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Increased cortical structural covariance correlates with
anhedonia in schizophrenia
Lingfang Yu1,4, Zenan Wu1,4, Dandan Wang1, Chaoyue Guo1, Xinyue Teng1, Guofu Zhang2, Xinyu Fang 3✉ and Chen Zhang 1✉

Anhedonia is a common symptom in schizophrenia and is closely related to poor functional outcomes. Several lines of evidence
reveal that the orbitofrontal cortex plays an important role in anhedonia. In the present study, we aimed to investigate
abnormalities in structural covariance within the orbitofrontal subregions, and to further study their role in anticipatory and
consummatory anhedonia in schizophrenia. T1 images of 35 schizophrenia patients and 45 healthy controls were obtained. The
cortical thickness of 68 cerebral regions parcellated by the Desikan-Killiany (DK) atlas was calculated. The structural covariance
within the orbitofrontal subregions was calculated in both schizophrenia and healthy control groups. Stepwise linear regression
was performed to examine the relationship between structural covariance and anhedonia in schizophrenia patients. Patients with
schizophrenia exhibited higher structural covariance between the left and right medial orbitofrontal thickness, the left lateral
orbitofrontal thickness and left pars orbitalis thickness compared to healthy controls (p < 0.05, FDR corrected). This results imply
that the increased structural covariance in orbitofrontal thickness may be involved in the process of developing anhedonia in
schizophrenia. The result indicated that the increased structural covariance between the left and right medial orbitofrontal
thickness might be a protective factor for anticipatory pleasure (B’= 0.420, p= 0.012).
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INTRODUCTION
Schizophrenia is a severe mental disorder that affects 0.5–1% of
the population worldwide1, and mainly manifests as positive
symptoms, negative symptoms, and cognitive impairments.
Negative symptoms tend to be residual after treatment and are
associated with poor functional outcomes of schizophrenia2,3.
Anhedonia is one of the most common negative symptoms in
schizophrenia, with an estimated prevalence rate arranging from
45 to ~80%4,5. Anhedonia refers to the reduced capacity to
experience pleasure in activities that individuals would normally
enjoy6 and is considered to be a vital aspect of psychiatric
disorders. The Measurement and Treatment Research to Improve
Cognition in Schizophrenia (MATRICS) consensus conference on
negative symptoms suggests that anhedonia is one of the five
categories of negative symptoms in schizophrenia7. In the
“Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition” (DSM-5), anhedonia is defined as “Lack of enjoyment
from, engagement in, or energy for life’s experiences; deficits in
the capacity to feel pleasure and take interests in things.”
Anhedonia has also been divided into consummatory anhedonia
and anticipatory anhedonia based on the components of
pleasure8. The former refers to the reduction in experiencing
pleasure when engaging in an enjoyable activity, while the latter
refers to the reduction in experiencing pleasure related to future
activities. It was assumed that the two different components of
anhedonia may involve distinct biological mechanisms. The
presence of anhedonia usually suggests an unfavorable situation,
such as treatment resistance and low quality of life in patients with
depression9, and poor outcomes and disability in patients with
schizophrenia10. Moreover, anhedonia may be responsible for a
higher risk of suicidal ideation and suicide attempts in schizo-
phrenia11,12. It was also observed that social anhedonia is closely

related to poorer neurocognitive functioning13. This highlights a
crucial need to elucidate how anhedonia develops.
The literature, while still incomplete, has revealed, part of the

biological underpinnings of anhedonia. Research into the
mechanisms underlying anhedonia plays an important role in
potentially mapping the brain abnormalities in anhedonia.
Recently, evidence has emerged that the orbitofrontal cortex
(OFC) is linked to anhedonia14. The OFC is located on the ventral
side of the frontal lobe and receives projections from visual,
olfactory, taste, and somatosensory regions15. Evidence has shown
that the OFC and the anterior cingulate gyrus are both related to
the pleasure sensation brought by taste16. It has been reported
that higher levels of physical anhedonia resulted in atypical OFC
sulcogyral patterns17, whose activity was found to be negatively
correlated with anhedonia14. Evidence indicates that different
subregions of the OFC are involved. The medial orbitofrontal
cortex (mOFC) is responsible for measuring the reward value of
stimuli, while the lateral orbitofrontal cortex (lOFC) is responsible
for measuring the punishment component in ongoing activities
and provides a basis for a change in behavior18. However, the role
of the OFC in reward has mainly been studied in patients with
depression. Evidence in schizophrenia patients is relatively rare.
Given that many other brain regions have also been reported to
be involved in anhedonia, the relationship of the intercortical
region may provide new insights into the mechanism of
anhedonia.
Structural covariance analysis is an important approach for

mapping intercorrelation between brain regions and is promising
for investigating neurodevelopmental abnormalities. There is
evidence that significant differences in structural covariance exist
between schizophrenia patients and healthy controls19. However,
whether structural covariance alteration contributes to the
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pathology of anhedonia is still unclear. Given that human
functional magnetic resonance imaging (MRI) studies and animal
studies have emphasized the crucial role of cortical regions,
especially frontal regions in anhedonia, we hypothesized that
anhedonia is related to structural covariance within the OFC. The
present study set out to delineate the cortical region abnormal-
ities within the OFC related to anhedonia in the construct of
consummatory and anticipatory pleasure in schizophrenia using
structure covariance analysis.

RESULTS
Demographic and clinical variables
A total of 80 subjects were included (35 patients with
schizophrenia and 45 healthy controls). There were no significant
differences in age, sex, marital status, and education level
(p > 0.05) between the schizophrenia group and the healthy
control group. The schizophrenia group showed significantly
lower score of the Temporal Experience of Pleasure Scale (TEPS)
(p < 0.05). The results are present in Table 1.

Structural covariance of brain regions within the OFC in
patients with schizophrenia and healthy controls
In schizophrenia group, 13 brain structural covariance were
significant. In healthy control group, there were 3 brain structural
covariance being significant. Finally, 13 brain structural covariance
were selected for between-group analysis (see more details in
Supplementary Material A). Significantly increased structural
covariance between the left and right mOFC thickness
(p= 0.012, FDR-corrected) and the left lOFC thickness and left
pars orbitalis cortical thickness (p= 0.032, FDR-corrected) were

found in patients with schizophrenia (see more details in Fig. 1
and Table 2).

Structural covariance related to anhedonia in schizophrenia
The stepwise regression analysis showed that structural covar-
iance between the left and right mOFC was positively related to
anticipatory pleasure (B’= 0.420, p= 0.012) and the sum of
anticipatory and consummatory pleasure (B’= 0.429, p= 0.010)
(see more details in Table 3).

DISCUSSION
It has been proposed that cortical regions, especially the frontal
cortex, control higher-order brain functions and exert control over
subcortical regions20,21. In this study, we investigated the
structural covariance abnormalities underlying anhedonia, and
there were several major findings. First, compared to healthy
controls, patients with schizophrenia manifested both consum-
matory and anticipatory anhedonia. Second, patients with

Table 1. Demographic and clinical information.

Schizophrenia group (n= 35) Control group (n= 45) t/χ2 p

Age/year 30.54 ± 9.590 28.18 ± 6.627 1.303 0.196

Sex/%(n) 0.470 0.497

Male 34.29(12) 42.22(19)

Female 61.71(23) 57.78(26)

Marital status/%(n) 0.954 1

Unmarried 62.86(22) 62.22(28)

Married 37.14(13) 37.78(17)

Divorced 0(0) 0(0)

Widowed 0(0) 0(0)

Education level/year 13.14 ± 3.751 14.20 ± 2.897 −1.423 0.159

Duration of illness/month 44.37 ± 37.505

Duration of antipsychotic medication/month 16.11 ± 9.640

Total antipsychotic dose (olanzapine equivalent)/mg 5721.43 ± 3451.370

PANSS

Positive subscale 16.09 ± 6.122

Negative subscale 16.06 ± 5.228

General psychopathology subscale 33.68 ± 8.745

PANSS total score 65.82 ± 16.484

TEPS

TEPS-ANT 37.37 ± 8.044 47.07 ± 6.576 −5.931 0.000

TEPS-CON 32.49 ± 7.298 39.56 ± 8.864 −3.817 0.000

TEPS total score 69.86 ± 13.597 85.73 ± 11.604 −5.630 0.000

PANSS positive and negative syndrome scale, TEPS Temporal Experience of Pleasure Scale, TEPS-ANT anticipatory pleasure subscale of TEPS, TEPS-CON
consummatory pleasure subscale of TEPS.

Table 2. Between group differences in structural covariance within
the OFC.

Structural covariance z value FDR-corrected
p value

The left mOFC–the right mOFC 4.511 0.012

The left lOFC–the left pars
orbitalis cortex

4.050 0.032

OFC orbitofrontal cortex, mOFC medial orbitofrontal cortex, lOFC lateral
orbitofrontal cortex.
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schizophrenia showed increased structural covariance in cortical
thickness. Third, the increased structural covariance between the
left and right medial orbitofrontal thickness was negatively
correlated with anhedonia in schizophrenia.

Anhedonia in patients with schizophrenia compared to
healthy controls
We found that patients with schizophrenia showed reduced
anticipatory and consummatory pleasure, which was congruent
with a recent meta-analysis indicating that patients with first-
episode or chronic schizophrenia experienced less consummatory
and anticipatory pleasure on average than healthy controls22. It is
assumed that anticipatory pleasure requires cognitive functions
that entail predicting future feelings of pleasure. Therefore,
anticipatory anhedonia might be associated with cognitive
impairments that commonly occur in patients with schizophrenia.
In addition, demotivating beliefs in schizophrenia patients with
negative symptoms may also impede anticipatory pleasure23.
Consummatory pleasure is more related to in-the-moment
pleasure and is thought to have a strong association with the
reward system24. However, consummatory pleasure in schizo-
phrenia has long been a debated topic. Many studies have found
that consummatory pleasure is intact in schizophrenia patients,
even in those with pronounced negative symptoms25,26. The
inconsistent results from other studies may result from differences
in patient characteristics. For example, most of the studies
included patients who were administered with antipsychotics.
Antipsychotics mostly exert treatment effects by regulating
dopaminergic systems, which are closely related to feelings of
pleasure and thereby influence the study results.

Increased structural covariance in cortical thickness in
schizophrenia
The regions exhibiting increased structural covariance in the
present study included the left and right mOFC, left lateral
orbitofrontal cortex and left pars orbitalis cortex.
Schizophrenia typically has an occult onset and exhibits a

protracted clinical course. Biological changes, including brain
structural and functional alterations, can occur during disease
progression or even before illness onset27–29. These alterations
may relate to the causes, features, or compensatory processes of
the disease. Network analysis has shown reorganization patterns
of brain function and structure30–32 and disturbances in regional
correlations such as the frontal regions in schizophrenia33,34.
Structural changes in brain regions usually appear in a pattern of
concomitant loss and thereby exhibit increased structural
covariance in schizophrenia35. Therefore, we expected a highly

organized change in key brain regions. Our observation supports
this conjecture.
The specific brain regions involved in the altered structural

covariance are promising for providing clues regarding the
mechanism of the disease. The OFC is a subdivision of the
prefrontal cortex that has been proved to be vital in schizo-
phrenia. It has been reported that the activation of apoptosis in
the OFC might contribute to the development of schizophrenia36.
The OFC volume has also been found to be correlated with
negative symptom severity in schizophrenia37. In addition, the
OFC is responsible for emotional and executive functioning,
decision-making, and reward-related behavior, and is associated
with emotional disturbances such as social withdrawal, apathy,
and depressed mood, which are commonly seen in schizophre-
nia38,39. Regional specificity within the OFC further suggests that
the mOFC is activated by emotional stimuli40. The lOFC is involved
in the process of evaluation, learning of risky bias41,42 and
emotions such as regret43. Although studies on the pars orbitalis
are scarce, the role of pars orbitalis in semantic deficits has been
demonstrated44. The present study suggests that the left and right
mOFC, the left lOFC, and the left pars orbitalis were essential
regions involved in schizophrenia. Although the literature
indicates that these regions might be related to cognitive and
emotional disorganization in schizophrenia, longitudinal studies
are necessary to fully interpret how these alterations correlate
with the characterization, staging, and development of the
disease.

Increased structural covariance in cortical thickness correlated
with anhedonia in schizophrenia
As discussed above, we found that schizophrenia patients had
significantly lower TEPS score (more severe anhedonia) and
increased structural covariance compared to normal controls.
What this may indicate is that increased structural covariance may
associate with lower TEPS score in schizophrenia patients.
However, our further analysis reached the opposite conclusion
that the increased structural covariance was positively correlated
with higher TEPS score (more mild anhedonia) in these patients. In
view of this opposite finding, we reasoned that the phenomenon
of increased structural covariance in patients might be a
protective effect in patients with schizophrenia against anhedonia.
Anhedonia is one of the most important symptoms of schizo-
phrenia and has a high prevalence rate. In biochemical terms,
ample evidence supports that dopamine dysregulation is involved
in the pathological mechanism of anhedonia45. In addition, the
association between anhedonia and dopamine dysregulation in
the OFC has been reported. Previous positron emission tomo-
graphy studies recruited healthy volunteers and showed that

Table 3. Results of stepwise logistic regression analysis.

Pleasure experience partial_p B SE B’ t p 95% CI for B

Lower Upper

TEPS-ANT The left
mOFC
thickness–right
mOFC
thickness

2.611 0.982 0.420 2.660 0.012 0.614 4.608

TEPS total score The left
mOFC
thickness–right
mOFC
thickness

4.503 1.652 0.429 2.726 0.010 1.142 7.864

TEPS-ANT the anticipatory pleasure subscale of temporal experience of pleasure scale, TEPS Temporal Experience of Pleasure Scale, mOFC medial orbitofrontal
cortex.
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reward learning processes were correlated with dopamine release
in the mOFC and dorsal anterior cingulate cortex (ACC)46. Studies
including attention deficit hyperactivity disorder or cocaine-
dependent subjects also indicated that OFC dysfunction was
related to altered dopamine function47,48.
On the brain functional and structural level, the OFC is

considered to play a crucial role in anhedonia. In major depressive
disorder, lower OFC gamma activity was correlated with blunted
reward learning49, and neural reward prediction error signals in
the mOFC were negatively correlated with anhedonia using
computational modeling50. In schizophrenia, diffusion tensor
imaging studies showed that reduced fractional anisotropy in
the left posterior mOFC-ACC was associated with anhedonia39,51.
In summary, the association between the OFC and anhedonia is

multifaceted and interconnected (dopamine function, regional
structure and function), although further studies are needed to
measure dopamine activity in the OFC. What we found in the
structural covariance category has added new evidence for
the role of the mOFC in anhedonia in schizophrenia patients.
The increased structural covariance between the left mOFC and
right mOFC may be a compensatory process for anhedonia in
schizophrenia. However, in order to obtain stronger evidence, a
longitudinal study design to identify a clear relationship between
structural covariance and anhedonia is required.

LIMITATIONS
Several limitations should be addressed here. First, this is a cross-
sectional study. Hence, the change in anhedonia, as well as the
structural covariance over the stages of schizophrenia, is
unknown. Second, we must admit that the evidence of the
protective function of increased structural covariance between the
left and right mOFC is relatively weak. As such, prospective studies
are needed to provide a more convincing result. Third, the present
study aimed to reveal the structural covariance between cortical
thickness; therefore, the role of cortical-subcortical interaction
cannot be determined. Forth, due to the relatively small sample
size, we were unable to perform stratified analysis to exclude the
influence of the duration of illness and the medication history.

CONCLUSION
In the present study, we identified an increased structural
covariance mainly in frontal regions, and the increased structural
covariance between left and right mOFC might exert a protective
effect on anhedonia in schizophrenia.

METHODS
Subjects
We recruited 80 subjects altogether (35 patients with schizo-
phrenia and 45 healthy volunteers). The inclusion criteria of the
schizophrenia group were as follows: (1) met the diagnostic
criteria of schizophrenia in the “Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition” (DSM-IV); (2) a minimum
education year of 9; (3) was aged from 18 to 50; (3) was Han
Chinese and right-handed; (4) did not take antipsychotic medicine
within the last 2 weeks; (5) did not have severe somatic diseases
such as brain disease; (6) did not have contraindications for MRI;
(7) did not receive physical therapy such as transcranial magnetic
stimulation or transcranial direct current stimulation within the
last 6 months; and (8) did not have any history of psychiatric
comorbidity. Schizophrenia patients were recruited from the
Shanghai Mental Health Center as outpatients. Every individual
was interviewed by two independent and experienced psychia-
trists using the “Mini-International Neuropsychiatric Interview”
(MINI). We recruited healthy volunteers through advertisement,

and each of them was interviewed by an experienced psychiatrist
using the MINI. The inclusion criteria for healthy controls were as
follows: (1) a minimum education year of 9; (2) aged from 18 to 50;
(3) Han Chinese and right-handed; (4) no history or family history
of mental illness; (5) no contraindications for MRI; and (6) no
severe somatic diseases. All participants were asked to provide
written informed consent. The present study was reviewed and
approved by the Review Board of the Shanghai Mental Health
Center.

Demographic, clinical, and anhedonic assessments
Demographic information was collected from all participants,
including age, sex, education level, duration of illness, marital
status, duration of antipsychotic medication, and total antipsy-
chotic dose (olanzapine equivalent) calculated based on defined
daily doses. Assessment of clinical symptoms of schizophrenia was
performed by trained researchers using the Chinese version of the
Positive and Negative Syndrome Scale (PANSS)52. The Temporal
Experience of Pleasure Scale (Chinese version)53 was used to
assess anhedonia. The TEPS consists of the anticipatory pleasure
subscale (TEPS-ANT) and the consummatory pleasure subscale
(TEPS-CON), which reflect anticipatory pleasure and consumma-
tory pleasure, respectively.

Imaging data acquisition
Brain image data were collected on a 3 Tesla Siemens Prisma
magnetic resonance image (MRI) system equipped with a 64-channel
radiofrequency coil. All participants underwent high-resolution T1-
weighted anatomical imaging. The parameters were: TR= 2000ms,
TE= 2.32ms, flip= 8°, 208 slices with thickness= 0.9mm,
FOV= 230mm * 230mm; and matrix= 256 * 256. Each subject was
instructed to lie still in a supine position during scanning.

Data preprocessing
FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu) was used for
imaging preprocessing. The Recon-all command in FreeSurfer was
chosen to process whole-brain segmentation automatically. Then
each individual’s cortical thickness data were mapped to Free-
Surfer’s fsaverage. Next, each hemisphere was parcellated into 34
cortical regions using the Desikan-Killiany (DK) atlas54, and cortical
thickness was measured for 3 subregions (the lateral orbitofrontal,
medial orbitofrontal and pars orbitalis) within the OFC.

Statistical analysis
All statistical analyses were performed in R3.6.3. All tests were two-
sided, and the significance level was set as p < 0.05. The
differences in demographic and clinical information between the
schizophrenia group and healthy control group were analyzed
using either the independent Student’s t test or Pearson’s chi-
square test as appropriate. Then, we compared the differences in
structural covariance between the two groups. First, we calculated

Fig. 1 Results. Cortical regions that manifest increased structural
covariance in schizophrenia patients compared to healthy controls.
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the correlation coefficient between each subregion of the OFC
with sex, age, and education level as covariates in the
schizophrenia and healthy control groups, respectively. Significant
structural covariance in either the schizophrenia or healthy control
group was selected for further analysis. Secondly, between-group
differences in structural covariance networks within the OFC were
assessed using the z-test55 (see more details in Supplementary
Material A). We performed a false discovery rate (FDR) correction
for multiple comparisons (FDR < 0.05). The Pearson correlation
coefficient (r) can be considered the normalized inner product of
standard scores (z score) as follows:

r ¼ 1
N � 1

XN

i¼1

Xi � X
sX

� �
Yi � Y
sY

� �
¼ 1

N � 1

XN

i¼1

zXi zYi

X and Y correspond to the thickness of two cortical brain
regions across subjects. N represents the sample size of each
group (the schizophrenia group and healthy control group). X and
Y denote the means of X and Y, respectively. s stands for the
sample standard deviation. zYi and zYi equal to

Xi�X
sX

and Yi�Y
sY

,
respectively. r can be regarded as the sum of partial_p56. partial_p
can be written as follows:

partial p ¼ zXi zYi ¼
Xi � X
sX

� �
Yi � Y
sY

� �

Finally, stepwise linear regression analysis was used to explore
the relationship between structural covariance and anhedonia in
schizophrenia. The structural covariance of any two brain regions
that differed significantly was included in the regression analysis.
Moreover, illness duration, sex, age, education level, the score of
the positive/negative/general psychopathology subscale of the
PANSS, duration of antipsychotic medication, and total antipsy-
chotic dose were also included in the regression analysis to
exclude their influence as confounding factors.
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