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Impaired dynamic functional brain properties and their
relationship to symptoms in never treated first-episode patients
with schizophrenia
Wanfang You1,2,6, Lekai Luo1,3,6, Li Yao1,2, Youjin Zhao1,2, Qian Li1,2, Yuxia Wang1,2, Yaxuan Wang1,2, Qian Zhang1,2, Fenghua Long 1,2,
John A. Sweeney1,4, Qiyong Gong1,5 and Fei Li 1,2✉

Studies of dynamic functional connectivity (dFC) and topology can provide novel insights into the neurophysiology of brain
dysfunction in schizophrenia and its relation to core symptoms of psychosis. Limited investigations of these disturbances have
been conducted with never-treated first-episode patients to avoid the confounds of treatment or chronic illness. Therefore, we
recruited 95 acutely ill, first-episode, never-treated patients with schizophrenia and examined brain dFC patterns relative to healthy
controls using resting-state functional magnetic resonance imaging and a sliding-window approach. We compared the dynamic
attributes at the group level and found patients spent more time in a hypoconnected state and correspondingly less time in a
hyperconnected state. Patients demonstrated decreased dynamics of nodal efficiency and eigenvector centrality (EC) in the right
medial prefrontal cortex, which was associated with psychosis severity reflected in Positive and Negative Syndrome Scale ratings.
We also observed increased dynamics of EC in temporal and sensorimotor regions. These findings were supported by validation
analysis. To supplement the group comparison analyses, a support vector classifier was used to identify the dynamic attributes that
best distinguished patients from controls at the individual level. Selected features for case-control classification were highly
coincident with the properties having significant between-group differences. Our findings provide novel neuroimaging evidence
about dynamic characteristics of brain physiology in acute schizophrenia. The clinically relevant atypical pattern of dynamic shifting
between brain states in schizophrenia may represent a critical aspect of illness pathophysiology underpinning its defining
cognitive, behavioral, and affective features.
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INTRODUCTION
Schizophrenia is a severe and complex mental disorder marked
by delusions, hallucinations, and cognitive impairments. Func-
tional magnetic resonance imaging (fMRI) has helped identify the
underlying neural mechanisms of these core illness features1,2.
Viewed broadly, prior studies have indicated that schizophrenia is
not caused by impairments of a small number of brain regions
but by abnormal functional connections among widely distrib-
uted brain regions3–5. Much of our understanding of connectivity
deficits in schizophrenia has been acquired from studies of static
or average functional connectivity (FC) among brain regions.
Because the functional organization of brain circuits is highly
temporally dynamic, involving shifts among discrete brain states,
investigating the dynamic changes may provide novel comple-
mentary information about abnormal brain neurophysiology in
schizophrenia6.
Measures of dynamic functional connectivity (dFC) characterize

the dynamic temporal patterns of brain connectivity over time.
This is important, as it is the dynamic changes in activity states
that are important for adaptive cognitive, affective, and behavioral
processes. Dynamic connectivity studies have found that indivi-
duals with schizophrenia spend less time in a strongly and widely
connected state (typified by strong, largescale, positive

connectivity), correspondingly stay more in a weakly connected
state (characterized by generally low strength of functional
connectivity), and switched less frequently among discrete states
in comparison with healthy controls (HCs)7–10. Patients have been
reported to show increased dynamic variability within and
between sensorimotor, visual, attention, and thalamic networks,
and decreased intra-network and inter-network dynamic reconfi-
gurations of default mode and fronto-parietal networks11. Another
study reported increased dynamics of cross-network interactions
among default mode network (DMN), salience network (SN), and
central executive network (CEN) in schizophrenia12. These
temporal and functional neuroimaging findings highlight the
novel insights that can be obtained by investigating abnormal
brain functional dynamics in schizophrenia.
Dynamic topology properties, which could describe quantitative

topologies of brain regions in the context of complex whole brain
systems based on graph theory13, have further provided useful
information about the temporal dynamics of brain region
interaction at a whole brain scale. One study using this type of
network analysis reported an increment of dynamic nodal
efficiency in the left frontal, right medial parietal, and bilateral
subcortical areas in patients with schizophrenia14. In terms of
whole-brain dynamic topological characteristics, reduced tem-
poral fluctuation of clustering coefficient and global efficiency
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with impaired interaction among DMN subsystems have been
reported in schizophrenia15,16, suggesting an important role of
DMN in the pathophysiology of schizophrenia. Emerging research
also indicates that dynamic connectivity alterations may be
relevant for clinical symptoms in schizophrenia8,14,17,18.
Most studies investigating dFC have studied long-term ill and

treated patients. This may be a limitation because of the potential
confounding effects of antipsychotic medication and long-term
illness on the brain8–12,14,15,17,19, which have been found to
contribute to the dynamic changes observed over the progression
of schizophrenia20,21. We are aware of only one study of acutely ill
untreated patients, which recruited a relatively small group of first-
episode, drug-naive patients to explore altered dFC strength in the
mirror neuron system18. Larger studies of untreated first-episode
patients are needed to evaluate dFC during acute psychotic illness
without confounding the effects of drug treatment22.
We recruited acutely ill, never-treated, first-episode patients

with schizophrenia and examined brain dynamic functional
activity patterns relative to HCs. We hypothesized that: (1)
patients would more often stay in a weakly connected state and
(2) there would be an abnormal dynamic topology of regional
brain properties in schizophrenia. Based on previous resting-
state network meta-analysis4,23, we predicted alterations in
DMN11,12,16, ventral attention network (VAN) engaged in
processing of salience24, visual network (VN) associated with
visual processing25, and sensorimotor network (SMN) involved in
sensory and auditory perception26. We also predicted that
altered temporal properties would correlate with patients’
clinical symptom severity. In addition, to evaluate dFC features
for understanding illness biology at the level of individual
patients, we conducted a supplementary machine learning study
to identify features that most consistently were useful for
identifying schizophrenia patients.

RESULTS
dFC state characteristics
There were 95 never-treated first-episode schizophrenia and 100
matched HCs scanned and included in analyses (Table 1). Our first
analysis was conducted to empirically define identifiable discrete

brain states to analyze state change metrics. Two recurring brain
functional states were defined by cluster analysis based on the
similarity of the dFC correlation matrices. Their centroids are
shown in Fig. 1 based on a window size of 22 times of repetition
(TR). State 1 was characterized by weak connectivity both within
and between networks, with negative couplings between DMN
and other networks and between fronto-parietal task control
network (FPN) and SMN, VN, cingulo-opercular task control
network (CON), and auditory network (AN). State 2 had stronger
and mostly positive connectivity in general, including strong and
positive dFCs within and between SMN and VN.
The frequency of occurrence of the hypoconnected state 1

(71.3%) was higher than that of hyperconnected state 2 (28.7%)
across all participants (Fig. 1a). The fractional time of brain
function in state 1 was significantly higher in patients relative to
controls after false discovery rate (FDR) correction (patients
75.6 ± 25.1%, HCs 67.2 ± 27.0%, FDR-P= 0.017). Accordingly,
patients spent less time in state 2 of high connectivity compared
with controls (patients 24.4 ± 25.1%, HC 32.8 ± 27.0%, FDR-
P= 0.017). We also found that patients demonstrated longer
mean dwell time in state 1 (patients 61.5 ± 52.7, HCs 41.0 ± 35.0,
FDR-P= 0.002) and reduced mean dwell time in state 2 relative to
HC (patients 12.2 ± 10.2, HCs 16.6 ± 15.6, FDR-P= 0.017). The
number of transitions between states was lower in schizophrenia
patients than HCs (patients 5.2 ± 4.3, HCs 6.2 ± 3.7, FDR-P= 0.044)
(Fig. 2a). No significant correlations between these global state
characteristics and clinical ratings were observed in patients. In
addition to the primary analysis using 22TR window sizes, we did a
secondary analysis with 30TR window sizes to show that our
findings were not window length dependent. This ancillary
validation yielded similar findings (details in Supplementary
materials and Figs. S2, S3).

Dynamic topological properties
Relative to controls, patients had lower coefficients of variation
(CVs) of nodal efficiency and eigenvector centrality (EC) in the
right medial prefrontal cortex (mPFC, part of DMN) and higher CVs
of nodal EC in the left middle cingulate gyrus, left postcentral
gyrus, right inferior temporal gyrus, bilateral paracentral lobules,
and bilateral middle temporal gyrus, most of which are in SMN
(Table 2). The CV of nodal EC in right mPFC in patients was
negatively correlated with the total ratings (r=−0.29, P= 0.005)
and general symptom ratings (r=−0.21, P= 0.048) from the
positive and negative syndrome scale (PANSS) (Fig. 2b). There
were no significant differences in temporal dynamics of global
efficiency and cluster coefficient between groups. Most results
were replicated using a larger (30 TR) sliding window (details in
supplementary materials and Table S2).

Machine learning analysis
To verify the utility of dFC features for case identification at the
individual level, F values were used to select features from
temporal properties to include in the machine learning analysis,
and a linear support vector classifier (SVC) was applied for
individual classification. We gradually increased the number of
features to find a balance between establishing an efficient and
robust classifier while avoiding including too many features
which could lead to overfitting (the number of features included
varied from 1% to 100% of all temporal properties, with one
percent increments). The SVC classifier showed 72.3% accuracy
(area under the curve= 0.81) when 3% features were included,
with 70.5% sensitivity and 74.0% specificity. The features selected
every time across leave-one-out cross-validation (LOOCV) are
shown in Table 3. The performance rate of classification was
significantly higher than a randomly permuted group (P= 0.001).
Almost all features included also showed significant between-
group differences in the primary group comparisons (Table 3).

Table 1. Demographic and clinical characteristics of patients with
schizophrenia and healthy controls.

Patients
(n= 95)

Controls
(n= 100)

χ2/t value P value

Sex (number) 41M, 54F 47M, 53F 0.290a 0.590

Age (years) 24.87 (7.40) 25.74 (7.43) 0.815b 0.416

Education (years) 12.83 (2.77) 12.95 (3.15) 0.278b 0.781

Duration of illness
(months)

7.18 (8.54) – – –

PANSS symptom
ratings

Total ratings 89.11 (16.77) – – –

Positive
symptom ratings

25.55 (6.37) – – –

Negative
symptom ratings

17.62 (7.61) – – –

General
symptom ratings

45.94 (10.01) – – –

The data are given by the mean (standard deviation).
M male, F female, PANSS positive and negative syndrome scale.
aChi-square test.
bTwo-sample t-test.
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Fig. 1 Cluster centroids of reoccurring dynamic functional connectivity (FC) patterns in the main analysis. a Cluster centroids for each
state across all participants. b Cluster centroids for each state for each group. The value of each cell in the FC matrix is the Pearson correlation
coefficient between two brain regions. The color bar shows the strength of FC between two nodes (warm color, positive FC; cool color,
negative FC). DMN default mode network, VN visual network, SMN_hand/mouth sensorimotor hand and mouth networks, FPN fronto-parietal
task control network, SN salience network, CON cingulo-opercular task control network, AN auditory network, DAN dorsal attention network,
VAN ventral attention network, MN memory retrieval network, SZs schizophrenia patients, HCs healthy controls.
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The accuracy of the classification model is not high enough for
clinical practice but is useful in showing that the modeled
abnormalities together reflected commonly present brain fea-
tures at the individual patient level.
Lastly, in a subgroup of patients with follow-up data, the

regression model with temporal properties contributing to the
classification at baseline predicted a decline of PANSS total
ratings over the course of treatment (R2= 0.43, P < 0.01) at
6-week follow-up. Also, we observed a high accuracy (81.0%) of
pretreatment data for differentiating short-term medication
treatment responders/non-responders (details in supplementary
materials and Tables S4–S9).

DISCUSSION
Our findings document the temporal and regional pattern of
altered dynamic functional brain connectivity present in acutely ill,
first-episode, never-treated patients with schizophrenia. Schizo-
phrenia patients tended to remain in a weakly connected state
(state 1) and spend less time in a more highly connected state
(state 2). These findings suggest that previously observed static FC
deficits in schizophrenia27 may reflect a reduced rate of shifting
into the actively connected brain state as was observed in the
present study.
Topological analyses found that schizophrenia patients demon-

strated decreased functional dynamics in mPFC that were related
to illness severity, and increased dynamics in temporal lobe and
sensorimotor regions. Additionally, a machine learning analysis
indicated that the observed pattern was commonly observed in
individual schizophrenia patients. Importantly, these observations

were present in acutely ill early-course patients prior to medica-
tion treatment, so that drug effects and course of illness effects
did not confound the evaluation of illness-related brain features
during acute psychosis.

dFC states
The cluster analysis of dFC features identified two reoccurring dFC
states representing discrete brain states of participants during
scanning28. Compared with controls, patients with schizophrenia
displayed more occurrences and dwelled longer in state 1
characterized by negative connectivities and relatively weak
positive connectivities. The rate of transition between the states
was also reduced in patients. These findings indicate that patients
with schizophrenia demonstrate an atypical temporal distribution
of functional brain states, with patients spending less time in a
highly connected functional state and longer time in a weakly
connected state.
Analysis of mean dwell time in states showed that patients with

schizophrenia not only stayed in a weak state most of the time but
also more quickly transitioned back away from the strongly
connected state when it was engaged. Schizophrenia has been
conceptualized as a disorder of decreased connectivity that is
believed to be related to symptoms and cognitive impair-
ment27,29,30. Our results indicate that the repeatedly observed
reduction in average inter-region FC in schizophrenia27 is in part a
result of more frequently staying in an “idling” state (state 1) rather
than heightened connectivity in task-active networks8. Moreover,
lower rates of switching into the more densely connected state,
and faster exiting from that state when it was achieved, suggest

Fig. 2 Altered dynamic properties between groups and correlations between dynamics and symptoms in patients. a Patients with
schizophrenia (SZs) showed altered fractional time and mean dwell time in both states, and decreased transitions between states relative to
healthy controls (HCs). b The coefficient of variation (CV) of eigenvector centrality (EC) of the right medial prefrontal cortex (mPFC) was
decreased in SZs than HCs and was negatively correlated with psychosis symptom severity in patients. * Indicates false discovery rate
corrected P value < 0.05.
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resistance to shifting into more energy-demanding highly
connected states required by task-active networks as previously
reported9 that could contribute to the alterations of behavior and
cognition associated with schizophrenia.

Dynamic nodal topology
Decreased nodal dynamics in mPFC. The mPFC node of the DMN
exhibited reduced time-varying nodal efficiency and EC. As a
highly centralized hub region, the mPFC integrates information
from abundant cortical and subcortical areas and assembles
updated information transferred to multiple brain regions31. It
plays an essential role in social behaviors, regulation of emotion,
and cognitive processes such as decision-making32. Many previous
studies have found that alterations in mPFC may lead to
impairment of these functions in schizophrenia33. For example,
weaker mPFC-amygdala coupling was associated with poorer
social functioning and emotional dysfunction during the percep-
tion of emotional stimuli in schizophrenia34,35. Previous topologi-
cal research in schizophrenia demonstrated that decreased
centrality and efficiency of mPFC16,36 are caused by abnormal
cortico-cortical fiber tract connectivity37 and FC38,39. Combined
with the reduced fluctuation of topological properties found in
our study, it appears that the centrality and efficiency of mPFC are
kept at a low level and may not be able to change flexibly in
schizophrenia. This hub region of DMN is functionally relatively
locked in and less responsive to input and then less integrated
into the broader brain organization because of the sustained low
level of centrality and reduced coupling with other brain regions.
This pathology could contribute to the dysfunction of overall brain
topological structure with the brain not readily shifting out of the
DMN into task-active states required by current contextual
demands. Importantly, our exploratory correlational analyses of
dynamic topology and symptoms (Fig. 2b) indicated that more
severe symptoms of psychosis were associated with greater
abnormalities of the dynamic topology of mPFC.
The disrupted connectivity between mPFC with other regions

has been related to reduced coherent bursting of neural signaling
in mPFC, which might be explained by N-methyl-D-aspartic acid
hypofunction or altered dopaminergic signaling that are hallmarks
of schizophrenia neurobiology31. Our finding of a correlation

between dynamic mPFC nodal centrality and psychotic symptom
severity before treatment highlight the clinical importance of
dynamic functional alterations in mPFC in relation to whole brain
topological organization.

Increased nodal dynamics in temporal and sensorimotor areas. We
also identified nodes whose dynamic centrality was increased
relative to HCs, including middle and inferior temporal gyri and
sensorimotor cortex. The temporal lobes are important for
auditory and linguistic processing and multimodal sensory
integration25,40. The observations of increased dynamic connec-
tivity in temporal lobes may represent a loss of functional
controllability in these regions14,41–43. The increased dynamic
nodal centrality in the temporal lobe, especially in auditory areas,
may be due to internal and external sounds competing for
attention (or being confused) during auditory processing44, a
factor that could contribute to the auditory hallucinations that are
common in schizophrenia. The lack of stability of graph metrics in
the inferior temporal gyrus may lead to disorganized thinking and
inferences about external events45. Dynamic centrality in temporal
lobes carried a non-negligible weight in distinguishing first-
episode schizophrenia patients from healthy individuals in our
classification model, indicating that altered functional dynamics in
the temporal lobe may commonly play an important role in the
pathophysiology of acute illness in schizophrenia patients.
Other nodes with increased dynamic metrics belonged to the

SMN and are involved in a variety of complex sensorimotor
processing, features well established as being abnormal in
schizophrenia46,47. The middle cingulate cortex is a central hub
for motor planning and action monitoring systems48. Paracentral
lobules and postcentral gyrus process sensations from different
parts of the body and integrate sensorimotor responses in the
planning of behavior49. These regions are also critical for
emotional response systems50,51, including value scaling and
utilizing action outcomes in behavioral planning48. Moderate
levels of dynamic fluctuations are needed for optimizing context-
relevant network activity, and for maintaining information
processing with minimal metabolic expenditure52. Excessive
fluctuations in brain nodes can lead to less efficient information
transmission and aberrant behavior, and a failure in maintaining

Table 2. Case-control differences in coefficients of variation (CV) of nodal efficiency and eigenvector centrality.

Characteristics Coordinates in MNI (x, y, z) Networka Uncorrected P value FDR-corrected P value

CV of nodal efficiency

Schizophrenia < controls

right mPFC 9, 54, 3 DMN <0.001 0.026

CV of nodal eigenvector centrality

Schizophrenia < controls

Right mPFC 9, 54, 3 DMN 0.002 0.049

Schizophrenia > controls

Left middle temporal gyrus −56, −13, −10 DMN 0.001 0.043

Right middle temporal gyrus 51, −29, −4 VAN <0.001 0.005

Right paracentral lobule 3, −17, 58 SMN <0.001 0.005

Right paracentral lobule 13, −33, 75 SMN <0.001 0.022

Left paracentral lobule −7, −33, 72 SMN <0.001 0.005

Left postcentral gyrus −23, −30, 72 SMN <0.001 0.005

Left middle cingulate 0, −15, 47 SMN <0.001 0.005

Right inferior temporal gyrus 52, −34, −27 Uncertain <0.001 0.026

MNI Montreal Neurological Institute, mPFC medial prefrontal cortex, DMN default mode network, SMN sensorimotor network, VAN ventral attention network,
FDR false discovery rate.
aNetworks were defined by Power et al. atlas.
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optimal metabolic costs14,42. Moreover, increased dynamic shifts
may result in decreased nodal centrality in affected brain
regions38,53, with adverse effects on information processing and
behavior as seen in schizophrenia.

Secondary analyses
The machine learning analysis focusing on the individual level
yielded findings consistent with group average findings. These
findings support the view that abnormal dynamic state character-
istics and topology of these brain regions are likely to reflect core
pathophysiological mechanisms at the individual level12,19. These
findings support the view that disrupted dynamic functional
integration of brain systems represents a common neurophysio-
logical disturbance in schizophrenia. In addition, these dynamic
properties have also been used to attempt to predict treatment
outcomes and show potential in the available subset. The analysis
of the follow-up study revealed that neurophysiological distur-
bances in brain system organization evident before treatment
were clinically relevant in predicting treatment outcomes.

Limitations
There are certain limitations to our study. Firstly, we used the
sliding-window approach for evaluating changes in dFC. This is a
widely used approach, but the best way to capture dynamic
fluctuations remains controversial54. Using wavelet decomposi-
tions or dynamic conditional correlations instead of dFC might
provide future advances in this field53. Secondly, the resting-state
fMRI (rs-fMRI) scanning length in our study (400 s) was not long. A
longer scan with a higher temporal resolution55 might provide a
more refined assessment of brain functional dynamics in
schizophrenia. There have been some dFC schizophrenia studies
with a slightly longer scan time, which have generally indicated
that schizophrenia is characterized by increased temporal
variability in sensory and perceptual systems14 and decreased
variability in default mode network and frontal-parietal network11.
Thirdly, advances in dynamic modeling methods could improve
single-time point resolution, such as instantaneous phase

synchrony56,57 and multiplication of temporal derivatives58.
Fourth, rs-fMRI data was acquired with a resolution of
3.75 × 3.75 × 5mm3, and then resampled to a resolution of
3 × 3 × 3mm3 before dynamic analysis. While providing isotropic
voxels for analysis, this approach may have yielded higher
estimates of within-region in the z-axis. Fifth, our statistical
analysis suggested that the FC matrices were clustered into two
categories and no other clusters (types of brain states) were
identified. It is possible that unidentified or rare states may exist
without the robustness to stand out as a discrete categorical type
of brain functional state. It may also suggest a general consistency
of brain state features across task-active networks in a rest state.
Sixth, the classification model, while conducted for exploratory
purposes of evaluating effects at the individual subject level, lacks
validation in an external dataset. Seventh, from a clinical
perspective, our findings are informative about acute psychosis
at illness onset and provide preliminary evidence about relevance
for predicting clinical changes after treatment, but the clinical
relevance or nature of these findings later in the illness course,
and their consistency across acute and stable clinical phases of
illness, remain to be established. Lastly, while our exploratory
follow-up study was informative, it was in a relatively small
proportion of the original sample and thus our findings in this
sample need to be considered with caution. Replication of the
finding in a controlled clinical trial is needed to validate and
extend information about the clinical relevance of our findings
seen during the acute phase of illness.

CONCLUSION
We demonstrated altered dFC in acutely ill, first-episode, never-
treated patients with schizophrenia, characterized by spending
more time in a state with more negative connectivities and
relatively weak positive connectivities. In terms of topological
properties, patients showed increased functional dynamics in the
temporal lobe and sensorimotor regions and decreased dynamics
in mPFC which was correlated with symptom severity. These
altered dynamic properties were important contributors to

Table 3. Features selected for classification model and the weights of these features in case-control classification.

Features Coordinates in MNI (x, y, z) Networka Weights Rank of absolute values of weights

State characteristics

Mean dwell time of state 1b – – 0.86 11

Nodal efficiency

Left fusiform gyrus −47, −51, −21 Uncertain 3.80 2

Right angular gyrus 52, −59,36 DMN −1.55 7

Right mPFCb 9, 54, 3 DMN −1.12 9

Nodal eigenvector centrality

Right middle temporal gyrusb 51, −29, −4 VAN 3.94 1

Left middle cingulateb 0, −15, 47 SMN 2.90 3

Right inferior temporal gyrusb 52, −34, −27 Uncertain 2.08 4

Right mPFCb 9, 54, 3 DMN −2.01 5

Left paracentral lobuleb −7, −33, 72 SMN 1.64 6

Left middle temporal gyrusb −56, −13, −10 DMN 1.53 8

Left fusiform gyrus −47, −51, −21 Uncertain −1.03 10

Left postcentral gyrusb −23, −30, 72 SMN 0.86 12

Right paracentral lobuleb 13, −33, 75 SMN 0.71 13

Right paracentral lobuleb 3, −17, 58 SMN 0.12 14

aNetworks were defined by Power et al. atlas.
bIndicates temporal properties that have previously exhibited between-group differences.
MNI Montreal Neurological Institute, mPFC medial prefrontal cortex, DMN default mode network, SMN sensorimotor network, VAN ventral attention network.
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distinguishing individual schizophrenia patients from controls. Our
findings demonstrate the importance of evaluating dynamic
aspects of brain connectivity to better understand the neurophy-
siological deficits associated with schizophrenia.

METHODS
Participants
We recruited 102 acutely ill, first-episode, never-treated schizo-
phrenia patients at West China Hospital of Sichuan University.
Diagnoses were confirmed using the Structured Clinical Interview
for DSM-IV Axis I Disorders (SCID) by two experienced psychia-
trists. Clinical symptom severity was assessed with the PANSS.
One hundred and three HCs were recruited from local commu-
nities by poster advertisement. The SCID interview (Nonpatient
Edition) was used to rule out psychiatric illness in HCs. All HCs
reported no known history of psychiatric illness in first-degree
relatives. Exclusion criteria for all participants were as follows: (1)
age less than 18 or more than 50; (2) left-handedness; (3) history
of substance abuse or substance dependence; (4) presence of any
other medical or neurological illness; (5) history of cerebral
trauma or surgery, seizure, mental retardation, or brain imaging
evidence of morphological anomalies; (6) current pregnancy or
breastfeeding; and (7) MRI contraindications such as claustro-
phobia and metal or electronic implants. The study was approved
by the local research ethics committee of West China Hospital of
Sichuan University, and written informed consent was obtained
from all participants.

MRI data acquisition and preprocessing
All participants underwent rs-fMRI and high-resolution T1-
weighted MRI using a 3.0 T MRI scanner (General Electric, Boston,
USA) with an 8-channel phased-array head coil. MR image data
preprocessing was carried out using the toolbox for Data
Processing & Analysis of Brain Imaging (rfmri.org/DPABI, version
5.1) for removing the first ten volumes, slice-timing correction,
head motion correction, nuisance signal regression, spatial
normalization, smoothing, and filtering. Participants with a
maximum head displacement of more than 1.5 mm or a maximum
rotation greater than 1.5° were excluded from the analysis
(excluding seven patients and three HCs). Ultimately, 95
antipsychotic-naive first-episode schizophrenia and 100 HCs were
included in further analysis without significant between-group
differences in age, sex, or years of education (Table 1). Details of
the scanning parameters and rs-fMRI data preprocessing are
provided in supplementary materials.

Establishing dFC matrices
We used DynamicBC toolbox to generate dFC matrices (rest-
fmri.net/forum/DynamicBC, version 2.2). The atlas of Power et al.59

delineates 264 cortical and subcortical brain nodes, with 10 mm
diameter spheres centered in each of them that can be used for
FC analysis. The 264 spheres were divided into 13 functional
networks59: DMN, VN, FPN, CON, AN, SN, sensorimotor hand
network (SMN_hand), sensorimotor mouth network
(SMN_mouth), dorsal attention network (DAN), VAN, memory
retrieval network (MN), subcortical network, and cerebellar
network. The mean time series of blood oxygen level-dependent
signals were extracted from voxels in each spherical brain node for
analysis. FC between these defined 264 regions was calculated via
Pearson’s correlation to generate FC matrices. A sliding-window
approach was used to explore the time-varying changes of FC
between each pair of brain nodes. All the time series were
segmented into overlapping time windows and slid with a step of
one time of repetition (TR) along with the time series. We chose a
22TR window (44 s) because previous studies have suggested that

windows of 30 s to 60 s can successfully capture patterns of
resting-state fluctuations of connectivity60 and such window sizes
have typically been used in dFC studies43,61. During the whole
scanning period, there are 169 dFC matrices per person when
there were 190 brain scanning volumes and 22TR window sizes
and the step was 1TR (details in Supplementary methods).

dFC state analysis
To identify discrete reoccurring patterns of dFC states across
subjects, we performed k-means clustering with Scikit-Learn
(version 0.23.1) on Python (version 3.8.3) on a series of
264 × 264 FC matrices for all participants. The similarity between
each windowed FC matrix was estimated using the Euclidean
distance. To identify the common and robust discrete categorical
data organization, the k value was varied from two to ten to
search the number of such groups of events in the data before
clustering. We used the “elbow criteria” to find the inflection of
the sum of the squared errors and applied the maximum
silhouette coefficient together to determine the optimal k value.
Both methods which aim to identify the number of types of
overall data organization (here, types of brain states) indicated the
best k to be two in the present study (Fig. S1), indicating that there
were two types of functional brain states in the data. In primary
analyses, we used the cluster centroids of all participants to
represent the two reoccurring dFC states (Fig. 1a). For visualization
of dFC states in the two groups respectively, we also calculated
the group-specific cluster centroids (Fig. 1b). To examine temporal
properties of the two dFC states, we assessed three different state
characteristics: (1) fractional time, the proportion of time window
belonging to each state; (2) mean dwell time, the average length
of consecutive time windows spent in each state; and (3) number
of transitions, the number of switches between states over time.

Dynamic topological analysis
The analysis of dynamic functional topology can characterize how
all brain regions work together and delineate anatomic and
functional sources of aberrant dFC14,36. To avoid a different
number of edges caused by weak spurious FCs and reduce the
computational complexity in the assessment of topological
architecture, the top K% (K= 5–20 with an interval of 5) strength
of the positive FCs for each 264 × 264 FC matrix were kept to
obtain a series of sparse weighted matrices. To represent global
and regional characteristics of topological networks, global
efficiency, clustering coefficient, nodal efficiency, and nodal EC
were computed for each sliding window for each person at each
sparsity using the Brain Connectivity Toolbox (nitrc.org/projects/
bct, version 2019-03-03). A detailed interpretation of these
topological characteristics is presented in Table S1. The area
under the curve (AUC) measures across the range of sparsity
thresholds were obtained to ensure the robustness of the four
topological characters. The CV of the AUC of all topological
metrics was calculated across all time windows to characterize
temporal variability for all subjects. High CVs reflect high
fluctuation rates of topological metrics, and low CV values reflect
more stable states. To assess the consistency and validity of the
dynamic analysis at different window sizes, we used another
sliding window parameter (30TR window width and 2TR step
length) to repeat the above analyses and validate the results. The
results of findings from the longer window did not meaningfully
differ from those of the primary analysis. The results reported in
the main text are under 22TR window sizes, and the results of
30TR were reported in the supplementary materials.

Statistical analysis
All neuroimaging statistical analysis was performed in MATLAB
R2017b. Permutation testing iterated 10,000 times was conducted
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to test for group differences due to the non-normal distribution of
state characteristics and dynamic topological metrics (details in
supplementary methods). Significance was set at P < 0.05 with FDR
correction for multiple comparisons. In patients, we performed
Spearman partial correlations to explore relations of dynamic
properties (state characteristics and CVs of topological metrics
showing intergroup differences) with acute illness severity
(PANSS ratings), treating demographic measures (age, sex, and
education years) as covariates. Nominal significance was set at
P < 0.05 for these correlation analyses conducted for heuristic and
descriptive purposes.

Classification based on dynamic properties
We next identified the brain features that most robustly and
consistently distinguished individual schizophrenia patients from
HCs using a linear SVC. The feature selection by F score was
performed instead of directly using the previous features with
significant between-group differences to avoid data leakage from
the training set to the test set and reduce the risk of overfitting.
After that, SVC was trained by the selected features. LOOCV was
performed to evaluate model generalization. Permutation testing
was conducted to test the performance of the classifier.
In an additional exploratory analysis with a subsample of 21

patients followed clinically after 6 weeks of antipsychotic treatment
(Table S3), we determined whether the dynamic properties
contributing to the classification model could predict clinical
treatment response with support vector regression. The prediction
of short-term treatment response procedures is described in detail
in supplementary materials.

DATA AVAILABILITY
The custom code that supports the findings of this study is available (github.com/
youwanfang/Dynamic-Properties). The clinical data are not publicly available because
of ethical restrictions that protect patients’ privacy and consent. Other data that
support the findings of this study are available from the corresponding author L.F.
upon reasonable request.
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