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Genome-wide association study identified six loci associated
with adverse drug reactions to aripiprazole in schizophrenia
patients
Xueping Wang1,2,3,6, Dongli Mei4,6, Zhe Lu1,2,3, Yuyanan Zhang1,2,3, Yaoyao Sun1,2,3, Tianlan Lu1,2,3, Hao Yan1,2,3✉ and
Weihua Yue 1,2,3,5✉

Aripiprazole is recommended for routine use in schizophrenia patients. However, the biological mechanism for the adverse drug
reactions (ADRs) among schizophrenia patients with the antipsychotic drug aripiprazole is far from clear. To explore the potential
genetic factors that may cause movement-related adverse antipsychotic effects in patients, we conducted an association analysis
between movement-related ADRs and SNPs in schizophrenia patients receiving aripiprazole monotherapy. In this study, multiple
ADRs of 384 patients were quantified within 6-week treatment, and the scores of movement-related ADRs at baseline and follow-up
time points during treatment were obtained. The highest score record was used as the quantitative index in analysis, and genetic
analysis at the genome-wide level was conducted. The SNP rs4149181 in SLC22A8 [P= 2.28 × 10−8] showed genome-wide
significance, and rs2284223 in ADCYAP1R1 [P= 9.76 × 10−8], rs73258503 in KCNIP4 [P= 1.39 × 10−7], rs678428 in SMAD9
[P= 4.70 × 10−7], rs6421034 in NAP1L4 [P= 6.80 × 10−7], and rs1394796 in ERBB4 [P= 8.60 × 10−7] were found to be significantly
associated with movement-related ADRs. The combined prediction model of these six loci showed acceptable performance in
predicting adverse events [area under the curve (AUC): 0.84]. Combined with the function and network of the above genes and
other candidate loci (KCNA1, CACNG1, etc.), we hypothesize that SLC22A8 and KCNIP4-Kv channel perform their respective functions
as transporter or channel and participate in the in vivo metabolism or effects of aripiprazole. The above results imply the important
function of ion transporters and channels in movement-related adverse antipsychotic effects in aripiprazole monotherapy
schizophrenia patients.
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INTRODUCTION
Schizophrenia is a serious mental disorder with high inherit-
ability1,2. It mainly manifests in clinical emotion, thinking,
cognition, behavior and social functions. Epidemiological
investigation shows that the prevalence rate of schizophrenia
in the general population is approximately 1%1, and it usually
starts slowly or onset at a young age and lasts for one’s lifetime.
The process of schizophrenia is prolonged and repeated, which
can lead to mental disability and bring a heavy burden to
patients, family members and society. Due to the heterogeneity
of the disease, the exact pathological mechanism of schizo-
phrenia has not been clearly elucidated. It is generally believed
that both genetic susceptibility and environmental factors play
roles in the occurrence and development of the disease.
Antipsychotic drugs can relieve patients’ clinical symptoms,
but approximately 75% of patients have given up treatment
due to poor efficacy or side effects of drugs3. Common adverse
drug reactions to antipsychotics include extrapyramidal effects,
headache, weight gain, and QTc prolongation4. Environmental
factors, biological factors and therapeutic strategies may be the
fickle factors behind the difference in adverse drug effects5.
Serious adverse effects bring inconvenience and psychological
pain to patients. Studying pharmacogenetics and identifying
the genetic factors within adverse drug reactions can help us

develop personalized medication guidance and cope with
serious adverse symptoms. Among different adverse drug
reactions, the symptoms derived from the motor and nervous
systems are particularly complex. Therefore, a clear and
standardized monotherapy design can help us analyze the
underlying mechanisms of movement-related adverse
reactions.
Compared with first-generation antipsychotics, atypical/

second-generation antipsychotics have fewer extrapyramidal
and asthenia-related adverse reactions. Aripiprazole is an
atypical antipsychotic and is also known as a third-generation
antipsychotic6,7. The pharmacological mechanism of aripipra-
zole is mainly due to partial agonist activity at D2 and 5-HT1A
receptors and the potent antagonism of the 5HT2A receptor8,9.
Its metabolism is mainly through the dehydrogenation and
hydroxylation of CYP3A4 and CYP2D6 enzymes10. The possible
adverse reactions caused by aripiprazole include headache,
insomnia, dizziness, and restlessness4,11. Aripiprazole has less
effect on weight change4. Compared with olanzapine and
risperidone, aripiprazole is less likely to cause metabolic
adverse drug reactions4. However, genome-wide pharmacoge-
nomics studies on the adverse drug reactions of aripiprazole are
very limited. Previous studies mainly focused on the pharma-
codynamics of DRD2 and 5-HTR2A and the response to negative
symptoms and cognitive performance12–15. Movement-related
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adverse events, including extrapyramidal side effects, motor
restlessness and other abnormal movements, show individual
differences. The genetic basis underlying the individual
difference needs to be discovered.
Investigating the genetic mechanism of the movement-related

adverse drug response to aripiprazole is an urgent research
direction. Therefore, we conducted a genome-wide association
analysis in schizophrenia patients treated with aripiprazole
monotherapy to explore the genetic loci related to the severity
of movement-related antipsychotic effects.

SUBJECTS AND METHODS
Study design and participants
A total of 431 patients were recruited in the discovery cohort
study. According to the study protocol, we performed routine
baseline assessments at the start, including the general informa-
tion records, the DSM-IV-TR, and the inclusion/exclusion criteria
selection. Within 2 weeks after clinical inclusion, clinicians
adjusted the aripiprazole dosages based on the treatment
effectiveness (10–30mg/day). After that, the dosages remained
unchanged throughout the study period. The patients received
clinical evaluation at weeks 2, 4, and 6, and the assessments of
adverse drug reactions were recorded. Blood samples were
collected at baseline. All the clinicians and patients were blinded
in the study design. The patient could decide to leave the study at
any time, and then the patient will be dropped from the study. In
some cases, the patient cannot continue to participate, or the
clinician cannot contact the patient. If a patient did not complete
the full follow-up study, the last-observation carried-forward
procedure was applied, and the last recording was represented
as his/her treatment response. Combined with the SNP detection
and quality control results, 384 patients were included in the
information and polymorphism detection results in the analysis
stage. The study was approved by the research ethics committees
of hospital.
The inclusion conditions of the subjects in this study were as

follows: (1) diagnosed with schizophrenia based on the
Structured Clinical Interview of the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition, Text Revision (DSM-
IV-TR); (2) aged 18–45 years; (3) Han Chinese lineage; (4) total
scores more than 60 on the Positive and Negative Syndrome
Scale (PANSS); and (5) provided written informed consent. The
exclusion criteria were as follows: (1) pregnancy or breast-
feeding; (2) malignant syndrome or acute dystonia, well-
documented histories of epilepsy and hyperpyretic convulsion;
(3) a DSM-IV diagnosis of alcohol or drug dependence, or a
history of drug-induced neuroleptic malignant syndrome; (4)
had previously attempted suicide, or had experienced the
symptoms of severe excitement and agitation; (5) severe or
unstable physical diseases, such as abnormal liver or renal
function; (6) requirement of long-acting injectable medication
to maintain treatment adherence or regularly treated with
clozapine for treatment over the past month; (7) had QTc
prolongation, a history of congenital QTc prolongation within
the past 6 months. The validation samples were from the
Chinese Antipsychotics Pharmacogenetics Consortium (CAPEC),
and the research protocol had been documented in the
previous article16. In this set of data, serious adverse reactions
such as akathisia were recorded whether they occurred at
multiple timepoint. We extracted the SNPs genotype of five
significant candidate gene (rs2284223 undetected in current
genomic data). We used the gene’s overall risk score to predict
whether patients had an adverse effect of akathisia.

Phenotype definition
In discovery cohort study, the adverse drug reaction scores for
movement-related antipsychotic effects are the sum of three
assessment scales, including the Barnes Akathisia Rating Scale
(BARS), the Abnormal Involuntary Movement Scale (AIMS), and
the Simpson-Angus Scale (SAS). At baseline, all patients were
evaluated with the above assessment scales, and their
psychiatric symptoms and adverse drug reactions were
evaluated by clinicians at 2, 4, and 6 weeks of follow-up. The
BARS is scored according to its instructions17. Objective
akathisia, subjective awareness of restlessness, and subjective
distress related to restlessness are rated on a 4-point scale, and
the score ranges from 0 to 3. The global clinical assessment of
akathisia uses a 5-point scale ranging from 0 to 4. Therefore, the
summed total score ranges from 0 to 9. The AIMS is a scale
designed to assess abnormal involuntary movement18, primar-
ily tardive dyskinesia. This scale includes 12 items, and items
1–10 are graded from 0 to 4 (except items 11 and 12). The SAS is
a rating scale used to assess extrapyramidal side effects with 10
items ranging from 0–419. The adverse drug reaction phenotype
of validation sample was recoded as text tag, such as akathisia,
insomnia, tachycardia, etc.

Genotyping
Genomic DNA was extracted using the QIAamp DNA Mini Kit
(QIAGEN, Hilden, Germany). The samples were genotyped with
Human OmniZhongHua-8 Beadchips (Illumina, San Diego, CA, USA,
http://www.illumina.com/products/human-omni-zhonghua.html),
which were specifically designed for the Chinese population
genome as a gene detection chip. Preliminary quality control of
genome data was performed before the association analysis.
Sample results in the following conditions were discarded: (1) the
genotype call rate was less than 98%, (2) in the case of gender
discordance, (3) samples from the individuals were first-degree or
second-degree relatives, (4) samples were genetic outliers, (5) SNP
minor allele frequency was less than 0.05, and (6) P-values for
Hardy–Weinberg equilibrium were less than 1 × 10−6. Genotype
imputation for the samples was performed with the prephasing
imputation stepwise approach performed in IMPUTE2 and SHAPEIT.
Haplotypes derived from phase I of the 1000 Genomes Project
(release version 3) were used as references.

Statistical analyses
We hypothesized that adverse drug reactions in patients
treated with aripiprazole were associated with their own
genotypes and conducted association analyses at the
genome-wide level. After quality control, linear regression
under an additive genetic model was implemented to evaluate
the associations between allele dosage and adverse drug
reaction scores in PLINK (version 1.90)20,21. Gender, age,
baseline adverse effect score, medication dose, and the first
five principal components of population structure were used as
covariates in our analysis. After that, we used a P-value less than
5 × 10−8 as the data threshold for genome-wide significance. To
explore more adjacent significant sites, significance levels less
than 1 × 10−6 and 1 × 10−5 were also analyzed. We used the R
(version 4.2.2) CMplot package to draw the Manhattan plot.
Receiver operating characteristic (ROC) analyses were per-
formed using GraphPad Prism 6. Gene Ontology (GO) and
pathway enrichment analyses for candidate genes identified by
genome-wide association were performed with the R package
clusterProfiler. The backup data are from the Database for
Annotation, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/).
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RESULTS
ADRs scores indicate the movement-related adverse
antipsychotic effects
In this study, we recruited a total of 431 schizophrenia patients,
and 384 patients finally passed the clinical and genotype data
quality control. The movement-related adverse response was
represented by the ADRs score, which was obtained by summing
the scores of the three scales, including the Barnes Akathisia
Rating Scale (BARS), the Abnormal Involuntary Movement Scale
(AIMS), and the Simpson-Angus Scale (SAS). Table 1 shows the
age, sex ratio, average aripiprazole dose and ADRs Score. The
maximum quantitative value of ADRs scores was used for analysis,
and the baseline value was subtracted to eliminate the baseline
effect.

Genome-wide association results of aripiprazole treatment
movement-related ADRs
To identify genetic loci that might influence ADRs in aripiprazole
treatment, genome-wide association analysis was performed.
Figure 1 shows the quantile‒quantile plots, and Fig. 2 is the
Manhattan plot for ADRs samples. Here, 4386312 SNPs were
analyzed for movement-related adverse effects, and the linear
regression analysis model was used in PLINK. Table 2 shows the 6
genes that reached (P < 1 × 10−6) significance. The genetic locus
rs4149181 in SLC22A8 shows genome-wide significance
[P= 2.28 × 10−8], and rs2284223 in ADCYAP1R1, rs73258503 in
KCNIP4, rs678428 in SMAD9, rs6421034 in NAP1L4, and rs1394796 in
ERBB4 show significance with P < 1 × 10−5. Among the 6 genes, the
SNPs located in the KCNIP4 gene intron showed the best continuity
in the Manhattan plot (Fig. 2, Supplementary Fig. S1). There were
120 SNPs located in KCNIP4 reaching the significance threshold
(P < 1 × 10−5). The KCNIP4 gene is highly expressed in brain tissues
and mainly plays a role in synaptic function. The other 5 genes had
different spatiotemporal expression patterns in different brain
regions (Supplementary Figs. S2–S5). Moreover, the SNPs of
ADCYAP1R, KCNIP4, SMAD9, NAP1L4, and ERBB4 had eQTL effects
on themselves in the brain (Supplementary Figs. S6 and S7). There
are four gene loci (rs146319527, rs4747269, rs238842, and
rs9605090) that are significantly associated with ADRs, but these
loci currently lack gene annotation including RP11-17E2.2, 26 kb 3′
of RP11-461K13.1, CTA-481E9.4, and 14 kb 3′ of RTN4R (Supple-
mentary Table S1).

Potential predictive effect of gene loci on movement-related
ADRs
Since the six candidate genes were all significant (P < 1 × 10−6), we
tried to use them to predict the movement-related adverse effects
of aripiprazole. The different ADRs threshold values were applied
to the receiver operating characteristic curve (ROC curve) analysis,

and Fig. 3A shows the predictive effect of six SNPs to distinguish
movement-related adverse responses. In the classification model,
patients with ADRs scores greater than 10 points (including 10
points) were considered to have relatively serious movement-
related adverse reactions. The different alleles of SNPs were
weighted by the coefficient factor of the linear regression. The
area under the curve (AUC) was 0.84, with 38 serious adverse
response patients. Akathisia is usually seen as a more problematic
adverse reaction. The six SNPs also showed a valuable potential
predictive effect (AUC= 0.72), which was derived from 54 patients
who had akathisia during treatment (Fig. 3B). We tested the
predictive effect of our candidate risk genes in a small sample.
Among 39 patients who met the pharmacogenomic analysis
requirements, adverse drug reaction risk scores were calculated
for five SNPs (Supplementary Fig. S8). In the clinical records of
adverse drug reactions, there were four patients with severe
akathisia. Compared with the ranking of risk scores, the cases in
the top three of the ADRs score all had severe akathisia. This
further verifies the predictive effect of our analysis results.
Aripiprazole is mainly metabolized by CYP2D6 and CYP3A4. As

SLC22A8 has the highest expression in the kidney, we explored the
possible function of SLC22A8 in drug metabolism. CPY2D6 genotyp-
ing has been suggested in personalized aripiprazole dosing10, and
CYD2D6*10 has been characterized as a significantly decreased
function allele22. Here, we extracted the genotype of CYD2D6*10
(rs1065852) and analyzed the adverse drug reaction score depend-
ing on the genotypes of CYD2D6*10 and SLC22A8. The G allele of
rs4149181 is the higher-risk allele of SLC22A8. In the decreased
function allele of CYP2D6*10 (Fig. 4), the risk genotype carriers
showed higher adverse reactions, and the difference was significant
(P= 0.00143; AA, 2.53 ± 0.61, n= 91; GA+GG, 11.71 ± 2.60, n= 7).

GO and pathway analysis of genome-wide association results
To discover the molecular function and cellular pathway involved
in the movement-related adverse effects of aripiprazole, GO and
pathway enrichment analyses were applied with the candidate
genes with a significance level less than 1 × 10−5. From gene
annotation, there are several genes related to ion transporters or
ion channels, including SLC22A8, KCNIP4, KCNA1 and CACNG1
(Table 2 and Supplementary Table S2). Figure 5 shows the GO
terms, and detailed data on the GO terms are shown in
Supplementary Table S3. Consistent with the gene function,

Table 1. Demographic and clinical characteristics of 384 patients
following 6 weeks of aripiprazole monotherapy.

Index Mean ± SD or n (%)

Age at study entry, years 31.1 ± 7.8

Gender, n (%)

Men/women 182 (47.4)/202 (52.6)

Doses of medication, mg 23.9 ± 6.10

ADRs scoresa 4.07 ± 5.18

aADRs scores are the sum from three assessment scales, including the
Barnes Akathisia Rating Scale (BARS), the Abnormal Involuntary Movement
Scale (AIMS), and the Simpson-Angus Scale (SAS).

Fig. 1 Quantile–quantile for the ADRs sample. The plot was
generated with the data after quality control in PLINK and R
software.
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channel or transporter functions, including voltage-gated ion
channel activity (P= 0.000615) and regulation of metal ion
transport (P= 0.000285), are closely related to movement-
related adverse reactions induced by aripiprazole.
Previous research has reported that aripiprazole could inhibit

Kv1.4 and Kv4.3 channel opening in a concentration-dependent
manner23. In this study, we found a strong association between the
KCNIP4 gene and adverse reactions during aripiprazole treatment
in schizophrenia patients, while KCNA1/Kv1.1 also showed a
significant association (rs57468930, P= 1.56 × 10−6). As KCNIP4

and KCNA1/Kv1.1 are both dominantly expressed in the brain, the
protein‒protein interaction was further tested using a database
(PPI website, https://string-db.org/). As shown in Supplementary
Fig. S9, the interaction between KCNIP4 and KCNA1 had medium
to high confidence (interaction score = 0.503).

DISCUSSION
In this study, we explored the possible genetic loci and susceptible
functional genes associated with movement-related adverse

Fig. 2 Manhattan plots for the ADRs sample. Genome-wide P-values [-log10 (p); y-axis] of SNPs were plotted against their physical positions
on chromosomes (x-axis). The black line shows the genome-wide significance level (5 × 10−8); the dashed line shows the significance level for
1 × 10−5.

Table 2. Genome-wide association results of aripiprazole treatment ADRs.

CHR SNP Position Minor allele Major allele Frequency of minor allele Functional annotation Gene BETA SE P-value

11 rs4149181 62781921 G A 0.05339 intronic SLC22A8 4.436 0.7767 2.28 × 10−8

7 rs2284223 31111441 C T 0.2947 intronic ADCYAP1R1 2.166 0.3982 9.76 × 10−8

4 rs73258503 21872346 C T 0.1772 intronic KCNIP4 2.506 0.4666 1.39 × 10−7

13 rs678428 37484026 G A 0.05469 intronic SMAD9 4.077 0.7949 4.70 × 10−7

11 rs6421034 3007647 C T 0.122 intronic NAP1L4 2.769 0.5478 6.80 × 10−7

2 rs1394796 213270427 T C 0.06397 intronic ERBB4 3.903 0.7796 8.60 × 10−7

Fig. 3 Potential predictive effect of the six SNPs and ADRs scores. A ROC analysis indicated that the six most significant SNPs could
effectively predict the occurrence of serious adverse reactions (ADRs), and the threshold line for serious movement-related adverse reactions
in this analysis was defined as 10 or above. B The predictive effect of six SNPs in the occurrence of akathisia during treatment.
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reactions to aripiprazole monotherapy in schizophrenia patients.
The rs4149181 in SLC22A8 [P= 2.28 × 10−8] reached genome-wide
significant associations with ADRs. The rs2284223 in ADCYAP1R1,
rs73258503 in KCNIP4, rs678428 in SMAD9, rs6421034 in NAP1L4,
and rs1394796 in ERBB4 showed significant associations
[P < 1 × 10−6].
SLC22A8, also known as OAT3, is mainly expressed in the

kidney and is also expressed in the brain, retina, and testis24. It
belongs to the SLC22 family that encodes organic anion
transporters, and this gene family participates in drug absorp-
tion, disposition, and/or excretion25. The substrates of SLC22A8
include anionic drugs, estrone sulfate, bile acids, flavonoids, etc.
Evidence from gene knockout animals confirmed the function
of SLC22 transporters in pharmacological and toxicological
effects24. The genetic heterogeneity of the SLC22 family affects
transporter activity26, such as rs45566039 (p.R149C), resulting in
reduced transport capacity27. Through the combined analysis of
the two genotypes, we hypothesized the presence of CYP2D6
and SLC22A8 risk genes might play a synergistic role in drug
metabolism and clearance in vivo. The above drug metabolism
and clearing are carried out in the liver and kidney, respectively.
When the functions of both organs are affected, more serious
adverse reactions will be produced.
KCNIP4 is a member of the Kv channel-interacting protein

family, and it has a conserved EF-hand-like calcium-binding
motif in the C-terminus28,29. The KCNIP4 gene is mainly
expressed in the brain and plays a role in neurodevelopment
and neurite outgrowth30. Previous studies have shown that two
SNPs (rs876477, P= 2.69 × 10−5; rs16871892, P= 0.0109) of
KCNIP4 were correlated with attention-deficit/hyperactivity
disorder (ADHD) in children and adults31,32. In the genome-
wide association results of schizophrenia in the CATIE study,
rs1380272 (OR= 0.0522, P= 1.10 × 10−5) is an intron variant in
the KCNIP4 gene locus33. In an association screen analysis of
chromosome 4 for three major psychiatric disorders, including
schizophrenia, bipolar and major depressive disorder, research-
ers identified KCNIP4 as the outstanding gene that might build a
logical relationship among these disorders34. KCNIP4 is sig-
nificantly associated with suicidal ideation in antidepressant
treatment-related suicidal ideation35, and it also serves as a cell-

type-specific module in Autism’s Pathogenesis36. In a genome-
wide association study of ACE inhibitor-induced cough, KCNIP4
was significantly associated (OR= 1.3, P= 1.0 × 10−8) with ACEi-
induced cough risk37. The KCNIP4 gene was originally cloned as
a binding partner of Presenilin 2 (PS2), and it can co-form a
complex with the voltage-gated A-type K+ channel Kv4.2 and
modulate its function in the brain28,38. In a study of glutamate-
induced excitotoxicity, excessive expression of KCNIP4 can
produce protective effects on toxic nerves39. In conclusion, the
KCNIP4 gene is deeply involved in normal brain function
activities, and its gene polymorphism is generally associated
with mental disorders. Moreover, the protein‒protein interac-
tion clues between KCNIP4 and KCNA1 are highly consistent
with their function in the central nervous system, as KCNA1 was
identified as a pathogenic gene for epileptic ataxia and
dyskinesia40,41. Combined with the evidence of the channel
open blockade effect of aripiprazole on Kv channels, we
hypothesized that there might be a Ca2+ signal-KCNIPs-Kv
pathway involved in the movement-related adverse response in
aripiprazole treatment.
Other candidate genes, including ADCYAP1R1, NAP1L4, and

ERBB4, have been reported in mental disorders. The ADCYAP1R1
gene encodes a type I adenylate cyclase-activating polypeptide
receptor and is highly expressed in the brain. Most clinical
studies of the ADCYAP1R1 gene have focused on post-traumatic
stress symptoms and children’s fear conditioning42–46. The
results of a meta-analysis showed that the C allele of rs2267735
may increase the risk of PTSD, and the risk effect was higher in
women47. Moreover, rs2267735 is associated with major
depression symptoms in trauma-exposed women48, and
women with lower serum estradiol and lower ADCYAP1R1
expression showed higher PTSD symptoms44. ERBB4 encodes a
receptor tyrosine kinase and promotes inhibitory synapse
formation in pyramidal neurons49. ERBB4 mediates amyloid
β-induced neurotoxicity, which is a biomarker for Alzheimer’s
disease50, and Neuregulin1-ERBB4 signaling regulates the
inflammatory pain of electroacupuncture analgesia in the spinal
cord51. Moreover, the function of ERBB4 in dopamine neurons is
related to depression-like behaviors, and it regulates the
homeostasis of extracellular dopamine and norepinephrine in
catecholaminergic cells52. In animal models, ErbB4 (the homo-
logous gene in mouse) has been shown to work with NRG1 to
maintain glutaminergic activity in the amygdala, and ErbB4 is
sufficient and crucial for tone-cued fear conditioning53. Loss of
ErbB4 leads to dendritic spine loss in excitatory neurons, and
the dendritic spine loss also occurs in many psychiatric
disorders54. NAP1L4 is widely expressed in neurons and glial
cells. It was reported that NAP1L4 interacts with DGKζ to
attenuate hypoxic stress in the brain55. SMAD9 is involved in
bone morphogenetic protein (BMP) signaling and is associated
with high bone mass56. It acts as a transcriptional regulator in
BMP signaling57. Its polymorphism was associated with the risk
of essential hypertension in the Chinese population58.
In this study, a genome-wide association analysis was

conducted for movement-related adverse antipsychotic reac-
tions in patients treated with aripiprazole monotherapy, and
candidate genes such as SLC22A8 and KCNIP4 were identified.
Previous studies analyzing movement-related adverse effects in
schizophrenic patients with unrestricted drug use or using
different omics datasets for secondary analysis have identified
some susceptible gene loci59,60. This study provides new
pharmacogenomic evidence and potential signaling pathways
for aripiprazole treatment and constructs an adverse reaction
prediction model. Since the three rating scales (SAS, BARS, and
AIMS) are also used in the clinical assessment of tardive
dyskinesia (TD), our results might also have important value in
TD prediction. From our perspective, the main limitation of this
study is the sample size of validation cohort, and further cross-

Fig. 4 The ADRs of SLC22A8 affected by CYP2D6. The ADRs scores
of SNP (rs4149181) alleles in SLC22A8 affected by CYP2D6*10
(rs1065852). Box plot of rs4149181 (AA/GA+ GG) and the ADRs
scores depending on CYP2D6 polymorphism. The Kruskal‒Wallis test
was used for comparisons between groups with Bonferroni
correction. In the CYP2D6*10 AA genotype background, the alleles
of rs4149181 were significantly different (**P= 0.00143, data are
shown as the mean ± SE; AA, 2.53 ± 0.61; GA+ GG, 11.71 ± 2.60).
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validation and calculation of genetic risk prediction models in
other cohorts or disease groups.
In conclusion, we elucidated the role of ion transporter genes

and their associated regulatory proteins in movement-related
antipsychotic effects in aripiprazole treatment in schizophrenia
patients by genetic association analyses. The important func-
tional genes found in this study, such as SLC22A8, ADCYAP1R,
and KCNIP4, will be important candidates for further research on
the molecular signaling pathways of mental and nervous system
diseases. These genes may become specific drug targets for
future treatment of difficult clinical problems such as akathisia.
The KCNIP4 was significantly associated with ADHD, autism,
schizophrenia, bipolar and major depressive disorder, and this
also suggested that K+ channel-related calcium regulator
protein may be a common genetic basis in various mental
disorders.
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