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Alteration of a brain network with stable and strong functional
connections in subjects with schizophrenia
Liu Yuan1,2, Xiaoqian Ma1,2, David Li1,2, Lijun Ouyang1,2, Lejia Fan1,2, Chunwang Li3, Ying He1,2,4✉ and Xiaogang Chen 1,2,4✉

It is widely accepted that there are some common network patterns in the human brain. However, the existence of stable and
strong functional connections in the human brain and whether they change in schizophrenia is still a question. By setting 1%
connections with the smallest coefficient of variation, we found a widespread brain functional network (frame network) in healthy
people(n= 380, two datasets from public databases). We then explored the alterations in a medicated group (60 subjects with
schizophrenia vs 71 matched controls) and a drug-naive first-episode group (68 subjects with schizophrenia vs 45 matched
controls). A linear support vector classifier (SVC) was constructed to distinguish patients and controls using the medicated patients’
frame network. We found most frame connections of healthy people had high strength, which were symmetrical and connected
the left and right hemispheres. Conversely, significant differences in frame connections were observed in both patient groups,
which were positively correlated with negative symptoms (mainly language dysfunction). Additionally, patients’ frame network
were more left-lateralized, concentrating on the left frontal lobe, and was quite accurate at distinguishing medicated patients from
controls (classifier accuracy was 78.63%, sensitivity was 86.67%, specificity was 76.06%, and the area under the curve (AUC) was
0.83). Furthermore, the results were repeated in the drug-naive set (accuracy was 84.96%, sensitivity was 85.29%, specificity was
88.89%, and AUC was 0.93). These findings indicate that the abnormal pattern of frame network in subjects with schizophrenia
might provide new insights into the dysconnectivity in schizophrenia.
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INTRODUCTION
The past decade has seen an explosion in approaches to
noninvasive imaging. The blood oxygen level-dependent signal
in functional magnetic resonance imaging (fMRI) identifies
intrinsic fluctuations in blood oxygenation, which are indirect
markers of neuronal activity1. These spontaneous fluctuations
occur in various regions of the brain. Functional connectivity (FC)
is considered to exist when spontaneous activity in two regions is
positively or negatively correlated2. This is hypothesized to reflect
the broader polysynaptic connections and functional connections
between brain regions. Increasingly, there is an increasing body of
evidence suggesting that the study of brain function cannot be
limited to a single region or individual connections. Rather, it
should consider the brain as a whole network organization3.
In the construction of a functional brain network, a widely

accepted approach is to apply thresholds to determine whether
there are connected edges between brain regions. The range of
absolute thresholds that were applied had correlation coefficients
between r= 0.1 and r= 0.8, and the range of proportional
thresholds was 5–40%4. As the threshold value changes, the
network incorporates different edges. However, it is a pressing
question whether some connections are strong enough to be
preserved regardless of the threshold selection. In other words,
are there common and strong functional connections in the brain
that do not vary with individual differences?
Researchers have identified some common large-scale subnet-

works in the human brain5, such as the default-mode network
(DMN)6–8 and the salience network (SN)9,10. Studies using graph
theory have shown that humans and animals have the same

network properties3,11,12, such as small-world properties13,14 and
rich-club nodes15,16. Rich-club nodes are hypothesized that a few
“rich” brain regions constitute this organization, and they are
responsible for distributing a large portion of network commu-
nications in the brain17. One study of microscale rich-club
organization found that in cortical networks, 20% of the neurons
contribute up to 70% of the incoming and outgoing information
flow18. Some researchers have suggested that a few rich nodes
ensure efficient neuronal processing at the lowest possible
cost19,20. This suggests that a few important structures might
exist in the brain to provide neurobiological organization and
optimal energy allocation21. Therefore, we hypothesized that
there are some widespread and strong functional connections in
the human brain. The coefficient of variation (CV) is a standardized
measure of the dispersion of frequency distribution. It is defined
as the ratio distribution of the standard deviation to the mean22. In
the present study, the coefficient of variation was first used to
evaluate the dispersion of brain connections and the connections
with the smallest CV were defined as stable connections, which
meant being little changed across subjects. The stable connec-
tions constituted, as we called in this study, a frame network.
Moreover, studies have shown that many mental disorders are

likely to be associated with the dysfunction of rich clubs, especially
schizophrenia23,24. Accumulating evidence from neuroimaging
studies has revealed topological abnormalities of brain networks
and altered functional connectivity in subjects with schizophre-
nia23,25,26. Schizophrenia is increasingly considered to be a
disorder of disconnectivity27,28. Thus, we further hypothesized
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that these frame connections would change in subjects with
schizophrenia.
To test these hypotheses, we used the fMRI data of 380 healthy

subjects from two public datasets to identify frame networks in
the human brain. We then compared frame connections of
subjects with schizophrenia and their matched controls. Moreover,
based on frame networks of schizophrenia, we constructed a
support vector machine (SVM) model to classify patients and
healthy controls. An independent clinical sample was used to
repeat the discriminative power of the patients’ frame network.
The study aimed to explore the stable pattern of brain
connections in controls and the alterations of these connections
in subjects with schizophrenia. Finally, we speculated that this
altered pattern could distinguish subjects with schizophrenia and
controls from each other. The overall study diagram could see in
Fig. 1.

RESULTS
Demographic characteristics
The healthy group from the Southwest University project(SWU)
included 223 subjects(112 males/111 females) with a mean age of
20.02 ± 1.26 years. Another healthy group was from the 1000
Functional Connectomes Project (FCP), including 157 subjects (53
males/104 females) with a mean age of 21.16 ± 1.81 years. The
mean age of medicated subjects with schizophrenia from the
Center for Biomedical Research Excellence (COBRE) projects(C-
SCH) was 38.77 ± 16.28 years old (including 48 males/12 females)
and the matched COBRE healthy controls (C-HC) was about
36.23 ± 11.63 years old(including 48 males/23 females). The
independent group of drug-naive patients with first-episode
schizophrenia (I-FES) were younger and the mean age was
20.99 ± 5.12 years old, including 44 males and 24 females. The
mean age of matched healthy controls (I-HC) was 20.22 ± 3.15
years old, including 25 males and 20 females.
Except for handedness (p= 0.01), there were no significant

differences in sex (p= 0.12) or age (p= 0.27) between C-SCH and
C-HC subjects. The C-SCH group had a larger head motion than
the C-HC (p= 0.002). There were no significant differences in sex
(p= 0.43), age (p= 0.38), education (p= 0.26), or head motion
(p= 0.51) between the I-FES and I-HC groups (see Table 1).
However, the age of the I-FES group was significantly lower than
that of the C-SCH group (p < 0.0001).

Frame network of each group
Frame networks were similar across the healthy population, with
31 of the 41 frame connections overlapping in the FCP and SWU
groups. In those connections with high strength, a negative
relation existed between standard deviation(SD) and average
ranking (see Fig. 2). This suggested that the stronger a connection,
the more stable it was. The frame connections(red dots in scatter
plot) we obtained had high connectivity strengths, and they were
stable across subjects. Frame networks under the HOA112
template and Craddock200 template yielded similar results. For
details, see the supplementary material.
By observing frame networks in the SWU, FCP, C-HC, and I-HC

groups, we found that these networks were symmetrically
distributed, connecting the left and right hemicerebrums. In
contrast, frame networks in the C-SCH and I-FES groups had a
lateralized feature, with connections favoring the left frontal lobe
(see Fig. 3). Left-sided connections in the C-SCH network were
concentrated in the dorsolateral superior frontal gyrus (SFGdor.L)
and the frontal middle gyrus (MFG.L). These two nodes had the

Fig. 1 The overall study diagram. Three kinds of subjects were
identified in the public databases to construct frame networks. The
first group of controls was from the Consortium for Reliability and
Reproducibility (CoRR) project at Southwest University (SWU,
n= 233). The second healthy group was from the 1000 Functional
Connectomes Project (FCP, n= 157). The medicated subjects with
schizophrenia and the matched controls were from the Mind
Research Network and the University of New Mexico, funded by the
Center for Biomedical Research Excellence (COBRE) projects(C-SCH,
n= 60; C-HC, n= 71). An independent clinical sample was enrolled
in this study, including 70 drug-naive first-episode schizophrenia (I-
FES) patients and 45 matched controls(I-HC).

Table 1. Demographic information.

Sex (Male/female) Age (year) Handedness (R/L/both) Head motion Education (year)

SWU (n= 223) 112/111 20.02 ± 1.26 - 0.07 ± 0.02 -

FCP (n= 157) 53/104 21.16 ± 1.81 - 0.06 ± 0.02 -

C-HC (n= 71) 48/23 36.23 ± 11.63 68/1/2 0.15 ± 0.08 -

C-SCH (n= 60) 48/12 38.77 ± 16.28 48/10/2 0.20 ± 0.11 -

Degree of freedom: C-SCH vs. C-HC 1 130 1 130 -

X2 or F value 2.55 1.26 9.95 10.54 -

P value: C-SCH vs. C-HC 0.12 0.27 0.01a 0.002a -

I-FES (n= 68) 44/24 20.99 ± 5.12 68/0 0.06 ± 0.03 12.52 ± 2.64

I-HC (n= 45) 25/20 20.22 ± 3.15 45/0 0.06 ± 0.03 13.11 ± 2.75

Degree of freedom: I-FES vs. I-HC 1 111 - 111 111

X2 or F value 0.954 0.78 - 0.43 1.29

P value: I-FES vs. I-HC 0.43 0.38 - 0.51 0.26

aThe difference is significant with p < 0.05.
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highest degrees, 6 and 5, respectively. In the I-FES framework
network, the connections were concentrated in the SFGdor.L with
a degree of 5. ALL brain regions involved in frame networks of
healthy people and the C-SCH group can be seen in Table 2.
Frame networks in this paper were based on the top 1%
connections of the smallest CV. Networks using other thresholds
could be seen in the supplementary material.

Alterations of frame connection in patients
An analysis of the 31 frame connections showed that 8
connections in C-SCH were significantly decreased compared to
the C-HC subjects(with p < 0.05). Nine connections were signifi-
cantly increased in the I-FES group compared with the I-HC
subjects(with p < 0.05). C-SCH showed the opposite change to
I-FES. The following four connections were significant in both
groups: SFGdor.R-MFG.R, left—right supplementary motor area-
s(SMA), right anterior central gyrus(PreCG.R)—right posterior
central gyrus(PoCG.R), left—right PoCG.(see Table 3). In the I-FES
group, connectivity between left and right SMA was positively
associated with negative symptoms, including the sum score of
Panss Negative subscale(r= 0.36, p= 0.0487), the score of
Emotional withdrawal(r= 0.31, p= 0.0487), a score of Poor

rapport (r= 0.31, p= 0.0487), a score of Lack of spontaneity and
flow of conversation(r= 0.33, p= 0.0487).

SVM classifier results
Classifier using 31 common connections showed low accura-
cy(only 56.49%). On the contrary, C-SCH frame network could
successfully distinguish patients from healthy people. The model
of a 1% threshold network showed the best performance in all
thresholds(see the supplementary material). Classifiers mentioned
below were based on the 1% threshold network.
In the classifier between C-SCH patients and the C-HC subjects,

the accuracy was 78.63% (p < 0.001), sensitivity was 86.67%
(p= 0.002), specificity was 76.06% (p= 0.029), and the area under
the curve (AUC) was 0.83 (p < 0.001). We found that the
connections of SFGdor.L–medial superior frontal gyrus (SFGmed.R)
(w= 11.00), and Insula_L–Insula_R (w=−9.30) had the highest
absolute weight in this model. The average of all features was
2.96 ± 2.57. This showed that these two edges accounted for a
substantial part of the total feature weights. In the classifier
between I-FES and I-HC subjects, the C-SCH frame network also
had excellent discrimination. The accuracy was 84.96% (p < 0.001);
sensitivity was 85.29% (p= 0.002); specificity was 88.89%
(p < 0.001) and AUC was 0.93 (p < 0.001).

Fig. 2 Scatter plots of six groups and the involved brain regions in frame networks of healthy people. The graphs in A show a negative
correlation between the average ranking and the standard deviation of the six groups. Red dots represent the extracted frame connections.
The graphs in B show the frame network structure and brain regions involved in the SWU and FCP groups, respectively. The frame
connections of the SWU and FCP groups mainly connected the left and right cerebral hemispheres.
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DISCUSSION
To the best of our knowledge, an altered network with stable and
strong functional connections in subjects with schizophrenia is
rarely reported. Using the coefficient of variation statistic, we
found a frame network with high connectivity strength and
stability in the brain of healthy people. It was symmetrical and
predominantly connected to the left and right cerebral hemi-
spheres. In subjects with schizophrenia, however, the strength of
many frame connections was significantly altered, and all of them
were interhemispheric or in the right hemisphere. Compared with
the healthy controls, frame network connections of subjects with
schizophrenia were more left-lateralized, concentrating on the left
frontal lobe, especially SFGdor.L. Individuals with schizophrenia
could be effectively distinguished from healthy controls by this
left-lateralized network regardless of age and the presence of
medication.
A fundamental feature of biological systems is symmetrical

organization. The left and right hemispheres of human brains
develop with a high degree of evenness at both the anatomical
and functional levels29. Researchers of genetic effects on human
brain connectivity have found that the interhemispheric correla-
tions in white matter connections could be largely attributed to
underlying genetic factors, with both higher heritability and
strong genetic correlations30. Recent research examined local
genetic influences on cortical thickness and observed that
phenotypic local correlation was highly symmetric between left
and right hemispheres31. It suggests phenotypic local correlation
has a significant basis in shared genetic factors and might be
related to early developmental origins of the biological processes.
From a genetic perspective, it might partly explain why the frame
connections of the human brain were mainly interhemispheric
and had high connectivity strength. We suggest that these strong

interhemispheric connections might compose the fundamental
structures of the functional networks in the brain.
Frame networks was also found in subjects with schizophrenia,

which meant that strong and common connections still existed.
However, many interhemispheric connections were altered in
patients, and the symmetry of the network changed. The frame
connections of schizophrenia were concentrated in the left frontal
lobe. Altered brain network asymmetry has been linked to
development processes32 and neuropsychiatric diseases, such as
autism and schizophrenia33–35. The interhemispheric functional
dysconnectivity in schizophrenia has been reported in many
studies36–38. Neuroimaging studies of auditory verbal hallucina-
tions have suggested that the interhemispheric connectivity
between posterior auditory regions is decreased in chronic
patients39. Lower voxel-mirrored homotopic connectivity of the
precuneus and precentral gyrus was seen in subjects with
schizophrenia, and it could discriminate patients from controls40.
We suggest that abnormalities in frame connections, especially
interhemispheric connections, are in line with the dysconnectivity
hypothesis of schizophrenia41,42.
The altered frame connections in both patient groups included

SFGdor.R-MFG.R, SMA.L-SMA.R, PreCG.R-PoCG.R, PoCG.L-PoCG.R.
Alterations of these brain regions have been widely found in
schizophrenia43–46. The rs1625579 TT (miR-137 locus) schizophre-
nia risk genotype was reported to be associated with left
dorsolateral prefrontal cortex (DLPFC) hyperactivation47. Global
brain functional connectivity in the left SFG was increased in
subjects with schizophrenia and their unaffected siblings48. In the
activity of the right and left DLPFC, the posterior part of the SMA
was abolished or reduced in subjects with schizophrenia49, which
was also the case in this study. Researchers have shown that these
brain areas are involved in speech and language processing50,51,
and they contain motor plan and control52 and attentional

Fig. 3 Frame networks of six groups. The orange edges represent the 31 overlapped frame connections in the SWU and FCP groups. Frame
networks of the SWU and FCP groups were similar in structure, mainly connecting the left and right cerebral hemispheres. In the patient
groups, the frame connections were left-lateralized and focused on the left frontal lobe.
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switching and inner speech during language encoding53. Gen-
erally, most of these brain regions are in anatomical models for
heard speech, speech production, and reading54. Actually, in this
study, negative symptoms, especially language dysfunction in
schizophrenia, were significantly correlated with the connectivity
between left and right SMA. On the other hand, we observed that
frame networks in schizophrenia showed left-ward lateralization,
and the connections were concentrated in the left frontal lobe.
The left and right hemispheres of the brain display functional
specialization in particular cognitive processes29,55. Converging
evidence has implicated the left hemisphere in language and

communication56,57. As part of the fabric of language, the left
prefrontal cortex was thought to be an inference engine that was
based on the left hemisphere’s dominance for language58–60.
Several studies have reported left prefrontal lobe abnormalities in
patients with schizophrenia61–63. Combined with the altered
connections and the more left-lateralized frame networks in
subjects with schizophrenia, it implied that the altered frame
networks might be associated with the language processing
networks in schizophrenia.
Most strikingly, our findings indicate that the frame network of

the medicated group could be effectively discriminated between

Table 2. Forty-one connections in the frame network of three groups.

SWU FCP C-SCH

Frontal_Sup_L-Frontal_Sup_Ra Precentral_L-Precentral_R Precentral_L-Precentral_R

Frontal_Sup_R-Frontal_Mid_Ra Frontal_Sup_L-Frontal_Sup_Ra Frontal_Sup_L-Frontal_Sup_R

Frontal_Sup_R-Supp_Motor_Area_R Frontal_Sup_R-Frontal_Mid_Ra Precentral_L-Frontal_Mid_L

Supp_Motor_Area_L-Supp_Motor_Area_Ra Frontal_Mid_L-Frontal_Mid_R Frontal_Sup_L-Frontal_Mid_L

Frontal_Sup_Medial_L-Frontal_Sup_Medial_Ra Rolandic_Oper_L-Rolandic_Oper_R Precentral_R-Frontal_Mid_R

Frontal_Mid_Orb_L-Frontal_Mid_Orb_Ra Supp_Motor_Area_L-Supp_Motor_Area_Ra Frontal_Sup_R-Frontal_Mid_R

Rolandic_Oper_L-Insula_L Frontal_Sup_Medial_L-Frontal_Sup_Medial_Ra Frontal_Mid_L-Frontal_Mid_R

Insula_L-Insula_Ra Frontal_Mid_Orb_L-Frontal_Mid_Orb_Ra Frontal_Inf_Orb_L-Frontal_Inf_Orb_R

Cingulum_Ant_L-Cingulum_Ant_R Insula_L-Insula_Ra Frontal_Sup_L-Supp_Motor_Area_L

Cingulum_Mid_L-Cingulum_Mid_Ra Cingulum_Mid_L-Cingulum_Mid_Ra Frontal_Sup_L-Supp_Motor_Area_R

Cingulum_Post_L-Cingulum_Post_R Hippocampus_L-Hippocampus_R Supp_Motor_Area_L-Supp_Motor_Area_R

Calcarine_L-Calcarine_Ra Calcarine_L-Calcarine_R Frontal_Sup_L-Frontal_Sup_Medial_L

Calcarine_L-Cuneus_L Calcarine_R-Cuneus_Ra Frontal_Mid_L-Frontal_Sup_Medial_L

Calcarine_L-Cuneus_R Cuneus_L-Cuneus_Ra Frontal_Sup_L-Frontal_Sup_Medial_R

Calcarine_R-Cuneus_Ra Calcarine_L-Lingual_La Frontal_Sup_R-Frontal_Sup_Medial_R

Cuneus_L-Cuneus_Ra Calcarine_R-Lingual_L1 Frontal_Mid_L-Frontal_Sup_Medial_R

Calcarine_L-Lingual_La Calcarine_R-Lingual_Ra Frontal_Sup_Medial_L-Frontal_Sup_Medial_R

Calcarine_R-Lingual_La Lingual_L-Lingual_Ra Frontal_Mid_Orb_L-Frontal_Mid_Orb_R

Calcarine_R-Lingual_Ra Cuneus_L-Occipital_Sup_La Rolandic_Oper_L-Insula_L

Lingual_L-Lingual_Ra Cuneus_R-Occipital_Sup_Ra Rolandic_Oper_R-Insula_R

Cuneus_L-Occipital_Sup_La Occipital_Sup_L-Occipital_Sup_Ra Insula_L-Insula_R

Cuneus_L-Occipital_Sup_R Occipital_Sup_L-Occipital_Mid_La Cingulum_Ant_L-Cingulum_Ant_R

Cuneus_R-Occipital_Sup_Ra Occipital_Sup_R-Occipital_Mid_Ra Cingulum_Mid_L-Cingulum_Mid_R

Occipital_Sup_L-Occipital_Sup_Ra Lingual_L-Fusiform_La Cingulum_Post_L-Cingulum_Post_R

Occipital_Sup_L-Occipital_Mid_La Lingual_L-Fusiform_R Hippocampus_L-Hippocampus_R

Occipital_Sup_L-Occipital_Mid_R Lingual_R-Fusiform_Ra Calcarine_L-Calcarine_R

Occipital_Sup_R-Occipital_Mid_Ra Fusiform_L-Fusiform_Ra Cuneus_L-Cuneus_R

Occipital_Mid_L-Occipital_Mid_R Precentral_L-Postcentral_L Lingual_L-Lingual_R

Lingual_L-Fusiform_La Precentral_R-Postcentral_L Cuneus_R-Occipital_Sup_R

Lingual_R-Fusiform_Ra Precentral_R-Postcentral_Ra ParaHippocampal_L-Fusiform_L

Fusiform_L-Fusiform_Ra Postcentral_L-Postcentral_Ra Lingual_L-Fusiform_L

Precentral_R-Postcentral_Ra Parietal_Sup_L-Parietal_Sup_R Lingual_R-Fusiform_R

Postcentral_L-Postcentral_Ra Precuneus_L-Precuneus_Ra Fusiform_L-Fusiform_R

Precuneus_L-Precuneus_Ra Paracentral_Lobule_L-Paracentral_Lobule_Ra Precentral_L-Postcentral_L

Paracentral_Lobule_L-Paracentral_Lobule_Ra Caudate_L-Caudate_Ra Precentral_R-Postcentral_R

Caudate_L-Caudate_Ra Putamen_L-Putamen_Ra Parietal_Sup_L-Parietal_Sup_R

Putamen_L-Putamen_Ra Thalamus_L-Thalamus_Ra Precuneus_L-Precuneus_R

Thalamus_L-Thalamus_Ra Temporal_Mid_L-Temporal_Mid_Ra Paracentral_Lobule_L-Paracentral_Lobule_R

Temporal_Sup_L-Temporal_Mid_L Fusiform_R-Temporal_Inf_R Caudate_L-Caudate_R

Temporal_Mid_L-Temporal_Mid_Ra Temporal_Mid_R-Temporal_Inf_Ra Putamen_L-Putamen_R

Temporal_Mid_R-Temporal_Inf_Ra Temporal_Inf_L-Temporal_Inf_R Thalamus_L-Thalamus_R

aThe 31 overlapped frame connections in the SWU and FCP groups.
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patients and healthy people, regardless of age and the presence
of medication. In the classifier of the COBRE subjects with
schizophrenia and controls, the accuracy was 78.63% and AUC
was 0.83. The classifier of the independent groups also showed
good performance with an accuracy of 84.96%. In addition, the
model using 31 common frame Connections was terrible. We
speculated the alteration of network structure, instead of
connectivity strength, was more prominent in schizophrenia and
this left-lateralized frame network might be an independent
alteration for schizophrenia. Moreover, the C-SCH frame network
had better classification performance with the younger indepen-
dent samples (I-FES and I-HC). This might indicate that the
alteration becomes more pronounced as the disease progresses.
Accordingly, a recent study based on the variability of resting-
state signal found that most brain regions showed increased left-
ward lateralization in patients with schizophrenia, and the
lateralization metrics were positively correlated to the age of
onset and the duration of the illness35. It further suggested that
the changed frame networks might be an early network alteration
in schizophrenia.

Limitations and future study
This study was based on resting-state fMRI, without using the
structure and cognitive information. Therefore, it might restrict the
interpretation of the underlying pathophysiology. In future
studies, a comparative approach that integrates data from brain
structure with behavior research will be needed to provide
significant insight into the frame network and its alterations in
schizophrenia. Second, the discrimination power of the C-SCH
frame network was repeated in an independent group without
verifying the obtained model. The abnormal frame network could
be used as an optional classification feature in subsequent
research. Despite the similarities in frame networks between the
two patient groups, the effect of differences in image acquisition
remains a potential confounder. More subjects at different illness
stage should be included to explore the discrimination ability of
the frame network and analyse the effects of age, disease course,
and medication. Third, the medicated group was from COBRE
public dataset and the detailed clinical and psychosocial informa-
tion (such as socioeconomic status, education, family history, etc.)

was absent. Therefore, the confounding effects of these factors
cannot be excluded. Future studies are needed to further
investigate these possibilities. Finally, the left lateralization of the
patients’ network and its asymmetry will be measured in the
follow-up study.

CONCLUSION
We used a new approach to discover the existence of a stable
functional network with high strength in the human brain, known
as a frame network. In subjects with schizophrenia, many frame
connections had altered strength, and their frame networks
showed left-ward lateralization with the edges concentrated in the
left frontal lobe. This changed frame network showed excellent
performance in distinguishing patients from controls, regardless of
age and the presence of medication. The alterations in frame
networks might reflect the deficits in the language process of
subjects with schizophrenia and offer new insights into the
patterns of dysconnectivity in this disease.

METHODS
Participants
We used three public databases of functional magnetic resonance
imaging (MRI) data and a set of independent samples. All datasets
from public databases were anonymous, with no protected health
information included.
Two groups of healthy subjects were identified in the public

databases to construct frame networks. The first group was from
the Consortium for Reliability and Reproducibility (CoRR) project at
Southwest University (SWU). It comprised 235 healthy controls.
Among them, one case had no demographic information, five
subjects were excluded because of poor image quality, and six
subjects were excluded because of excessive head motion. The
second group of healthy controls was from the 1000 Functional
Connectomes Project (FCP, Beijing_Zang, China). It comprised
198 subjects, but 41 subjects were excluded because of poor
image quality.
Functional MRI data from the Mind Research Network and the

University of New Mexico funded by the Center for Biomedical

Table 3. The strengths of frame connections with a significant difference in C-SCH and I-FES.

C-SCH C-HC C-SCH vs C-HCb I-FES I-HC I-FES vs I-HCc

P T P T

Frontal_Sup_R-Frontal_Mid_Ra 1.42 ± 0.37 1.55 ± 0.32 <0.001 −3.76 1.33 ± 0.36 0.78 ± 0.39 <0.001 7.64

Supp_Motor_Area_L-Supp_Motor_Area_Ra 1.82 ± 0.37 1.91 ± 0.39 0.012 −2.55 1.71 ± 0.42 1.70 ± 0.50 <0.001 5.31

Insula_L-Insula_R 1.43 ± 0.43 1.61 ± 0.39 <0.001 −3.61 1.16 ± 0.40 1.07 ± 0.32 - -

Cuneus_L-Cuneus_R 1.49 ± 0.36 1.66 ± 0.47 0.001 −2.62 1.53 ± 0.45 1.50 ± 0.39 - -

Precentral_R-Postcentral_Ra 1.42 ± 0.40 1.55 ± 0.38 0.009 −2.64 1.26 ± 0.37 0.94 ± 0.49 <0.001 3.78

Postcentral_L-Postcentral_Ra 1.33 ± 0.46 1.53 ± 0.42 0.001 −3.28 1.28 ± 0.35 0.96 ± 0.47 <0.001 4.16

Precuneus_L-Precuneus_R 1.90 ± 0.36 2.14 ± 0.32 <0.001 −4.50 1.67 ± 0.33 1.62 ± 0.40 - -

Temporal_Mid_L-Temporal_Mid_R 1.21 ± 0.31 1.36 ± 0.40 0.009 −2.66 1.08 ± 0.39 1.22 ± 0.40 - -

Frontal_Sup_L-Frontal_Sup_R 1.43 ± 0.38 1.50 ± 0.43 - - 1.36 ± 0.46 0.56 ± 0.43 <0.001 9.45

Frontal_Sup_Medial_L-Frontal_Sup_Medial_R 1.69 ± 0.42 1.75 ± 0.45 - - 1.50 ± 0.36 0.82 ± 0.40 <0.001 9.24

Lingual_L-Fusiform_L 1.32 ± 0.35 1.31 ± 0.35 - - 1.18 ± 0.40 0.88 ± 0.34 <0.001 4.03

Lingual_R-Fusiform_R 1.30 ± 0.35 1.34 ± 0.41 - - 1.27 ± 0.40 1.05 ± 0.33 0.003 3.08

Paracentral_Lobule_L-Paracentral_Lobule_R 1.47 ± 0.39 1.56 ± 0.32 - - 1.42 ± 0.47 0.99 ± 0.57 <0.001 4.16

aThe connections were significant in both groups (with p < 0.05). Age, sex, handedness, and head motion were used as covariates and corrected with a false
discovery rate (FDR,q < 0.05).
bDegree of freedom was 130.
cDegree of freedom was 111.

L. Yuan et al.

6

Schizophrenia (2022)    91 Published in partnership with the Schizophrenia International Research Society



Research Excellence (COBRE) projects (http://fcon_1000.projects.-
nitrc.org/indi/retro/cobre.html) was used to construct a frame
network of subjects with schizophrenia(C-SCH) and build a
classifier between the patients and the matched healthy
controls(C-HC). All subjects were screened and excluded if they
had a history of mental retardation, neurological disorder, severe
head trauma with more than 5 min loss of consciousness, or
substance abuse or dependence within the last 12 months.
Diagnostic information was collected using the Structured
Clinical Interview used for DSM-IV Disorders. One patient was
excluded because of incomplete data, and 11 patients and four
controls were excluded because of excessive head motion. As a
result, the subjects comprised 60 subjects with schizophrenia
and 71 controls.
We used an independent clinical sample to repeat the results of

the frame network. 70 drug-naive first-episode schizophrenia (I-
FES) patients were enrolled in the outpatient department of the
second Xiangya Hospital of Central South University. They were
diagnosed through a structured clinical interview according to the
DSM-V criteria. Cohen’s kappa was used to assess the inter-rater
reliability with κ= 0.85. In addition, 50 healthy controls (I-HC) were

recruited by local advertisements. All participants were drug-naïve
and right-handed. Subjects were excluded if they had a history of
neurological or severe physical diseases, substance abuse, or an IQ
<70. The latter was determined using the WAIS-IV64. The Positive
and Negative Syndrome Scale (PANSS)65 was used to evaluate the
psychiatric symptomatology of the I-FES subjects. The assess-
ments were conducted by clinical psychiatrists with experience
and expertise in PANSS assessment. Inter-rater agreement was
0.97. This study was approved by the Ethics Committee of the
Second Xiangya Hospital of Central South University. Written
informed consent was obtained from each participant. Two I-FES
subjects were excluded because of excessive head motion, and
five subjects in I-HC were excluded because of poor image quality.

Image acquisition
In the healthy group of SWU, the rest data were collected with
single-shot full k-space echo-planar imaging (EPI) and the
sequence parameters were as follows: TR /TE= 2000/30ms;
slice number= 32; flip angle= 90°; FOV= 220mm× 220mm; slice
thickness= 3mm; slice in-place resolution= 3.4mm2 × 3.4 mm2;

Fig. 4 Stages of building frame network. For each subject, the connectivity matrix was converted into a column vector, and the connectivity
strength of each edge was sequenced to get the ranking value. The group average ranking of each edge was then calculated. The coefficient
of variation of each edge was obtained (standard deviation divided by the mean). The edges with the lowest coefficients of variation (the top
1%, 41 edges) were selected to construct the frame network of the group.
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the number of measurements= 242. The imaging parameters for
structural MRI data were as follows: TR= 1900ms; TE= 2.52ms;
flip angle= 9°; slice number= 176; FOV= 256mm× 256mm; slice
thickness= 1.0mm; slice in-place resolution= 1.0mm2 × 1.0mm2.
In the healthy subjects of the FCP group, the rest image data
parameters were as follows: TR= 2 s; slices= 33; time points= 225.
In the group of COBRE subjects, a multi-echo MPRAGE

(MEMPR) sequence was used with the following parameters:
TR/TE/TI= 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, flip angle=
7°, FOV= 256 mm × 256 mm, Slab thickness= 176 mm,
Matrix= 256 × 256 × 176, Voxel size= 1 mm × 1mm × 1mm,
Number of echos= 5, Pixel bandwidth= 650 Hz, Total scan
time= 6 min. With five echoes, the TR, TI, and time to encode
partitions for the MEMPR are similar to that of a conventional
MPRAGE, resulting in similar GM/WM/CSF contrast. Rest data
were collected with single-shot full k-space echo-planar imaging
(EPI) with ramp sampling correction using the intercomissural
line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64 × 64,
32 slices, voxel size: 3 mm3 × 3 mm3 × 4 mm3).
In the independent set, MRI data were acquired using a 3.0 T

magnetic resonance imager (Siemens, Skyra, Germany)
equipped with a 16-channel array coil at Hunan Children’s
Hospital, Changsha, China. Participants were required to remain
still and awake with their eyes closed during the scan. Foam
pads and earplugs were provided to minimize head motion. Rest
data was collected with single-shot full k-space echo-planar
imaging (EPI) and the sequence parameters were as follows: TR
/TE= 2000/30 ms; slice number= 36; flip angle= 90°;
FOV= 256 mm × 256 mm; slice thickness= 3.4 mm; voxel
size= 3.4 mm3 × 3.4 mm3 × 3.4 mm3. For each participant, the
functional run contained 250 image volumes in 508 s of
scanning time. The structural image was acquired using a
high-resolution sequence: TR= 2530 ms; TE= 2.33 ms; flip
angle= 7°; slice number= 192; FOV= 256 mm × 256 mm; slice
thickness= 1 mm; voxel size= 1 mm3 × 1 mm3 × 1 mm3.

Image preprocessing
Data from resting-state functional magnetic resonance imaging
(rs-fMRI) were preprocessed with Data Processing Assistant for rs-
fMRI (running in MATLAB R2013b)66. The first ten time points of
each image were removed. Then, the images were processed by
slice timing, realignment, co-registration to T1 images, and
segmentation into gray matter, white matter (WM), and cere-
brospinal fluid (CSF). Individual data were transformed into
standardized Montreal Neurological Institute coordinates (MNI)
space by applying the normalization parameters by DARTEL with a
resampling voxel size of (3 mm)3. Nuisance covariates regression
was carried out, including the CSF, WM signals, and head motion
profiles by Friston’s 24-parameter model67. Furthermore, nuisance
covariates regression was applied to the bad time points, which
were defined as any volumes with mean FD (Jenkinson)
>0.2 mm68, as well as two points before and one point after
these volumes. The generated images were then smoothed using
a 4mm3 × 4mm3 × 4mm3 full-width at half maximum (FWHM)
Gaussian kernel, and the linear trends were removed. Finally, MRI
data were band-pass filtered (0.01–0.1 Hz). Subjects with more
head motion than 2.5 mm and 2.5° of rotation in any direction
were excluded. Using the AAL90 atlas, the functional MRI data of
each subject were divided into 90 brain regions. Pearson
correlation coefficients between brain regions were calculated,
and then a 90 × 90 matrix was obtained by Fisher Z transform.

Frame network construction of healthy controls and subjects
with schizophrenia
In the 90 × 90 connectivity matrix, the functional connectivity of
each connection was obtained. Firstly, for each subject, all
functional connections were sorted by connectivity strength and

the ranking of each connection was obtained. Secondly, the group
average ranking of each edge was calculated. The coefficient of
variation was then derived (standard deviation divided by the
mean)69 to reflect the connection stability. The lower the
coefficient, the more stable the ranking of the connection. Top
1% of edges(41 edges, 8100 × 1%/2) with the smallest CV were
considered to be stable to constitute the frame network of this
group (the flow chat could see in Fig. 4). Frame networks using the
HOA112 template70 and the Craddock200 template71 also were
derived to investigate the influence of different atlases. Moreover,
we also constructed frame networks using a range of threshold-
s(from 0.5 to 5%) in healthy controls and patients. The results of
the other two templates and different thresholds networks are
presented in the supplementary material. In this study, the AAL90
template and 1% threshold were used in the subsequent analysis.

Comparison of connection strengths between subjects with
schizophrenia and controls
By taking the intersection of frame network connections of the
SWU and FCP groups, a common network with 31 connections
was found in healthy populations. The strength of connections in
this network was compared between the COBRE groups of
subjects with schizophrenia (C-SCH) and healthy controls (C-HC),
and between the independent groups of I-FES and I-HC. The
difference is significant with p < 0.05. Age, sex, handedness, and
head motion were used as covariates and corrected with a false
discovery rate (FDR, q < 0.05).
Furthermore, the correlations between symptoms and patients’

significantly altered frame connections were analyzed. As the
clinical information was absent in the COBRE dataset, we used
PANSS scores of the I-FES group to make a correlation analysis.
The connectivity of altered connections were correlated with three
sum scores (PANSS positive subscore, PANSS negative subscore,
and PANSS total score) and 14 sub-scores (positive and negative
items), respectively. The difference is significant with p < 0.05. FDR
correction was performed (q < 0.05).

Classification with the support vector machine
An SVM was operated using LIBSVM software. We selected a frame
network of C-SCH to classify C-SCH patients and C-HC subjects.
The strengths of the 41 connections in this network were
extracted as input to the linear support vector classifier (SVC). A
nested cross-validation procedure72,73 was used for hyperpara-
meter optimization and estimation of the classifier’s accuracy. The
leave-one-out cross-validation (LOOCV) method was performed in
the external loop. For each round of LOOCV, one subject was
selected as the test set and the remaining subjects as the training
set. The models obtained in the training set were applied to
classify the testing targets. After 131 iterations (folds), the
performance measures were averaged. The indexes of the model’s
performance were accuracy, specificity, sensitivity, and AUC. The
statistical significance of these indexes was determined by
permutation testing (1000 times), with the threshold set as
p < 0.05. At the same time, to evaluate the discriminative power of
the different features, the weights of each feature in all folds were
averaged. By the same procedure, C-SCH frame networks under
other thresholds were also used to classify C-SCH patients and
C-HC subjects, as well as the 31 common connections mentioned
above. The results could be seen in the supplementary material.
We selected two other groups (I-FES and I-HC) to repeat the

classification ability of the network. The frame network of C-SCH
was applied to I-FES and I-HC subjects. By the identical steps, the
same features was used to build another SVM model to classify 68
I-FES subjects and 45 controls. The accuracy of the model was
corrected after 1000 permutation tests (p < 0.05).
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Statistical analysis
Data analysis was performed with SPSS (IBM SPSS Statistics for
Macintosh, Version 23.0). Mean FD and demographic variables
were compared using analysis of variance (ANOVA) or the chi-
squared test. Functional connectivity was compared by two
sample t-tests with FDR correction (q < 0.05). Age, sex, handed-
ness, and head motion were treated as covariates for all statistical
comparisons between the groups. Correlations were analyzed
using Pearson’s correlation analysis and corrected through FDR
(q < 0.05). The statistical threshold was set at p < 0.05.
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