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Macroscale EEG characteristics in antipsychotic-naïve patients
with first-episode psychosis and healthy controls
L. S. Dominicus 1✉, B. Oranje2, W. M. Otte3, K. S. Ambrosen 2, S. Düring2, F. E. Scheepers1, C. J. Stam4, B. Y. Glenthøj 2,5,
B. H. Ebdrup2,5 and E. van Dellen1,6

Electroencephalography in patients with a first episode of psychosis (FEP) may contribute to the diagnosis and treatment response
prediction. Findings in the literature vary due to small sample sizes, medication effects, and variable illness duration. We studied
macroscale resting-state EEG characteristics of antipsychotic naïve patients with FEP. We tested (1) for differences between FEP
patients and controls, (2) if EEG could be used to classify patients as FEP, and (3) if EEG could be used to predict treatment response
to antipsychotic medication. In total, we studied EEG recordings of 62 antipsychotic-naïve patients with FEP and 106 healthy
controls. Spectral power, phase-based and amplitude-based functional connectivity, and macroscale network characteristics were
analyzed, resulting in 60 EEG variables across four frequency bands. Positive and Negative Symptom Scale (PANSS) were assessed at
baseline and 4–6 weeks follow-up after treatment with amisulpride or aripiprazole. Mann-Whitney U tests, a random forest (RF)
classifier and RF regression were used for statistical analysis. Our study found that at baseline, FEP patients did not differ from
controls in any of the EEG characteristics. A random forest classifier showed chance-level discrimination between patients and
controls. The random forest regression explained 23% variance in positive symptom reduction after treatment in the patient group.
In conclusion, in this largest antipsychotic- naïve EEG sample to date in FEP patients, we found no differences in macroscale EEG
characteristics between patients with FEP and healthy controls. However, these EEG characteristics did show predictive value for
positive symptom reduction following treatment with antipsychotic medication.
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INTRODUCTION
Psychosis is a syndrome defined as clinical symptoms of delusions,
hallucinations, and disorganized thinking and speech1. Patients
with a first episode of psychosis (FEP) have highly variable
prognoses, where some patients only experience one psychotic
episode, while others suffer from recurrent episodes or chronic
symptoms of schizophrenia spectrum disorders1. The onset is
usually during late adolescence or early adulthood and often
impairs the level of functioning. Psychosis causes both societal
and economic burden2,3, and is associated with high mortality
rates including an increased risk of suicide4,5. In particular,
diagnosis and adequate treatment of first psychosis is crucial for
outcome; Reducing the time gap between the onset of a first
psychotic episode and effective treatment will improve FEP
patients’ prognosis6. Moreover, due to non-response to treatment,
patients can experience more side effects, prolonged hospital
admissions, and even an increased risk of suicide6,7. Identification
of early markers of treatment response is critical to improve
clinical care of patients with psychosis.
Studying antipsychotic-naïve patients can provide information

about the pathophysiology of psychosis without confounding
effects of treatment and the effects of chronic disease medication
side effects and the use of other medication. Electroencephalo-
graphy (EEG) is a low-cost and low-burden methodology which is
used to characterize brain oscillations by measuring electric fields
with relatively high time resolution8. Due to this unique temporal

resolution, EEG may capture markers of complex psychotic
experiences as EEG records have superior temporal resolution
compared to, for example, functional-MRI9.
Resting state EEG (rs-EEG) is believed to reflect intrinsic activity

of brain networks that is not manipulated by any form of task or
stimulus presentation10. Rs-EEG recordings can be used to
characterize the power spectrum of cortical oscillations in different
frequency bands, namely delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz)11. A decrease in
alpha peak frequency and alpha power, but increases in delta and
theta power have been associated with psychosis in previous
studies12–14. Previous studies found that high alpha power was
associated with poor treatment response15–17.
In addition, alterations in functional connectivity have been

studied in patients with psychosis. This work is based on the
disconnection hypothesis described in refs. 18–20, which states that
core symptoms of schizophrenia result from dis-connectivity
between distinct brain regions. EEG connectivity implicates the
consideration of the relationship between two or more EEG
signals21. Connectivity measures can be based on amplitude (e.g.,
amplitude envelope correlation) and phase synchronization (e.g.,
phase lag index). Patients as compared to controls show lower
alpha phase-based connectivity, measured by (lagged) coherence
and Lagged Phase Synchrony while contradicting results with
other connectivity measures have been reported for higher
frequency bands (beta- (13–30 Hz) and gamma- (30–200 Hz))13.
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Of interest, two studies reported that treatment response to
clozapine could be predicted using EEG connectivity features with
accuracies of 85% and 89.9%22,23. Connectivity patterns have been
further characterized by higher-order measures of network
organization, such as efficiency and clustering. However, studies
regarding network topology in EEG found heterogeneous results
related to psychosis regarding both the affected frequencies and
the type of network disturbances24–27.
The literature on EEG in psychotic disorders shows limitations in

terms of study design and methodology of EEG analysis. Studies
are mainly based on psychotic populations undergoing medical
treatment, while antipsychotics are known to change EEG
characteristics28,29. Analyzing EEG characteristics in patients who
are on medication naïve is, therefore, crucial to disentangle
neurophysiological correlations of psychosis from medication
effects. Moreover, most studies have focused on more chronic
disease states of psychosis implying potentially more comorbidity,
age effects on EEG, and treatment-resistant populations. Previous
quantitative EEG studies of medication naïve first psychotic
episode patients consisted of relatively small sample sizes (i.e.,
N= 13–31) and variable methodology (e.g., EEG recording,
number of electrodes) and outcomes25–28. In studies on treatment
response, patients received various types of antipsychotic
medication with different mechanisms of action on different
receptor profiles15,30–34. And finally, EEG characteristics used in
previous studies such as coherence have shown sensitivity to
errors such as spurious functional connectivity due to volume
conduction)35. As we used state-of-the-art methodology in our
analysis, differences in the definitions of EEG characteristics may
have limited comparability with earlier work.
In this exploratory study, we compared rs-EEG characteristics

between antipsychotic-naïve patients with a first psychotic
episode and healthy controls. Based on previous studies in
patients with dementia and delirium, we focus on macroscale (as
opposed to regional) EEG characteristics, which showed high
disease specificity36,37. Due to the multitude of potential
characteristics of interest, heterogeneity of findings in the
literature, and the scarce literature regarding antipsychotic naïve
patients and EEG-based prediction models of treatment outcome,
we chose a data-driven approach for variable selection. Specifi-
cally, we applied the random forest (RF) algorithm, which, along
with the prediction, returns the most relevant diagnostic variables
and their relative importance38. Thirdly, we tested if symptom
reduction due to subsequent medical treatment of our FEP
patients at 6-weeks follow-up could be predicted based on
baseline rs-EEG characteristics using random forest regression.
Based on the literature described above, we found an insufficient
basis for a hypothesis-driven study to evaluate the performance of
one single EEG characteristic for patient-control discrimination or
treatment outcome prediction. We, therefore, used a data-driven
approach to test if (either a single or a combination of) EEG
characteristics could be (1) used to discriminate between patients
and controls and (2) related to treatment response.

METHODS AND MATERIALS
Study population and procedure
The population studied here was recruited from three similar cohorts:
The Pan European Collaboration on Antipsychotic Naïve Schizo-
phrenia (PECANS, ClinicalTrials.gov Identifier: NCT01154829), the Pan
European Collaboration on Antipsychotic Naïve Schizophrenia II
(PECANSII, ClinicalTrials.gov Identifier: NCT02339844), and the
OPTIMISE STUDY (ClinicalTrials.gov Identifier: NCT01555814)39–41.
These datasets were combined because participants were included
in the same center, with matching inclusion criteria. The study
population consisted of two groups, patients with a first psychotic
episode and healthy controls. All patients included in this study were

lifetime antipsychotic naïve. Controls were matched on age, sex, and
sociodemographic background. Symptoms were rated using the
Positive and Negative Symptom Scale (PANSS) at baseline and at
follow-up after 4–6 weeks to measure early response. Patients were
treated with either amisulpride or aripiprazole according to clinical
need balancing effect and side effects.

EEG recordings
All participants underwent EEG recordings using Biosemi hard-
ware (Amsterdam, The Netherlands) with 64 electrodes and a
sample frequency of 2048 Hz. Participating subjects underwent
eyes closed rs-EEG recording in the morning between 9 and 12
o’clock. EEG registrations were recorded in a quiet room (sound
level <40 dB) while participants were seated in a comfortable chair
and told to remain still and stay awake throughout the recording.
They were asked not to smoke in the hour before the recording,
nor to consume any caffeinated drinks, and were requested not to
take benzodiazepines the evening before the recording from
11 pm onwards. Other medication was allowed. All resting state
recordings were made after an event-related potential (ERP)
recording sequence of ~45 min42–44.

EEG preprocessing
For preprocessing we used brainwave software version
0.9.152.12.26; developed by C. J. Stam, available at https://
home.kpn.nl/stam7883/brainwave.html) and EEG Utils 0.6.3 in
Rstudio45. EEG data were visually inspected for eye movement and
muscle artefacts by two individual raters (L.S.D with trained
students). A final check consensus meeting was applied with EvD
as the final rater. An average reference was applied. Electrodes
were interpolated using spherical spline if there were artefacts
due to broken electrodes or other artefacts46. Where necessary, a
maximum of six channels (~10% of the 64 channels) was accepted
for interpolation, otherwise the participant was excluded from
further analyzes. The first 15 epochs of 4 s without artefacts were
selected. The EEG data were down-sampled to 1024 Hz to
optimize the speed of data preprocessing and further analyzes
for computational efficiency. For an overview of methods see Fig. 1.

EEG characteristics
Data were band-pass filtered in four different frequency bands,
which were grouped in delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), and beta (13–20 Hz), respectively47. Selected features
were: Relative spectral power, mean Phase Lag Index (PLI), mean
Amplitude Envelope Correlation corrected (AEC-c), Minimum
Spanning Tree (MST) characteristics based on PLI, and MST
characteristics based on AEC-c. The feature selection of global EEG
characteristics and random forest classification methodology was
largely based on previous work36,37.

Spectral power
The absolute spectral power was calculated using the Fast Fourier
Transform. The relative power was calculated by dividing the
absolute power per frequency band by the total power of the four
frequency bands.

Connectivity (AEC-c and PLI)
To calculate the functional connectivity strength we used two
measures, one based on phase coupling (PLI) and one regarding
amplitude coupling (AEC-c), as they appear to be
complementary48–50.
The PLI characterizes the asymmetry in the distribution of

instantaneous phase differences between two signals48. The PLI
varies from 0 to 1, whereas 0 indicates no phase synchronization
and 1 indicates complete phase locking. Zero-lag phase coupling
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is discarded and therefore the PLI is less sensitive to volume
conduction effects and field spread.
The AEC was obtained by measuring the magnitude of the

analytic signal, the analytic representation of a real-valued
function. A Pearson’s correlation was calculated between the
power envelopes of two signals49. We calculated the corrected
version of the AEC (AEC-c), where signal components that pick up
the same source at different EEG channels are eliminated, by
performing an orthogonalization of raw signals before computing
AEC values. The AEC scores range from 0 to 1, where a value of 1
indicates perfect coupling, a value of 0,5 suggests no coupling,
and a value of 0 suggests perfect negative coupling50. The mean
PLI and AEC-c were obtained for each frequency band by
averaging the connectivity values of all electrode pairs.

Network analysis
The MST was used to reconstruct a backbone of functional
connections, and subsequently characterized with measures
derived from graph theory. The MST is an acyclic sub-network of
the brain connecting all nodes, while minimizing the link weights
and reflecting most fundamental network properties51,52. It avoids
limitations of other graph theoretical approaches such as
sensitivity to connection strengths, arbitrary thresholding, or link
density effects53. The MST was calculated based on connectivity
matrices, which here represented the frequency-specific PLI or
AEC-c. The connectivity matrices consisted of 64 × 64 cells (for 64
EEG channels) resulting in 64 nodes with 63 edges. All measures
characterizing the topology of MST used in this study were global
network measures (see Table 1).

EEG differences between patients and controls
In initial analyses, we applied descriptive univariate EEG differ-
ences between patients and healthy controls. As these EEG
features followed a non-normal distribution, a Man-Whitney U test
was applied. Power, AEC-c, and PLI were compared in each
frequency band, namely delta, theta, alpha, and beta. Next, MST
features based on PLI and AEC-c, respectively, were compared in
each frequency band. To correct for multiple testing the level of
significance was adjusted using Holm-Bonferroni correction54.

Random forest classification
In the main analyses, we applied a Random forest classifier to
discriminate between FEP patients and healthy controls in R using
R-statistical software version 1.4.1717, package Caret55,56. The
model and features were a priori selected based on previous
literature36,37. Sixty EEG characteristics were used as input
information, being 15 EEG features for each frequency band,
namely; Relative power, PLI, AEC-c, and twice the MST measures
based on PLI or AEC-c (kmax, Tree hierarchy, Diameter, leaf fraction,
eccentricity, and BCmax). For an overview see Table 2.
Random forest is a machine learning algorithm for classification

and regression38. A random forest consists of multiple decision
trees, where each tree in the forest uses a subset of the data
(bootstrapping) with a subset of features. The algorithm is less
prone to overfitting, reduces the variance and provides uncorre-
lated trees. Importantly, separate training and validation data sets
are not required as the validation is built in the model itself. After
multiple decision trees, the algorithm produces an accuracy of the
model and variable importance scores (VIMP scores). It can be
easily interpreted which features contributed most to the model.

Fig. 1 Overview of EEG processing pipeline. Raw data was downsampled and an average reference and band pass filter were applied. A total
of 1 minute of combined epochs were used for analyses. For each frequency band, the power, PLI, AEC-c and MST measures were calculated.
Next, we tested for differences between FEP patients and controls, (2) if EEG could be used to classify patients as FEP, and (3) if EEG could be
used to predict treatment response to antipsychotic medication.
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The random forest algorithm can be used for both classification
and regression problems. When building a random forest, the
number of decisions trees (ntree) and the number of variables
calculated at each split (mtry) must be set. In our analyses, the
ntree was set to 500 and the mtry was set to the square root of the
number variables. The set of parameters only marginally may
influence the classification outcome57.
The random forest classifier was applied for the classification of

patients and controls based on EEG features. A tenfold cross
validation was built into the model for extra internal validation.
Next, a noise feature, by generating a random noise variable in R,
was added to examine which features contribute to the model
more than “noise”. Features containing VIMP scores lower than
noise were excluded for the final model. We built different models
with random subsets of the data, due to the imbalance of our data
(62 patients vs 106 healthy controls). We used random subgroups
(by taking random samples of 62, using R) of the controls to match
the amount of patient data (n= 62), so the data in the model was
balanced (62 patients with 62 randomly assigned healthy
controls). This procedure was repeated 10 times, creating 10
different subsets of data. Subsequently, the mean accuracy,
specificity and sensitivity over the subsets were calculated.

EEG and prediction of symptom severity using random forest
regression
A random forest regression model was applied to the patient group
only, to investigate whether EEG features could be used to predict
the reduction of symptom severity after treatment as measured by
the PANSS. The same features were used as for the patients–control
comparison. As the underlying pathophysiological mechanisms
differ between different subscales of the PANSS, and thus likely will
correspond to different biomarkers, subscales were used for
analyses58. The following PANSS scores were used in our models;
the ΔPANSS total scores, ΔPANSS positive subscale scores, ΔPANSS
negative subscale scores, and ΔPANSS general subscale scores.
The ΔPANSS was calculated as:

ΔPANSS ¼ PANSS follow � up� PANSS baseline:

We chose to develop tests for explained variance in absolute
symptom reduction (as opposed to a percentage change in
symptom severity) because antipsychotics are more effective in
patients with more severe symptoms; analyzing relative improve-
ment would therefore potentially mask predictive value59. Next, a
permutation test was applied with 1000 permutations to the RF
model. In that way, the significance of the predictive performance
of the models was tested to reduce false positive results as RF
regression is not straightforward for interpretation.

RESULTS
Study population
A total of 62 patients and 106 matched healthy controls were
included. All 60 EEG features were calculated and included for all
participants. Subject characteristics are shown in Table 3. PANSS
score data at 4–6 weeks follow-up were available from 45 patients.
In total, 23 patients were treated with selective dopaminergic
antipsychotics aripiprazole (partial D2 and 5ht1a agonist and
5HT2a antagonist), and 39 with amisulpride (D2/D3 antagonist).
Dosing information was unavailable in 25 patients.

EEG differences between patients and controls
After correction for multiple testing, none of the comparisons
between groups showed significant differences. For comparisons
with previous literature, we report comparisons with uncorrected
p values < 0.05. The average delta relative power was higher for
patients (Median (M)= 0.659) compared to controls (M= 0. 0.575;
uncorrected p= 0.044).
Absolute power per frequency bin was also compared between

the two groups, to identify subtle group differences in the power
spectrum that may be masked by averaging the power in broader
frequency ranges (Fig 2). The absolute power in 10.25–10.5,
10.50–10.75, and 11.00–11.25 Hz was lower in patients compared

Table 1. MST topology measures.

MST topology measures Explanation

Degree (k) Measures the number of edges/links for each node divided by the maximum number of edges possible. The maximum
degree (kmax), which is the highest degree in the MST, is used for analyzes.

Leaf fraction (LF) The ratio of leaf nodes is divided by the total number of nodes. A Leaf node (L) is a node with only one edge.

Diameter (D) Refers to the largest distance between any two nodes. It can be interpreted as a measure of efficiency, where a low
diameter indicates an efficient information flow between brain regions.

Betweenness centrality (BC) Fraction of ll shortest paths that pass through a node. A leaf node has a BC of zero. The central node in a star-like
network, is characterized by BC= 1. For the MST global measure, the highest BC (BCmax) is used.

Eccentricity (ECC) Measure of the maximum distance calculated by the number of edges between a node and any other node in the MST.
Here, we used the mean ECC of all nodes.

Tree hierarchy (Th) Defines the hierarchy of the MST organization as optimal topology. Th is calculated as Th = L/ (2 M BCmax), where
L= Leaf number and M=maximum leaf number.

Table 2. Overview of included EEG features.

Feature name Feature name

Delta, Relative power Theta_MST – degreea

Theta, Relative power Theta_MST – Leaf fractiona

Alpha, Relative power Theta_MST – Diametera

Beta, Relative power Theta_MST – BCmax
a

Delta, PLI Theta_MST – Ecca

Theta, PLI Theta_MST – Tree hierarchya

Alpha, PLI Alpha_MST – degreea

Beta, PLI Alpha_MST – Leaf fractiona

Delta, AEC-c Alpha_MST – Diametera

Theta, AEC-C Alpha_MST – BCmax
a

Alpha, AEC-C Alpha_MST – Ecca

Beta, AEC-C Alpha_MST – Tree hierarchya

Delta_MST_MST – degreea Beta_MST – degreea

Delta_MST_Leaf fractiona Beta_MST – Leaf fractiona

Delta_MST_Diametera Beta_MST – Diametera

Delta_MST – BCmax
a Beta_MST – BCmax

a

Delta_MST – Ecca Beta_MST – Ecca

Delta_MST _Tree hierarchya Beta_MST – Tree hierarchya

aFeatures are included twice, based on the PLI and AEC-c.

L.S. Dominicus et al.

4

Schizophrenia (2023)     5 Published in partnership with the Schizophrenia International Research Society



to controls (p= 0.044, p= 0.029, and p= 0.049, respectively,
uncorrected for multiple testing). Based on the theta band AEC-c,
the Eccentricity in patients was lower (M= 0.153 versus 0.156;
uncorrected p= 0.041). Results are shown in Figs. 3 and 4.
Finally, exploratory analyses showed no differences between

severely ill and treatment-responsive patients compared to
controls for any of the characteristics (see Supplement S6).

Random forest classifier
Application of the random forest classifier to classify patients and
controls showed that 40 out of 60 EEG features performed better
than a random noise feature, leading to a mTry of 6 (mTry=
square root of the number variables). The random forest
classification resulted in a mean accuracy of 50.2% for the
differentiation between patients and controls. The mean sensitiv-
ity and specificity scores were 52.2% and 48.5%, respectively.

Random forest regression
All 45 patients with available baseline and follow-up PANSS scores
were included in the prediction of treatment response. Again, 60
features were included in the model (Table S1). Ntree was set to
500 and mTry to 8 (mtry= square root of the number variables).
Explained variance above change level was found for the
regression model with the outcome ΔPANSS positive at 4–6 weeks
(R²= 0.23, p= 0.004). Results are shown in Table 4 and feature
importance is shown in Fig. 5. The most important features were
the Th in the alpha band (AEC-c), PLI in the beta band, and the
BCmax in the delta band (PLI). Scatterplots of best individual
features are shown in Supplement Fig. S3. Exploratory analysis on
random forest classification or regression with individual PANSS as
outcomes instead of total PANSS scores showed no significant
findings; dividing the groups in medication cohorts (amisulpride
and aripiprazole) for analyses also showed no significant results.

DISCUSSION
In this exploratory study with the largest sample (n= 62) of
antipsychotic-naïve FEP patients to date, we found no differences
in quantitative EEG characteristics between FEP patients and
healthy controls. Using these EEG characteristics as input to a
random forest classifier in all 45 patients with available PANSS
scores, our model showed chance level discrimination between
patients and controls. Nevertheless, a RF regression based on
baseline EEG characteristics did explain 23% variance in positive
symptoms reduction after 4–6 weeks of treatment with anti-
psychotic medication.
Our results point towards a contribution of EEG features in

predicting efficacy of antipsychotic treatments for positive
symptoms in psychosis. This is in line with previous reports on
clozapine treatment response prediction in chronic patients with
schizophrenia using EEG features, resulting in high (85–89.9%)
accuracies22,23. To the best of our knowledge, our current study is
the first to use a random forest regression model to predict
treatment response in FEP patients. The features that showed
most contribution to the prediction of positive symptoms were
Tree hierarchy (alpha band, AEC-c), PLI (beta), maximum Degree
(Theta, AEC-c), Tree hierarchy (beta band, PLI) and maximum
Betweenness centrality (delta band, PLI). A larger reduction in
PANSS positive scores appeared associated with higher PLI and
Tree hierarchy (PLI) in the beta band, lower degree in the theta
band (AEC-c), and tree hierarchy in the alpha band (AEC-c) at
baseline (see Supplement S5). These results imply that network
characteristics, specifically centrality and hierarchy characteristics
in multiple frequency bands, may be used as predictor of
treatment response in FEP. As the effects were found in different
frequency bands and based on two different connectivity
measures, we remain cautious in the physiological interpretation
of this finding. A challenge for future work is to replicate these
results using a simpler metric of EEG network organization.
It is noteworthy that we found no rs-EEG differences between

patients and controls, but our EEG-based random forest regression
did significantly explain variance in positive symptoms in patients.
An explanation might be that patients with severe symptoms at
baseline show deviations in their rs-EEG related to treatment
response, which is masked in group-level comparisons to controls

Table 3. Characteristics of patients and controls.

Characteristic Patients
(mean (SD))

Controls
(mean (SD))

Age(years) 23.2 (4.7) 23.3(4.7)

SEX (%Male) 53% 50%

Education level (%) 1 0%
2 9.7%
3 61.3%
4 19.4%

1 4.8%
2 2.9%
3 67.3%
4 6.7%

Education of parentsa

% highest education and
income level
% middle education and
income level
% lowest education and
income level

24.2%
46.8%
22.6%

34.6%
51.0%
13.5%

Duration of illness at baseline
in weeks
Duration of psychosis in weeks

DUI 48.00 (62.38)
DUP 106.96
(144.36)

GAF-s Baseline (n= 59) 39.09 (8.19)

GAF_F Baseline (n= 59) 45.56 (12.47)

GAF-S FU weeks (n= 45) 56.00 (12.58)

GAF_F FU (n= 45) 59.16 (12.74)

Amisulpride mean dose
(n= 27)b

Range
Equivalent Olanzapine58,59

285mg (170.9)
50–800mg
7mg

Aripiprazole Mean dose (n= 9)b

Range
Equivalent olanzapine58,59

10mg (5.9)
5–20mg
7mg

Co-medication at baseline
Fluoxetine 20mg
Zopiclone 7.5 mg
Codeine 2.5 mg

1.5%(n= 1)
6% (n= 4)
1.5%(n= 1)

PANSS baseline (N= 60)
Total
Positive
Negative
General

74.53 (16.97)
18.57 (4.38)
18.47 (6.99)
37.50 (9.01)

PANSS baseline of patients with
follow-up data available (N= 45)
Total
Positive
Negative
General

71.42 (16.52)
17.91 (4.20)
17.67 (7.02)
35.84 (8.19)

PANSS FU (N= 45)
Total
Positive
Negative
General

57.56 (14.10)
p < 0.001*
12.73 (3.77)
p < 0.001*
16.42 (6.05)
P= 0.17
28.40 (7.32)
P < 0.001*

*Significant result, p values < 0.05.
a1: Education level: University or similar; 2: bachelor or similar/skilled
worker; 3 currently active in education; 4 no education.
bIncomplete datasets due to missing corresponding dose.
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when all patients are included in the analysis. Moreover,
explorative analyses indicated no differences between severely
ill and treatment-responsive patients compared to controls (see
Supplement S6).

Previous studies also reported EEG abnormalities in patients
with schizophrenia compared to controls. Without correction for
multiple testing, our results showed an increased delta power
which is in line with previous literature12–14. Previous work on
network differences between patients with schizophrenia and
controls has been inconsistent, and the trend of theta band ECC
differences found in our study has not been described before25,27.
We could not replicate previous findings regarding classification

of patients with schizophrenia and healthy controls based on EEG
features60–62. Possible limitations in previous studies were
medication effects and duration of disease. A longer disease
duration may induce EEG alterations on macroscale EEG
characteristics that are not yet observed in FEP. Previous studies
were also based on relatively small sample sizes.

Strengths and limitations
We analyzed a relatively large EEG dataset of antipsychotic-naïve
FEP patients, using both conventional statistical group compar-
isons and a data-driven approach. The use of different types of
EEG features, namely spectral power, connectivity, and network
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Fig. 5 Relative importance scores of the five best features in the random forest regression when predicting delta PANSS positive. Feature
scores can vary from 0 to 100, where 100 means the highest feature importance.

Table 4. Regression scores for predicting treatment response after
6 weeks of treatment.

Absolute PANSS
(Follow-up – Baseline)

RMSE R2 P value

ΔTotal PANSS score 14.19(1.64) 0.09(0.11) 0.248

ΔPositive PANSS score 3.78(0.61) 0.23(0.14) *0.004

ΔNegative PANSS score 6.70(0.71) 0.04(0.05) 0.675

ΔGeneral PANSS score 7.51(1.29) 0.06(0.07) 0.743

Provided are the root mean square error (RMSE), where a lower RMSE
means a better fit to the model and the R squared, where a R squared close
to 1 means a strong relationship. If R squared is 1, the model accounts for
100% variation. *P < 0.05.
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topology features made it possible to study relevant combinations
of EEG variables.
We used PANSS scores as continuous outcome variable instead

of dichotomization of treatment response. The definition of
treatment response is an ongoing point of discussion. Andreasen
and others developed criteria to define remission in patients with
a first psychotic episode63. These criteria consist of an improve-
ment of several scores of the PANSS over 6 months and is
therefore quite strict and might be a limitation to classify patients
with a first psychotic episode into remission after 4–6 weeks. To
use a cut-off of a percentage reduction in PANSS scores is a
frequently used alternative, but lack of consensus exists in the
literature on the cut-off value of choice64–66. We, therefore,
considered a continuous outcome measure of treatment response
more appropriate. Lastly, as RF regression models are not
straightforward to interpret, we used permutation tests to the
model to reduce the chance of false positive findings.
A limitation of this study is that we could not compare

outcomes to a placebo condition and our regression analysis was
not externally validated in another dataset, which may limit the
generalizability of findings. Next, patients in our study were either
treated with dosages of amisulpride or aripiprazole, that were
converted to a Daily Defined Dose of olanzapine67,68. Of note, the
mean doses were lower than the recommended minimally
effective treatment dose in studies of treatment resistance in
50% of the patients60,61,69. It cannot be excluded that a subgroup
of patients might have responded to a higher dose. However,
high-dose treatment may have induced intolerable levels of side
effects which in turn may have compromised study retention,
since it is well-known that antipsychotic-naïve patients are much
more sensitive to the development of unwanted side effects of
antipsychotics than are more chronic patients70.
In our study, we analyzed up to 20 Hz and excluded higher

frequencies, because previous literature found that signals with
frequencies above 20 Hz are contaminated with muscle activity47,71.
Nevertheless, previous literature that included gamma bands for
analyses found increased gamma power in antipsychotic-treated FEP
patients compared to controls and increased gamma connectivity in
patients with schizophrenia, but these findings may be confounded
by e.g., extrapyramidal side effects72,73.
The rs-EEG data were obtained after patients underwent task-

related EEG recordings including PPI, P50 suppression, mismatch
negativity, and selective attention paradigms. The resting state
recording was only performed after patients had completed the
tasks and were able to do so, which might have caused a selection
bias towards better-performing subjects in our dataset.
Regarding our methods, we a priori set an arbitrary cut-off point

of six channels for interpolations, otherwise the participant was
excluded for further analyses. Based on this criterion, one patient
and four controls were excluded (see Supplmentary S7). A
different cut-off could have led to slightly different findings.
We opted for a random forest classification and regression

model, nevertheless, other machine learning models could also be
applied. Before our model would be clinically applicable, external
validation need to be performed on a different data set with other
EEG equipment. In that way, the potential generalizability of our
results can be ensured.
Our analyses were limited to macroscale, whole-brain EEG

characteristics. The selection of other features or regional analysis
(in source-space) may lead to other findings and is subject to
further studies. Similarly, deep learning analysis of raw or
minimally preprocessed EEG signals might be a solution to avoid
pre-selection of features74.
The main objective of our current study was to develop a solid

EEG model for predicting treatment efficacy and the potential
added value of clinical models can only then be properly
investigated. However, the use of a prediction model containing
both EEG characteristics and clinical information might increase

the performance of the model1. Adding other EEG features or
measures based on completely different methodologies, i.e., PET
(f)MRI might also be of interest for future research.

CONCLUSION
In conclusion, our results suggest predictive value in macroscale
quantitative EEG characteristics for antipsychotic treatment
response regarding positive symptoms in antipsychotic-naïve,
first-episode patients with psychosis. Previous findings on rs-EEG
in patients with psychotic disorders in comparison to control
subjects may be influenced by medication effects and/or (primary
and secondary) effects of ongoing psychotic illness.
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