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Altered purinergic receptor expression in the frontal cortex
in schizophrenia
Rawan Alnafisah1, Anna Lundh1, Sophie M. Asah1, Julie Hoeflinger1, Alyssa Wolfinger1, Abdul-rizaq Hamoud1,
Robert E. McCullumsmith 1,2 and Sinead M. O’Donovan 1✉

ATP functions as a neurotransmitter, acting on the ubiquitously expressed family of purinergic P2 receptors. In schizophrenia (SCZ),
the pathways that modulate extracellular ATP and its catabolism to adenosine are dysregulated. However, the effects of altered ATP
availability on P2 receptor expression in the brain in SCZ have not been assessed. We assayed P2 receptor mRNA and protein
expression in the DLPFC and ACC in subjects diagnosed with SCZ and matched, non-psychiatrically ill controls (n= 20–22/group).
P2RX7, P2RX4 and male P2RX5 mRNA expression were significantly increased (p < 0.05) in the DLPFC in SCZ. Expression of P2RX7
protein isoform was also significantly increased (p < 0.05) in the DLPFC in SCZ. Significant increases in P2RX4 and male P2RX5 mRNA
expression may be associated with antipsychotic medication effects. We found that P2RX4 and P2RX7 mRNA are significantly
correlated with the inflammatory marker SERPINA3, and may suggest an association between upregulated P2XR and
neuroinflammation in SCZ. These findings lend support for brain-region dependent dysregulation of the purinergic system in SCZ.
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INTRODUCTION
Adenosine triphosphate (ATP) functions as a neurotransmitter1,2,
co-released with other neurotransmitters including serotonin and
glutamate, to act on the extensive family of purinergic P2
receptors3,4. Upon release, extracellular ATP is rapidly catabolized
to adenosine via a cascade of ectonucleotidase enzymes5. In
schizophrenia (SCZ), the expression and activity of ectonucleoti-
dases is significantly reduced in a region- and cell-subtype specific
manner6–8. Downregulation of this enzymatic pathway that
modulates the amount of time extracellular ATP spends in the
synapse prior to its degradation may have a significant impact on
P2R activation6,8. However, little is known about the expression of
these receptors in the brain in SCZ.
There are seven P2X ionotropic receptors (P2X1–7) that bind ATP

and eight P2Y metabotropic receptor subtypes (P2Y1, 2, 4, 6, 11–14)
that bind ATP and other nucleotides (ADP and uridine di- and
triphosphate (UDP, UTP)). P2 receptors are expressed throughout
the brain9–14, with different P2 receptor subtypes found on
neurons and glial cells including microglia, astrocytes and
oligodendrocytes13,15,16. P2RX1–6 receptors form functional
homotrimeric or heterotrimeric receptors17. P2RX7 typically forms
homotrimers or functional heterotrimers with P2RX418. It has yet
to be determined which form of P2RX7 is predominant in the
human brain19. P2RY receptors including P2RY12 also form homo-
and hetero-oligomers20–22.
Perturbation of the purinergic system is implicated in the

pathophysiology of psychiatric disorders like SCZ23. Purinergic
signaling via P2 receptors is implicated in neuromodulation,
intercellular communication, and energy metabolism24–28. ATP
also serves as a danger associated molecular pattern (DAMP), and
activation of P2Rs is an important regulator of neuroinflamma-
tion25. Activation of P2X receptors like P2RX7, which occurs only in
the presence of elevated (micromolar range) ATP levels, induces
pro-inflammatory cytokine release via activation of the NOD-, LRR-
and pyrin domain-containing protein-3 (NLRP3) inflamma-
some29–31. Metabotropic P2RY receptor activation also results in

changes in intracellular cAMP or Ca2+ concentrations, activating
intracellular signaling cascades that regulate neuroinflammatory
processes25,32. Despite a resurgence in interest in purinergic
system dysregulation in SCZ15,24,33, our understanding of the
expression and localization of P2 receptors in the brain in this
disorder is limited. To address this gap in our knowledge, in this
study, we assess mRNA and protein expression of P2RX and P2RY
receptors in two different frontocortical brain regions in subjects
diagnosed with SCZ.

METHODS
Subjects
Dorsolateral prefrontal cortex (DLPFC, Brodmann area 9) samples
from non-psychiatrically ill (n= 20–22) and SCZ subjects
(n= 20–22) were obtained from the Maryland Brain Collection
(MBC). Anterior cingulate cortex (ACC, Brodmann area 32) samples
from non-psychiatrically ill (n= 20) and SCZ subjects (n= 20) were
obtained from the Mount Sinai NIH Brain and Tissue Repository
(NBTR). Subject demographics are described in Table 1 and Table
S1. All cases were obtained with consent from the next of kin with
IRB approved protocols and were diagnosed by two independent
psychiatrists using DSM-IV diagnosing standards, based on review
of available medical records, autopsy reports, and interviews with
the family. Medication status was deemed “on” if the subjects
were on antipsychotic medication in the 6 weeks prior to the end
of life (NBTR) or based on postmortem toxicology analysis (MBC).
Subjects were matched for age, sex, race, pH and postmortem
interval (PMI) including for secondary analyses conducted in male
and female groups (Table S2).

Quantitative polymerase chain reaction (qPCR)
Samples were prepared for qPCR analysis as previously
described8,34–36. Briefly, DLPFC and ACC tissue blocks were cryo-
sectioned (14 µm) onto glass slides (Superfrost Plus glass slides,
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Fisher Scientific). RNA was extracted from tissue sections with the
RNeasy Mini Kit (#74134, Qiagen) as directed by the manufac-
turer’s instructions. Complementary DNA (cDNA) was synthesized
using the High-Capacity cDNA Reverse Transcription Kit
(#4368814, ThermoFisher Scientific) then diluted 1:3. QPCR was
performed using SYBR-Green and Taqman primers (Table S3), in
96-well optical reaction plates (MicroAmp Fast Optical 96-well
Reaction Plate, ThermoFisher Scientific) on a StepOne Real-Time
PCR System (Applied Biosystems) for 3 min at 95 °C, 15 s at 95 °C
for 40 cycles, and 1min at 59 °C. Each 20 μL reaction included 3 μL
of cDNA, 10 μL of SYBR-Green PowerUp Master Mix (ThermoFisher
Scientific) and 3 pmol of each primer (Invitrogen, ThermoFisher
Scientific). All samples were run in duplicate. Non-template (no
cDNA) and no RT controls (template generated without reverse
transcriptase enzyme) controls were run on all plates. Primers
were designed based on previously published sequences (Table
S3) or using Primerblast. All primers were tested by running PCR
product on a 2% agarose gel and sequencing to confirm primer
specificity35. Samples were normalized to a standard curve
consisting of a pool of all samples. Data were normalized to the
geometric mean of four reference genes: B2M, GAPDH, ACTB, and
PPIA, whose expression was not significantly altered between
groups.

Immunoblotting
Western immunoblot was used to assay P2RX7 and P2RX4 protein
expression, as previously described37,38. Briefly, twenty-five
micrograms protein were run on 4–12% Bis-Tris gels (NuPAGE
Invitrogen, ThermoFisher Scientific) for 1 h at 180 V. Following
semi-dry transfer (18 V, 30 min) and 1 hr blocking (Licor blocking
buffer) at room temperature, PVDF membranes were incubated at
4 °C overnight in primary antibody: rabbit anti-P2RX7 (1:1000, APR-
004, Alamone), rabbit anti-P2RX4 (1:1000, APR-002, Alamone), goat
anti-P2RX7 (1:1000, NBP1–37775, Novus) or a reference protein
rabbit anti-valosin containing protein (VCP, 1:1000, ab109240,
Abcam), diluted in blocking buffer (Licor)+ 0.2% Tween20.
Membranes were washed three times in TBS-T for 10 min, then
incubated with anti-rabbit (1:1000, #68073, Licor) or anti-goat
(1:1000, #32214, Licor) IR-dye labeled secondary antibodies diluted
in blocking buffer (Licor)+ 0.2% Tween+ 0.01% SDS for 1 h at
room temperature in the dark. Membranes were scanned using
the LI-COR Odyssey laser-based imaging system. Band intensity
values with segment median intra-lane background subtraction
were determined using Image Studio v4.0. Near-infrared fluores-
cence value for each target protein was normalized to the in-lane
value of VCP, and the normalized ratio from duplicate lanes was
averaged. There was no changes in raw intensity values for VCP

between the SCZ and CTL groups as we have previously
reported39.

Antipsychotic medication study
All experimental protocols were approved by the University of
Alabama-Birmingham. Adult male Sprague-Dawley rats (250 g)
were housed in pairs and maintained a 12 h light/dark cycle. To
assess the effects of chronic antipsychotic administration, rats
were randomly assigned to receive 28.5 mg/kg haloperidol-
decanoate or vehicle (sesame oil) via intramuscular injection,
once every 3 weeks for 9 months. Haloperidol-decanoate was
used as a representative typical antipsychotic as most SCZ
subjects for whom medication data was available were on typical
antipsychotics at time of death. The brains were flash frozen on
dry ice and stored at −80 °C until further use.

Rat qPCR
Rat frontal cortex samples were prepared and assayed for qPCR as
described above. Rodent primers are listed in Table S3.

In Silico analysis
A “look-up study” of purinergic receptor gene expression in
postmortem brain tissue in SCZ subjects who were “on” and “off”
antipsychotic medications was conducted using the Stanley
Medical Research Institute (SMRI) Online Genomics Database40.
The fold change and p value for selected genes are listed in Table 2.
A radar chart showing the relative proportion of P2R gene
expression in different human brain cell types (BrainAtlas, accessed
from Kaleidoscope41) was generated using Excel v2207.

Table 1. Subject demographics.

DLPFC ACC

qPCR study Western immunoblot study qPCR study

CTL SCZ CTL SCZ CTL SCZ

N 20 20 22 22 20 20

Age 41.95 ± 9.26 44.65 ± 9.38 42.73 ± 9.03 43.77 ± 10.44 78.25 ± 6.78 75.40 ± 7.84

Sex 10M/10 F 10M/10 F 13M/9 F 13M/9 F 12M/8 F 11M/9 F

Race 14W/6B 13W/7B 14W/8B 12W/10B 17W/2H 19W/1B

pH 6.54 ± 0.35 6.60 ± 0.43 6.66 ± 0.28 6.64 ± 0.40 6.57 ± 0.52 6.27 ± 0.23

PMI (hrs) 12.45 ± 4.99 13.65 ± 6.10 13.45 ± 5.19 15.41 ± 6.24 12.15 ± 6.92 13.10 ± 5.80

Antipsychotic Medication N/A 6on/3off/11unk N/A 6on/4off/12unk N/A 12on/6off/2unk

Data presented as mean ± standard deviation.
DLPFC dorsolateral prefrontal cortex, ACC anterior cingulate cortex, CTL control, SCZ schizophrenia, PMI (hrs) postmortem interval in hours, M male, F female, W
white, B black, H Hispanic, N/A not applicable, N subject number, unk unknown medication status.

Table 2. The Stanley Medical Research Institute (SMRI) Online
Genomics Database reports P2R gene expression in SCZ subjects who
were “on” compared to “off” antipsychotic medication at time
of death.

SCZ on/off antipsychotic medication from SMRI

Gene Symbol Fold change P value

P2RX4 1.13 0.003

P2RX5 1.01 0.701

P2RX7 1.01 0.555

The fold change in mRNA expression and p-values of selected genes P2RX4,
P2RX5, P2RX7 from SMRI dataset are presented.
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Data analysis
All data were tested for normal distribution using the D’Agostino
and Pearson test, and for variance using F-test. Outliers two or
more standard deviations from the mean were excluded. Data was
log transformed if not normally distributed. Rat data was normal
and was not log transformed. Regression analysis was performed
to determine associations between transcript or protein expres-
sion and age, PMI or pH value. If no significant associations were
found, data were analyzed using Student’s t test (parametric),
Welch’s t test (unequal variance) or Mann-Whitney U test (non-
parametric). If significant associations were found, data were
analyzed using analysis of covariance (ANCOVA). The association
between P2RX and SERPINA3 mRNA expression was assessed
using Spearman’s rho. Data were analyzed using Graphpad Prism
v8.0.2 (Graphpad) and Statistica v13.3 (Statsoft). Alpha <0.05 for
all tests.

RESULTS
Purinergic receptor gene expression in schizophrenia
The relative gene expression levels of purinergic receptors
P2RX4, P2RX5, P2RX7, P2RY12, and P2RY13 were assayed in the
DLPFC and ACC in SCZ. These targets were selected based on
their association with psychiatric disorders42–47 as well as their
expression pattern in the human brain, which was determined
using Genotype-Tissue Expression (GTEx) and Brain-RNAseq
(https://www.brainrnaseq.org/) (Fig. S1)48,49.
In the DLPFC, mRNA expression of P2RX4 (t= 2.9, p= 0.006,

n= 18–20/group) and P2RX7 (t= 2.091, p= 0.0436, n= 19/group)
was significantly increased in SCZ (Fig. 1A, C). P2RX5 mRNA levels
were significantly reduced (t= 2.37, p= 0.0299, n= 9–10/group)

in male SCZ subjects compared to same-sex CTLs (Fig. 1B). There
was no significant difference in mRNA levels of P2RY12 or P2RY13
in the DLPFC (Fig. 1D, E) or in purinergic receptor mRNA levels in
the ACC (Fig. S2). There was no significant association between
pH, PMI or age and purinergic receptor gene expression.
Correlation plots for age, which is older in the ACC cohort (mean
76.8 ± 7.37) than the DLPFC cohort (mean 43.4 ± 9.3), and P2R
expression are shown in Fig. S3.

Effects of antipsychotics on purinergic receptor expression
To account for the potential effects of chronic antipsychotic
treatment on expression of significantly altered purinergic
receptor transcripts in the brain, we assayed P2rx4, P2rx5 and
P2rx7 mRNA levels in the frontal cortex of rats treated for
9 months with haloperidol-decanoate. There was a significant
decrease in mRNA levels of P2rx4 (p= 0.0118, t= 2.820,
n= 9–10/group) (Fig. 1F). However, “look-up” studies using the
SMRI Online Genomics Database found a significant increase
(p= 0.003, fold change= 1.13) in P2RX4 expression in SCZ “on”
antipsychotic subjects compared to SCZ “off” antipsychotic
subjects (Table 2), suggesting a disease-drug interaction that is
not found in rodent models of antipsychotic administration.
There was a significant decrease in P2rx5 (p= 0.024, t= 2.46,
n= 10/group) in rats administered haloperidol-decanoate com-
pared to vehicle (Fig. 1G). “Look-up” studies show no significant
difference (p > 0.05) in P2RX5 in SCZ subjects “on” compared to
“off” antipsychotics (Table 2). There was no significant difference
in mRNA levels of P2RX7 in haloperidol-decanoate treated rats or
in “look-up” studies (Fig. 1H, Table 2).
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Fig. 1 Purinergic receptor gene expression in the DLPFC in SCZ. P2RX4 (A) and P2RX7 (C) gene expression were significantly increased
(p < 0.05) in SCZ subjects compared to CTL. (B) P2RX5 mRNA expression was significantly reduced (#p < 0.05) in male SCZ subjects compared
to CTLs. There was no significant difference in P2Y12 or P2Y13 mRNA expression (D, E). Data presented as mean, n= 16–20/group, (F–H)
Purinergic receptor gene expression in the frontal cortex of rats administered chronic haloperidol-decanoate. There was a significant decrease
in P2RX4 (F) and P2RX5 (G) mRNA expression in antipsychotic-treated rats administered haloperidol-decanoate compared to vehicle-treated
controls. There was no significant difference in P2RX7 (H) gene expression. Data presented as mean ± SEM, n= 9–10/group. *p < 0.05. CTL
control, DLPFC dorsolateral prefrontal cortex, SCZ schizophrenia.
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Fig. 2 P2RX7 protein expression in the DLPFC. A Schematic representation of the human P2RX7 receptor protein isoforms. P2RX7-A is the
full-length (595 amino acid), canonical isoform. Isoforms P2RX7-B –J are truncated or contain alternative sequences. To detect P2RX7-A
expression a C-terminus directed antibody (Antibody 1(Ab1)) was used. The expression of other P2RX7 isoforms were assayed using an
N-terminus domain directed antibody (Ab2). B Protein expression of the P2RX7-A 80 kDa band is significantly increased (p < 0.05) in SCZ
compared to CTL, using Ab1. C There was no significant difference in P2RX7-A 80 kDa protein expression in SCZ subjects who were “on” vs.
“off” antipsychotic medication. D There was no significant difference in P2RX7-A 70 kDa isoform expression or (E) in SCZ subjects who were
“on” vs. “off” antipsychotic medication. F Relative expression (% control) of P2RX7-A 80 kDa and 70 kDa in female (open bars) and male (black
bars) SCZ subjects. Data presented as mean ± SEM. G Representative image of P2X7R immunoblot using C-terminus directed antibody (Ab1).
P2RX7-A forms doublet bands at approximately 80 kDa (potential N-glycosylated form) and 70 kDa (non-post translationally modified). SCZ
and CTL samples were run in duplicate for each subject. VCP protein control is expressed at approximately 100 kDa. Data presented as mean,
blots were analyzed by Student’s t test *p < 0.05, n= 22/group, CTL vs. SCZ. DLPFC dorsolateral prefrontal cortex, SCZ schizophrenia, CTL non-
psychiatrically ill controls, VCP valosin containing protein.
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P2RX7 protein expression in the DLPFC in SCZ
Using a knockout-validated P2RX7 C-terminus directed antibody
(Ab1) (Fig. 2A), we identified an 80kDA band, likely corresponding
to the N-glycosylated form of P2RX7-A isoform50,51, that was
significantly increased (t= 2.1, p= 0.03, n= 22/group) in SCZ
subjects compared to CTLs (Fig. 2B). Glycosylated P2RX7-A was
previously reported at ~80 kDa in human50–52 and mouse53

models. There was no significant difference in 80 kDa P2RX7-A
expression in SCZ subjects who were “on” and “off” antipsychotic
medication (Fig. 2C). Conversely, no significant difference in the
canonical 70 kDa P2RX7-A expression was found between SCZ and
CTLs (t= 0.6, p= 0.49, n= 22/group, Fig. 2D) or in SCZ subjects
who were “on” and “off” antipsychotic medication (Fig. 2E).
There was no significant difference in P2RX7-A 80 kDa in female

(t= 1.004, p= 0.33, n= 9/group) or male (t= 1.92, p= 0.065,
n= 9/group) SCZ subjects relative to same-sex CTLs, although
significant increases in P2RX7-A (80 kDa) appear to be driven
primarily by male subjects (171% increase relative to CTL, Fig. 2F).
There was no significant sex difference in P2RX7-A (70 kDa)
expression. Representative immunoblots of Ab1 P2RX7 isoform
expression shown in Figs. 2G, S4.
To determine if expression of the C-terminus truncated isoforms

of P2RX7 (isoforms -B, -C, -E, -J) that are reportedly expressed in
human tissues54–56 are altered in the brain in SCZ, we used an
alternative N-terminus directed antibody, Ab2 (Fig. 2A). P2RX7-C,
-E and -J are non-functional i.e., incapable of forming a channel
receptor and therefore fail to activate different biological
processes52,55. P2RX7-B forms a functional ion channel but not a

macropore, so its activation does not induce cell lysis50,57.
Expression of these non-canonical P2XR7 isoforms can affect the
function of the receptor. P2RX7-J assembly with P2RX7-A forms a
non-functional heteromeric receptor that may protect certain cell
types from ATP-induced cell death, as reported in ocular and
malignant epithelial cells52,58. It is still unclear how P2RX7 isoforms
function in human brain, and whether their expression is altered
in neuropsychiatric disorders including SCZ.
We found no significant difference between CTL and SCZ

(t= 0.9, p= 0.32, n= 21–22/group) subjects in the expression of
the ~60 kDa band that likely corresponds to P2RX7-B50 (Fig. 3A) or
in SCZ subjects who were “on” and “off” medication (Fig. 3B).
There was no significant sex difference in P2RX7-A (70 kDa)
expression (Student’s t test, p > 0.05) (Fig. 3C). As in our study,
P2RX7-B expression has previously been reported to run at a
higher than predicted (42 kDa) molecular weight50, although
others report that P2RX7-B may be expressed as doublet bands
(~42–45 kDa) in postmortem striatum tissue10. However, as little is
known about the protein expression of P2RX7 in human brain,
further studies will be required to confirm specific isoform
expression in this tissue. Protein bands corresponding to P2RX7-
C and P2RX7-E were not identified at the expected size (14 kDa
and 31 kDa, respectively). These isoforms may not be expressed in
the human brain55,56, or in the DLPFC, specifically. Alternatively,
these isoforms may not be expressed at their predicted molecular
weights. We identified a series of protein bands between
40–55 kDa (Fig. 3D). A similar pattern of expression was previously
reported in postmortem human brain tissue using the same
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Fig. 3 P2RX7 protein expression detected by N-terminus directed antibody (Ab2). A There was no significant difference in P2RX7-B 60 kDa
bands protein expression in SCZ subjects compared to CTL. B There was no significant difference in P2RX7-B protein expression at 60 kDa
band using Ab2 in SCZ subjects “on” vs. “off” antipsychotic medications. C Relative expression (% control) of P2RX7-A 60 kDa in female (white
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directed antibody. SCZ and CTL samples were run in duplicate for each subject. VCP protein control is expressed approximately 100 kDa. Data
presented as mean, blots were analyzed by Student’s t test, n= 19–22/group. DLPFC dorsolateral prefrontal cortex, SCZ schizophrenia, CTL
non-psychiatrically ill controls, VCP valosin containing protein.
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antibody10. These bands may represent different truncated P2RX7
isoforms or may be an artifact of the antibody (non-specific
labeling). As the identity of these bands could not reliably be
assigned to a P2RX7 isoform, they were not quantified in this
study.
As with Ab1, doublet bands corresponding to the canonical

P2RX7-A isoform were identified at ~70 kDa using Ab2 (Fig. 3D)59.
However, no higher molecular weight (80 kDa) P2RX7-A bands
were identified. Previous studies have reported that N-terminus
directed Ab2 may be less sensitive for P2RX7-A relative to the
C-terminus directed Ab110. Thus, we utilized the data obtained
from Ab1, which is a knockout-validated antibody, for
quantification.
Overall, P2RX7 is expressed as multiple isoforms, forms

homomeric and heteromeric receptor complexes and thus is
expected to be detected in bands at different molecular weights
by immunoblot. However, our understanding of the expression
and localization of P2RX7 protein isoforms in human brain is still
limited. Further studies will be required to confirm the expression
of specific P2RX7 isoforms in different brain regions.

P2RX4 protein expression in SCZ at the DLPFC
There was no significant difference in P2RX4 isoform-1 monomer
expression (~60 kDa) (t= 0.054, p= 0.95, n= 21–22/group, Fig. 4A)
or in SCZ subjects who were “on” and “off” medication (Fig. 4B).
There was also no significant difference in dimer expression

(~120 kDa) (t= 1.16, p= 0.25, n= 21–22/group Fig. 4C) in SCZ
compared to CTL subjects or in SCZ subjects who were “on” and
“off” medication (Fig. 4D).There was no significant sex difference in
P2RX4 monomer expression or female P2RX4 dimer expression.
P2RX4 dimer expression was increased 220% in male SCZ subjects
relative to same-sex CTLs (Fig. 4E) but this was not statistically
significant (p= 0.0501). We observed no significant difference in
lower molecular weight bands at 44 kDa (t= 0.18, p= 0.85,
n= 21–20/group) corresponding to P2RX4 isoform-2, and at
40 kDa (t= 0.05, p= 0.95, n= 21–22/group) corresponding to
P2RX4 isoform-3 (data not shown) (Fig. S4).

P2RX4 and P2RX7 and neuroinflammation
P2X receptor activation is associated with upregulated immune
response. We assessed the association between mRNA expression
of the inflammatory marker SERPINA3 and P2RX4 and P2RX7 mRNA
expression in the DLPFC. Increased SERPINA3mRNA expression is a
robust marker of inflammation in SCZ60,61, and was significantly
upregulated in this study in SCZ compared to CTL subjects
(t= 2.26; p= 0.03, n= 13–15/group, Fig. 5A). There was no
significant difference in SERPINA3 expression in the “on” and
“off” medication SCZ subjects (Fig. 5B). There was a significant
positive association between mRNA expression of P2RX4, P2RX7
and SERPINA3 (Fig. 5C, D).
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DISCUSSION
ATP is released into the extracellular milieu and sequentially
hydrolyzed to adenosine via a series of extracellular enzymes62. In
SCZ, we, and others, have reported significant changes in the
pathways responsible for the extracellular catabolism of ATP in
postmortem brain tissue6,8,63,64. However, little attention has been
paid to how perturbations of ATP availability affects purinergic
receptor expression10,11,33. Identifying the different isoforms and
multimeric structures of P2Rs, many of which have not previously
been identified in human brain, posed challenging. Thus, we focus
our discussion on findings of the canonical P2XR isoforms
detected using knockout-validated antibodies. Overall, our find-
ings suggest disease-dependent changes in P2RX mRNA and
protein isoform expression in the frontal cortex.
We identified significant increases (P2RX4 and P2RX7) and

decreases (P2RX5) in P2X receptor mRNA expression in the DLPFC
in SCZ. Changes in P2RX4 and P2RX5 expression may be due to
antipsychotic medication. “Look-up” studies of postmortem
transcriptomic datasets of SCZ subjects who were “on” vs. “off”
antipsychotics found increased P2RX4 expression in SCZ subjects
who were “on” medication. Conversely, in a rodent model, chronic
haloperidol-decanoate administration resulted in significant
reductions in P2rx5 mRNA expression in the rat frontal cortex,
suggesting that reduced P2RX5 expression may be driven by
antipsychotic medication effects in male SCZ subjects.
We also assessed the protein expression of P2RX4 and P2RX7,

which were altered at the mRNA level in the DLPFC in SCZ. Using a
knockout-validated antibody, we detected monomer (~60 kDa)
and dimer (~120 kDa) bands of P2RX4 isoform-1 protein65.
Although not statistically significant, increases in P2RX4 dimer
expression were found in male but not female SCZ subjects
relative to CTLs. Interestingly, injury-induced P2RX4 upregulation
was previously found in male but not female mice in a spared
nerve injury pain model66. P2RX4 is implicated in SCZ-associated
behaviors. Sensorimotor gating is a form of CNS inhibition that
filters unnecessary information so that attention is focused on
salient information67. Deficits of sensorimotor gating, as measured
by prepulse inhibition (PPI), is a robust endophenotype of SCZ68,
although relatively few studies have been conducted in female
patients69. Potentiation of the P2RX4 receptor, by the allosteric
modulator ivermectin, disrupts PPI70,71, and deficits in PPI are also
reported in P2rx4 knockout mice72, supporting a role for this
receptor in sensorimotor-gating deficits in SCZ. Additionally,
recent studies suggest that P2RX4 stimulation leads to hyper-
activity of dopamine transmission, which is implicated in the onset
of SCZ symptoms73, and disruption of PPI71. P2RX4 receptor
antagonism has been proposed as a potential therapeutic target
to improve sensorimotor-gating deficits in disorders like SCZ71.

Increases in P2RX4 expression may also reflect a response to
elevated ATP and neuroinflammation found in the brain in SCZ60.
P2RX4 activates the NLRP3 inflammasome and pro-inflammatory
cytokine release associated with neuroinflammation74.
We report a similar change in P2RX7 expression in SCZ. The

80 kDa band, which likely corresponds to the glycosylated form of
P2RX7-A50–53, is significantly increased, likely driven by changes in
male SCZ subjects. N-glycosylation occurs at 5 different sites on
P2RX7-A75,76, converting it into a fully mature and functional
protein51,77. Glycosylation plays an important role in P2RX7-A
receptor trafficking to the plasma membrane, localization, ATP
sensing, channel formation, and pore activation76,78–80. Recent
studies in the phencyclidine (PCP)-induced model of SCZ found
that blocking P2RX7 alleviates SCZ-like behaviors including spatial
memory impairment, hyperlocomotion, and social withdrawal42,81.
Increasingly, P2RX7 is recognized as a regulator of neuroinflam-
mation and a potential therapeutic target in neuropsychiatric
disorders82. P2RX7 is relatively insensitive to ATP, requiring high
levels (micromolar range) as occurs during injury or illness, to
become sensitized and form a pore83. Consequently,
P2RX7 stimulation can initiate multiple downstream events,
including activation of pro-inflammatory cytokines interleukin-1β
(IL-1β), interleukin-8 (IL-8), and interleukin-6 (IL-6). Reports of
altered cytokine levels in SCZ are mixed, with no84,85 or elevated
levels found60,86, although robust increases are consistently
reported in a “high inflammatory” subset of SCZ subjects60,87,88.
The role of P2RX receptors in the inflammatory response in SCZ

has yet to be elucidated. We found a significant positive
association between P2RX4 and P2RX7 and SERPINA3 mRNA
expression. SERPINA3 is a marker of neuroinflammation that is
consistently increased in the brain in SCZ60,87,89–91, a finding that
was replicated in this study. Models of NF-kB-driven cytokine
release and SERPINA3 upregulation contributing to a neuroin-
flammatory state have been proposed in SCZ Fig. 6 60,84.
Interestingly, P2RX7 activation also stimulates the NF-kB path-
way92–94, as well as the NLRP3 inflammasome, resulting in
cytokine release and indirectly, SERPINA3 synthesis61. Our data
suggest that increased purinergic receptor expression, particularly
P2RX7, may also be associated with neuroinflammation in SCZ.
Further studies are required to determine whether P2XR7-NLRP3
or P2RX7-NF-kB pathway activation serve as mechanisms for
increased neuroinflammation found in SCZ.
Rodent models of antipsychotic medication administration

provide a useful tool to understand drug effects on gene
expression in the brain. However, they cannot fully recapitulate
the effects of medication in a complex disease. Thus, we utilize a
combination of animal model and postmortem “look-up” studies
and statistical analysis, where feasible, to account for the effects of
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psychotropic medications on our dependent measures. While
changes identified in P2R isoform expression do not appear to be
an effect of antipsychotic medications, our analysis was limited to
the subjects for whom postmortem toxicology data was available.
Larger studies comparing protein expression in subjects who were
“on” vs. “off” medication will be required to confirm this. The
finding that P2RX4 mRNA expression was differentially altered in
SCZ subjects who were on/off medication and in antipsychotic-
treated rat brain, however, suggests unique disease-drug interac-
tion effects that can only be fully assessed in translational studies
of disease. Alternatively, data obtained from the SMRI does not
differentiate antipsychotic drug class and assignment of on/off
antipsychotic medication is based on prescription and likely
compliance95, which may also contribute to differences when
compared with studies of haloperidol-treated rats.
Interestingly, our findings indicate potential sex differences in

P2RX4 and P2RX7 isoform expression in SCZ. Secondary analyses
of P2R expression in males and females were not statistically
significant, however, effect size (presented here as % control)
indicate that changes in P2RX protein isoform expression were
driven by increases in male SCZ subjects. These findings are in line
with reports of sex differences in SCZ; SCZ is more prevalent,
develops at an earlier age, and symptoms are typically more
severe in male compared to female subjects38,96,97. We also found
a significant decrease in P2RX5 mRNA expression in male SCZ
compared to male CTLs. Although a similar decrease in P2RX5
mRNA in our rodent model of chronic antipsychotic administra-
tion suggests that this change is likely an effect of medication, P2R
mRNA expression was only assessed in male rats in this study.
Previous studies have also reported sex-specific changes in P2Rs in
SCZ, including a significant increase in P2RY12 mRNA in male SCZ
subjects who died by suicide98,99. As a result, the P2R system may
play a role in sex-specific differences in the onset or severity of
SCZ symptoms.
Overall, our study suggests brain-region and disease related

changes in P2RX4 and P2RX7 receptor expression in SCZ. We
applied animal model, in silico and statistical approaches to
account for the potential effects of medication on these findings,
although we cannot exclude that antipsychotics may play a role in
some of these changes. Further work will be required to
determine the expression and function of P2RX receptors and

their various isoforms in different cell types in the human brain,
and whether they are altered in disease. Increased P2R expression
may contribute to different facets of SCZ pathophysiology
including deficits in sensorimotor gating and increased neuroin-
flammation. These findings lend further support for perturbation
of the purinergic system in the neurobiology of SCZ.
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