that none of the speech measures differed by
group status in spontaneous speech (Fig. 1D), including the two
measures impacted in the previous tasks: variability in voiceless
consonant voice-onset-time (β=−0.01, s.e.= 0.04, t=−0.34,
p= 0.732) and variability in speech rate (β= 0.06, s.e.= 0.1,
t= 0.64, p= 0.524). Because none of the acoustic speech tasks
showed significant results (Supplementary Materials 2.3), we did
not test for associations with non-speech motor/clinical/risk
measures.

In-person vs. remote results
Because data collection occurred between 2019–2022, our study
had to be adapted to the remote format partway through due to
the COVID-19 pandemic (see Methods for details). In post-hoc
analyses, we tested whether results differed between participants
tested in-person (N= 70) vs. remotely (N= 52), focusing on the
measures and tasks that showed group differences in our primary
analyses (Fig. 3 and S20–S21). Full results are presented in
Supplementary Materials 2.7, but we generally observed smaller
group differences in consonant (voice-onset-time) variability in the
remote subgroup relative to the in-person group. This seemed to
be driven by greater variability in the remotely-recorded control
group relative to the in-person control group. For speech rate,
however, the in-person and remote subgroups showed qualita-
tively similar patterns, except in the diadochokinetic-SMR subtask,
where we again observed a reduction in CHR vs. HC group
differences when tested remotely.

Unpacking why we did not see a relationship with clinical/
motor symptoms
Contrary to our predictions, we found that the speech measures
that showed CHR vs. HC group differences did not correlate with

K. Hitczenko et al.

2

Schizophrenia (2023)    60 Published in partnership with the Schizophrenia International Research Society

1
2
3
4
5
6
7
8
9
0
()
:,;



motor, clinical, or risk measures. We ran several additional
exploratory analyses in an attempt to unpack this surprising
finding.
Past work has shown that some linguistic measures are highly

correlated with sociodemographic factors56–58. To verify this was
not the case for the speech measures we studied, we ran
regressions predicting demographic factors (age, sex, race, native
language) from the speech measures that significantly differed
between the high-risk and healthy control groups. We found no
significant relationships, suggesting that the observed group
differences were not accounted for by demographic factors (see
Supplementary Materials 2.8).
We then tested whether the non-speech (motor/clinical/risk)

measures correlated with one another as we would expect based
on previous work7,59. They did not. In our sample, individuals with
greater motor abnormalities (measured by finger-tapping) did not
have worse overall symptoms or higher risk of conversion scores

(see Supplementary Materials 2.9 for results). This suggests we did
not have sufficient power to detect motor abnormalities. Indeed,
past work has found a r = 0.37 correlation between finger tapping
speed and total negative symptoms in the CHR group7. Assuming
the effect size is similar for finger-tapping variability and speech
variability, which we measure here, a post-hoc power analysis
suggests that, in the best case scenario (i.e., without a midway
shift to remote testing), we would need a sample size of N= 56
(with α= 0.05 and β= 0.9) to detect this effect size, whereas our
analysis had sample sizes ranging from N= 47–5160.

DISCUSSION
We find evidence that individuals at clinical high-risk for psychosis
produce more variable speech - in particular, more variable
consonant voice-onset-times and speech rates—than healthy
controls in two of the three speech types we study. However,

Table 1. Summary of the studied speech measures by speech task.

Diadochokinetic-AMR Diadochokinetic-SMR Read Spontaneous

Consonant production measures

CoV of voiceless stop VOTs CHR 0.31 (0.09) 0.39 (0.1) 0.43 (0.1) 0.4 (0.09)

HC 0.27 (0.1) 0.35 (0.09) 0.39 (0.07) 0.4 (0.07)

p 0.05 0.02 0.03 0.73

CoV of voiced stop VOTs CHR 0.7 (0.26) 0.66 (0.26)

HC 0.71 (0.26) 0.58 (0.31)

p 0.67 0.18

Speech rate measures

CoV of speech rate CHR 0.07 (0.04) 0.1 (0.05) 0.2 (0.05) 0.43 (0.45)

HC 0.05 (0.04) 0.08 (0.04) 0.18 (0.06) 0.37 (0.32)

p <0.01 0.01 0.04 0.52

Vowel production measures

CoV of vowel durations CHR 0.2 (0.09) 0.43 (0.12) 0.56 (0.05) 0.74 (0.11)

HC 0.17 (0.09) 0.4 (0.15) 0.56 (0.06) 0.73 (0.09)

p 0.13 0.18 0.42 0.72

Formant dispersion 20% CHR 158.63 (86.4) 211.7 (85.72) 341.76 (53.41) 357.52 (48.52)

HC 128.85 (64.57) 185.02 (75.8) 332.5 (48.44) 362.32 (58.29)

p 0.03 0.08 0.33 0.77

Change in formant dispersion 20–50% CHR 14.59 (21.02) 20.33 (20.06) −22.07 (14.82) −4.5 (16.36)

HC 10.68 (20.01) 19.41 (19.17) −21.99 (15.2) −2.06 (17.79)

p 0.33 0.81 0.98 0.48

Overlap between vowel categories CHR 0.8 (5.91) 0 (0)

HC 0 (0) 0 (0)

p 0.64 0.45

Timing/pausing measures

CoV of syllable durations CHR 0.21 (0.09) 0.39 (0.1)

HC 0.17 (0.08) 0.36 (0.13)

p 0.11 0.1

CoV of intersyllable durations CHR 0.42 (0.25) 0.9 (0.27)

HC 0.34 (0.18) 0.82 (0.23)

p 0.05 0.17

Number of pauses CHR 0.1 (0.03) 0.15 (0.05)

HC 0.09 (0.03) 0.14 (0.07)

p 0.13 0.4

For each speech measure/speech task combination, the table provides descriptive statistics [mean (standard deviation)] by group (CHR vs. HC), as well the p-
value corresponding to the CHR vs. HC group difference test. Blank cells indicate that the speech measure in question was not calculated for the speech task in
question. Measures are bolded if they show a significant CHR vs. HC group difference and italicized if just above significance. CoV coefficient of variation, VOT
voice-onset-time.
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Fig. 1 CHR vs. HC group differences in consonant and speech rate variability across the four studied speech tasks. CHR individuals
produce more variable consonants (left plot in each row) and speech rates (right plot in each row) compared to controls in A diadochokinetic-
AMR, B diadochokinetic-SMR, and C read speech, but not D spontaneous speech. Each black dot is one participant; the white dot is the
average across participants.
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contrary to predictions, we found that increased speech variability
did not correlate with non-speech motor measures, symptom
severity, or conversion risk scores. Follow-up analyses suggest that
these comparisons may have been underpowered and, in
particular, affected by a midway shift from in-person to remote
testing. This theory-driven analysis provides a thorough first look
at how speech production is affected in the CHR population and
speaks to the promise and challenges facing this approach to
measuring motor symptoms.

Not all aspects of speech are affected and not in all contexts
Our findings converge with Parola et al.’s43 meta-analysis, which
found that other aspects of speech rate were one of the three
strongest acoustic factors differentiating groups (n.b. they did not
study voice-onset-time or speech rate variability). This stands in
notable contrast to past findings in the field, which generally
showed mixed results across studies (i.e., the particular speech
measures that differed between groups differed depending on the
study and speech samples; see discussion in Hitczenko et al.61).
We believe this consistency across speech tasks and convergence
with past studies reflects the benefits of adopting a theory-driven
approach when studying highly variable speech signals.

That being said, most of the speech measures did not show
group differences. In particular, we failed to find effects of
variability of voiced consonant voice-onset-times (b,d,g), which
likely reflects motor control demands. Specifically, English
voiceless consonants involve more motor coordinating/timing
than voiced consonants, as the vocal folds need to be suppressed
for a specific amount of time62–67. We also failed to find the
expected effect for vowels. This is less expected, but one
possibility is that it may reflect the more precise articulatory and
timing requirements for stop consonants, which are overall much
shorter than vowels.
In addition to variable results across measures, group differ-

ences only appeared in some of the speech tasks: diadochoki-
netic-AMR, diadochokinetic-SMR, and read speech, but not
spontaneous speech. This may reflect the degree to which
different tasks present challenges to speech articulation. Diado-
chokinetic speech involves unnatural rapid repetition of syllables,
while the passage participants read includes many low frequency
words (e.g., Aristotle, bow, refraction). Indeed, qualitatively,
participants often remarked on the difficult aspects of these tasks,
or produced disfluent speech. These sorts of targeted, more
challenging speech tasks may be necessary for detecting the
impact of motor disruptions on speech articulation. Another
possibility is that this simply reflects statistical power; the

Table 2. Correlations between speech measures that show CHR vs. HC group differences and non-speech motor/clinical/risk validation measures.
Note that the spontaneous speech task is not included as we did not observe significant group differences in that task.

Diadochokinetic-AMR Diadochokinetic-SMR Read Speech

Voiceless VOT CoV Speech rate CoV Voiceless VOT CoV Speech rate CoV Voiceless VOT CoV Speech rate CoV

SIPS positive total r= 0.1 (p= 0.79) r= 0.19 (p= 0.19) r= 0.08 (p= 0.84) r= 0.07 (p= 0.62) r= 0.28 (p= 0.12) r= 0.07 (p= 0.62)

SIPS negative total r= 0.23 (p= 0.28) r= 0.07 (p= 0.64) r= 0.22 (p= 0.32) r= 0.18 (p= 0.21) r= 0.17 (p= 0.48) r= 0.05 (p= 0.7)

SIPS disorganized total r= 0.07 (p= 0.9) r= 0.26 (p= 0.08) r= 0.28 (p= 0.16) r= 0.13 (p= 0.37) r= 0.2 (p= 0.38) r= 0.02 (p= 0.89)

SIPS G3 (motor) r= 0.15 (p= 0.62) r= 0.11 (p= 0.48) r= 0.2 (p= 0.39) r= 0.06 (p= 0.68) r= 0.26 (p= 0.2) r= 0.11 (p= 0.45)

Finger-tapping CoV
(dominant hand)

r= 0.06 (p= 0.92) r= 0.08 (p= 0.6) r= 0.08 (p= 0.87) r= 0.09 (p= 0.54) r= 0.17 (p= 0.48) r= 0.11 (p= 0.47)

Finger-tapping CoV
(non-dominant hand)

r= 0.15 (p= 0.62) r= 0.29 (p= 0.05) r= 0.05 (p= 0.96) r= 0.1 (p= 0.51) r= 0.18 (p= 0.49) r= 0.39 (p= 0.01)

SIPS-RC risk score r= 0.4 (p= 0.02) r= 0.07 (p= 0.65) r= 0.32 (p= 0.1) r= 0.09 (p= 0.53) r= 0.13 (p= 0.66) r= 0.1 (p= 0.51)
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Fig. 2 Correlation between variability in speech rate and variability in finger-tapping rate in the read speech task. We observe a
significant positive relationship between variability in speech rate and variability in finger-tapping rates in the non-dominant hand (left plot),
but not the dominant hand (right plot). Each point represents one participant; the line of best-fit is shown, with shaded regions showing
standard errors of the regression fit.
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spontaneous task was shorter, and the content was more variable,
which may have washed out subtle differences between groups.
In addition, there was some evidence of differences between in-

person and remote participants. Healthy control individuals
generally had more variable speech measures when tested
remotely vs. in-person, reducing our ability to detect group
differences. There has been substantial recent interest in
developing remote options for all manner of clinical assessment
(e.g., to reach individuals who are medically underserved68), but
this result reveals that these approaches need to be carefully
developed and validated. In the case of speech measures
specifically, our results likely reflect issues in an analysis pipeline
that was developed to analyze speech recorded in controlled
laboratory conditions. More broadly, expanding access to such
assessments requires developing analysis methods that are robust
to variation in testing and recording conditions.
Finally, when group differences did emerge, they were subtle. In

particular, the distributions over speech measures between the
CHR and HC subgroups overlapped substantially. Predicting group
membership from individual speech measures yielded categoriza-
tion accuracy rates between 60-65%, which is typically considered
inadequate (see Supplementary Materials 2.6 for categorization
analyses)69,70. It is important to stress that these measures are not
diagnostic on their own (after all, speech is affected by a large
number of interacting factors, only one of which is motor abilities).
Nonetheless, the fact that we observe group differences and
above-chance categorization rates supports the notion that
theoretically-motivated speech measures, in conjunction with

other sources of information, could be useful for diagnostics down
the line, and future work should continue to study this possibility.

Speech measures did not correlate with motor, clinical, or
conversion risk variables
While the observed group differences provide converging support
that speech/motor symptoms are observed very early in the
progression of psychosis, the biggest challenge facing these
speech measures is that they mostly did not correlate with clinical/
motor/risk variables. This could reflect insufficient power. We had
non-speech motor symptoms for ~50 CHR participants, which
would only let us detect effect sizes of ~0.39 or higher (α= 0.05;
β= 0.9). Exploratory analyses studying the relationship between
motor and clinical measures in our sample (Supplementary
Materials 2.9) suggest that our particular sample and measures
may have been insufficient to detect the typical clinical-high-risk
motor profile, which would also weaken our ability to detect
speech-motor relationships. Relatedly, the clinical-high-risk parti-
cipants in our sample all had a relatively low risk of conversion (i.e.,
risk scores of 10.1% or lower), so there may not have been enough
variability in clinical status in our sample to detect significant
effects between speech measures and risk/symptom severity
scores. Finally, we had to adapt our data collection procedure
partway through to adhere to pandemic-related restrictions,
including shortening the finger-tapping task and collecting
speech samples remotely (participants were mailed audio
recorders to their homes). While these changes were unavoidable,
they reduced our power (e.g., by reducing the number of finger-
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tapping observations) and may have affected reliability, by
introducing noise into our measures. We provided extensive
guidelines, but ultimately had limited control over the partici-
pants’ environment (e.g., how noisy it was) and equipment (e.g.,
keyboard). Beyond practical task differences, the pandemic also
may have had a substantial effect on individuals’ mental health,
further increasing variability71,72.
Nonetheless, even though the speech measures did not

correlate with clinical/motor variables, the fact that they differed
by clinical status (CHR vs. HC), which is assigned based on clinical
interview, means that, on some level, these measures must be
related to symptomatology. In addition, the speech differences we
observe could reflect motor abnormalities that are not captured
by previously-developed measures (e.g., finger-tapping). In this
case, we would not expect to see a correlation between the
speech measures and previously-developed measures, but the
speech measures would nonetheless be clinically informative. In
sum, these differences are worthy of further investigation to
understand what these speech measures reflect and how they can
help researchers/clinicians.

Recommendations for future approaches
Based on our results, future studies should prioritize difficult
speech tasks that specifically target the speech feature of interest
(e.g., diadochokinetic speech involving both voiceless/voiced
consonants and a variety of vowels; sustained phonation tasks).
An additional benefit of the more targeted measures is that they
are easily transferable across other languages (many languages
have the diadochokinetic speech syllables), which will be critical
for establishing the validity and generalizability of these measures
across populations73.
It would also be informative to systematically vary the phonetic

(and other types of) complexity of the speech stimuli used (as in
Kuruvilla-Dugdale et al.74), in order to systematically test whether
more difficult speech stimuli better reveal the subtle differences in
motor performance between clinical-high-risk and healthy parti-
cipants, and are more sensitive to clinical severity/risk. Future
studies should also study other motor measures that have been
shown to capture motor/cerebellar abnormalities in early psycho-
sis (e.g., pursuit rotor procedural learning tasks75, in which
participants track a moving target with a computer mouse, or
postural sway tasks9,76, in which participants’ balance is evaluated
in various standing conditions). Because many existing motor
tasks are difficult to adapt to remote testing, the COVID-19
pandemic limited the motor measures we could collect from our
participants, but these tasks tap into distinct components of
motor control (timing, motor learning, coordination, etc.), and
determining which (if any) of them correlate with the speech
measures we study will be important.
Finally, the clinical-high-risk group is heterogeneous and future

work should identify and study well-motivated subgroups26,77,78.
This is important because speech is affected by motor abilities, but
also many other factors. For example, past work has often studied
speech as a window into negative symptoms43. Even within the
motor domain, it is possible that several motor networks may be
impacted in this population (e.g., some individuals may show
increased motor variability, while others may exhibit catatonia, or
a reduction in movement variability/increase in rigidity)4,59,79, and
that numerous distinct motor signs may be present in the same
individuals26. While the motor deficits we focus on here should
result in more speech variability, researchers adopting other
focuses may predict that individuals will exhibit less speech
variability. Competing effects of this sort could obscure a clear
relationship between speech and symptoms. To address this issue,
future work could collect a larger clinical-high-risk sample and
identify subgroups (e.g., one that primarily shows negative
symptoms, one that primarily shows increased motor variability,

one that shows increased motor rigidity) and test whether they
show different speech profiles in accordance with their different
symptom profiles.
Overall, however, while many questions remain, the present

work provides a solid foundation for future work investigating the
insights that speech production can provide for understanding
the mechanisms impacted in individuals at clinical-high-risk for
psychosis.

METHODS
Participants
N= 122 participants (N= 56 CHR; N= 66 HC) provided speech data,
though not everybody provided data for all three tasks. The data of
two CHR participants were excluded: one dropped out of the study
and the other was later determined to have been erroneously
classified as high-risk. This left N= 104 (N= 51 CHR; N= 53 HC)
diadochokinetic speech samples, N= 120 (N= 55 CHR; N= 65 HC)
read speech samples, and N= 100 (N= 50 CHR; N= 50 HC)
spontaneous speech samples. The Structured Interview for Prodromal
Syndromes (SIPS) was used to determine the clinical status of each
participant (CHR vs. HC)80. See Table 3 for participant demographics.

Speech tasks
Working one-on-one with an experimenter, participants provided
three speech samples, recorded via a Zoom H2n portable audio
recorder (44.1 kHz sample rate; 16-bit recording; X/Y recording
configuration; no compression/limiting or low-cut filtering was
used). Participants were seated 16 inches from the recorder and
worked with the experimenter to ensure proper audio/gain levels
prior to recording.

Diadochokinetic speech task. Participants first completed a
diadochokinetic speech task, commonly-used to examine speech
motor abilities, in which they were asked to produce particular
syllable types as quickly and accurately as possible54,55. They first
produced 12 Alternating Motion Rate (AMR) trials, repeating a
target syllable 15 times (two trials each of: pa-pa-pa…, ta-ta-ta…,
ka-ka-ka…, ba-ba-ba…, da-da-da…, ga-ga-ga…). They then
produced 20 Sequential Motion Rate (SMR) trials, producing
sequences of three syllables 10 times each per trial (10 trials each
of pa-ta-ka… and ka-ta-pa…).

Read speech task: Rainbow passage. Participants then read aloud
the Rainbow Passage at a comfortable pace (passage in
Supplementary Materials 1.1)81. The passage is commonly-used
for eliciting read speech, as it is phonetically balanced (covering all
English speech sounds) and emotionally neutral. The Rainbow
Passage has quite a few low-frequency words (e.g., “Aristotle”,
“refraction”), so it is relatively difficult to read. This speech task
allows us to precisely control the speech content, while eliciting a
more naturalistic speaking style than diadochokinetic speech.

Spontaneous procedural description task: Peanut butter and jelly.
Finally, we elicited spontaneous speech, by asking participants to
describe how to make a peanut butter and jelly sandwich for
~2min. Unlike the other tasks, the speech content differed
between participants (though many words overlapped: e.g.,
peanut, butter, knife). Such procedural description tasks are less
emotionally and cognitively demanding than personal narratives
while still generating a large volume of speech82.

Speech measures
At a high-level, for each participant, for each speech sample, we
estimated how variable (i) their consonant productions, (ii) their
vowel productions, (iii) their speech rates, and (iv) their pausing/
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timing were using semi-automated methods83–86. Semi-
automated methods greatly increase the amount of speech we
can study, as extracting speech measures by-hand is extremely
time-consuming, and ensure that our measurements are consis-
tent and replicable (analysis code is available at github.com/
khitczenko/chr_speech; the National Institute of Mental Health
Data Archive provides de-identified clinical, risk, and demographic
information). As a result, we focused on speech measures that
have been extremely well-studied and can be reliably measured
automatically. The main text focuses on (i) variability in the voice-
onset-time of stop consonants (in English: p,t,k,b,d,g), or the time
that elapses between the release of the consonant and the onset
of the following vowel, (ii) variability in the duration of vowels, and
(iii) variability in speech rates (calculated at the syllable level). We
discuss the remaining speech measures we studied48–53 in Table 1
and Supplementary Materials 1.3.
For the diadochokinetic speech samples, we used DDKtor86

(https://github.com/MLSpeech/DDKtor) - a deep neural network
model specifically trained to match human annotations of
diadochokinetic speech - to automatically obtain the onset and
offset (and thus, duration) of each stop consonant, vowel, and
syllable given hand-selected windows of analysis which corre-
sponded to the individual diadochokinetic trials. For the read and
spontaneous speech, we first used the Montreal Forced Aligner85

(https://github.com/MontrealCorpusTools/Montreal-Forced-
Aligner) to automatically align a transcript we created for each
speech sample to its audio. The Montreal Forced Aligner uses a
pronunciation dictionary and a trained acoustic model (specifi-
cally, a GMM-HMM model triphone model trained from MFCC
features) to provide the onset and offset (and thus, duration) of
each vowel, consonant, and syllable produced. We then applied
AutoVOT87,88—a discriminative learning algorithm trained to
match human voice-onset-time measurements - to the aligner
output to obtain even more reliable onsets and offsets for the stop
consonant voice-onset-times. Finally, we used the FastTrack
software84 (https://github.com/santiagobarreda/FastTrack) to
automatically obtain measurements of the first and second
formant for each vowel that was output either from DDKtor (for
diadochokinetic speech) or from the Montreal Forced Aligner (for
read and spontaneous speech). FastTrack uses linear predictive
coding to systematically identify candidate formant analyses for
each vowel, from which it selects one winning analysis based on
the smoothness of the predicted formant contours. We followed
all recommendations provided by the creators of these tools (see
Supplementary Materials 1.2 for full details).

These automated tools have been evaluated in the context of
previous work and are highly reliable. The DDKtor software
matches human annotations of diadochokinetic segment duration
with correlations of r= 0.85-0.90 and matches human annotation
of diadochokinetic speech rate with correlations of r= 0.94–0.9786.
The Montreal Forced Aligner has an average phone boundary
error of ~20ms, across both isolated word productions and
conversational speech, comparable to human interrater reliabil-
ity85. For the AutoVOT software, ~90% of its predicted voice-onset-
times are within 10–15ms of gold-standard human annotation,
again paralleling interrater reliability rates87,88. Finally, FastTrack
has an average error of ~20 Hz and 98.9% of vowels have errors of
less than 5% of the human-annotated value84. Overall, these tools
perform comparably to human annotators and, when applied to
our speech samples specifically, result in valid measurements that
match expected average values (Supplementary Materials 1.4).
We measure variability using coefficients of variation, which

control for potential differences in means, calculated as follows89:
Coefficient of Variation ¼ StandardDeviation

Mean
All measures are log-transformed in the analyses (as they tend

to be skewed right, due to lower bounds at 0).

Variability in consonant duration. We focused on syllable-initial
stop consonants (in English: p, t, k, b, d, g) that precede vowels
(e.g., the bolded sounds in “passerby”, “pulp”, “peanut”, but not
the “p” in “prism”), as they have easily-measurable acous-
tics45,90. In the diadochokinetic speech tasks, we restricted our
analysis even further to only include voiceless stop consonants
(in English: p, t, k), as the automated tool we use for this task
has only been validated for this subset. We used the voice-
onset-time duration of each consonant to calculate: (i) the
coefficient of variation over voiceless stop (p,t,k) consonants
(all speech samples) and (ii) the coefficient of variation over
voiced stop (b,d,g) consonants (read and spontaneous
speech only).

Variability in vowel duration. We focused on vowels that bear
primary stress (e.g., only the bolded sounds: “element”, “awaken”,
“analysis”) as they have easily-measurable acoustics. We used each
relevant vowel’s duration to calculate the coefficient of variation
across vowel tokens in each speech sample.

Variability in speech rate. Speech rate was calculated as the
number of syllables participants produced per second. For
diadochokinetic speech, we calculated the speech rate of each

Table 3. Summary of participant demographic information.

Clinical high-risk (CHR) Healthy controls (HC)

N 56 (In-Person: 26; Remote: 30) 66 (In-Person: 44; Remote: 22)

Sex (% Female) 60.7% (In-Person: 50%; Remote: 70%) 62.1% (In-Person: 59.1%; Remote: 68.2%)

Age (SD) 21.8 (2.8) (In-Person: 21.5 (2.4); Remote: 22.1 (3.1)) 21.7 (3.2) (In-Person: 21.2 (3); Remote: 22.7 (3.5))

Race 44.6% White; 19.6% Black; 17.9% Asian; 8.9% Central/South
American; 1.8% Native Hawaiian or Pacific Islander; 7.2%
Multiracial (1.8% First Nations & White; 1.8% Black & White; 3.6%
Asian & White)
(In-Person: 38.5% White; 30.8% Black; 19.2% Asian; 11.5% Central/
South American; Remote: 50% White; 10% Black; 16.7% Asian;
6.7% Central/South American; 3.3% Native Hawaiian or Pacific
Islander; 13.2% Multiracial (3.3% First Nations & White; 3.3% Black
& White; 6.7% Asian & White))

45.5% White; 9.1% Black; 28.8% Asian; 3% First Nations; 13.6%
Multiracial (1.5% First Nations & White; 1.5% Black & White; 3%
Asian & White; 7.6% not reported)
(In-Person: 50% White; 13.6% Black; 25% Asian; 2.3% First
Nations; 9.1% Multiracial (not reported); Remote: 36.4% White;
36.4% Asian; 4.5% First Nations; 22.7% Multiracial (4.5% First
Nations & White; 4.5% Black & White; 9.1% Asian & White; 4.5%
not reported))

Ethnicity 26.8% Hispanic; 73.2% Not Hispanic (In-Person: 23.1% Hispanic;
Remote: 30% Hispanic)

10.6% Hispanic; 89.4% Not Hispanic (In-Person: 11.4% Hispanic;
Remote: 9.1% Hispanic)

First Language 62.5% English; 17.9% Other; 19.6% Not reported (In-Person:
73.1% English; 26.9% Other; Remote: 53.3% English; 10% Other;
36.7% Not reported

80.3% English; 18.2% Other; 1.5% Not reported (In-Person: 81.8%
English; 15.9% Other; 2.3% Not reported; Remote: 77.3% English;
22.7% Other)
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individual trial and calculated the coefficient of variation across all
trials produced. For read and spontaneous speech, we calculated
the speech rate of delimited phrases, defined as any spoken
interval between silences of at least 150ms91. We then calculated
the coefficient of variation across all produced phrases.

Non-speech validation measures
We used symptom severity measures, non-speech motor mea-
sures, and risk measures to establish the clinical, convergent, and
predictive validity of the speech measures.

Clinical utility: Symptomatology. We assessed symptom severity
with SIPS scores80. We focused particularly on the positive
symptoms, negative symptoms, and disorganized symptoms
totals to study how broadly clinically useful the speech measures
are. In addition, we looked at the individual item G3 (“Motor
Difficulties”—i.e., have you noticed any clumsiness, awkwardness,
or lack of coordination in your movements?) to provide
convergent validity of our speech measures as measuring motor
difficulties.

Convergent validity: Finger-tapping scores. Participants also com-
pleted a computerized finger-tapping task, a well-established
neuropsychological measure of motor deficits7,59,92–98. This is an
ideal task because it taps into broad motor network function,
including motor timing, which is often affected in motor speech
disorders, has been found to be sensitive to mechanisms driving
psychosis, and is readily amenable to reliable and valid in-person
and remote assessments7,26,92,99–110. In this task, participants are
instructed to press the spacebar with their index finger as quickly
as possible for 10 s. They complete three trials per hand.
Motivated by previous work59,111 and to parallel our speech
measures, we study the coefficient of variation in number of taps
across trials, calculated separately for the dominant and non-
dominant hands.

Predictive validity: SIPS risk calculator. Finally, we use the SIPS-RC
risk calculator112 to calculate a probability estimate of each
participant’s risk of conversion to psychosis within one year (from
SIPS and General Functioning scores109). SIPS-RC scores can range
from 0.4% to 46.9%, but range from 0.8% to 10.1% in our sample.

Adaptations to remote testing
Data collection occurred between 2019–2022, and our study had
to be adapted to the remote format partway through due to the
COVID-19 pandemic.
We adapted speech data collection, by mailing participants the

same Zoom H2n recorders that had been used in the lab prior to
the pandemic and having an experimenter administer the tasks
over Zoom (tele-conferencing software). Similarly, all clinical
interviews were conducted over Zoom beginning March 2020.
Finally, the finger-tapping task, which, prior to March 2020, was
collected in-lab as part of the Penn computerized neurocognitive
battery113 and included 5 trials per hand was adapted into a
shortened, online version, where participants only completed 3
trials per hand. To equate these measures, only the first 3 trials
from each in-person participant’s task were used.

Analyses
We run separate analyses for each speech measure in each speech
sample type114–119. First, to test our prediction that CHR
individuals exhibit more variability in their speech productions
relative to controls, we run a linear regression predicting each
speech measures (separately) from group status (CHR vs. HC). For
durational speech measures, we control for averaged speech rate,
by including it as an additional predictor in the regression. Next,

for each speech measure that significantly differentiates clinical
status, we test its clinical/convergent/predictive validity, by
running separate linear regressions predicting each validation
measure from each speech measure, within the CHR group only.
We use an alpha level of α= 0.05 for all statistical tests.

DATA AVAILABILITY
All speech measure data and analysis code used in this study are available at
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