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The positive dimension of schizotypy is associated with a
reduced attenuation and precision of self-generated touch
Evridiki Asimakidou1, Xavier Job1 and Konstantina Kilteni 1✉

The brain predicts the sensory consequences of our movements and uses these predictions to attenuate the perception of self-
generated sensations. Accordingly, self-generated touch feels weaker than an externally generated touch of identical intensity. In
schizophrenia, this somatosensory attenuation is substantially reduced, suggesting that patients with positive symptoms fail to
accurately predict and process self-generated touch. If an impaired prediction underlies the positive symptoms of schizophrenia,
then a similar impairment should exist in healthy nonclinical individuals with high positive schizotypal traits. One hundred healthy
participants (53 female), assessed for schizotypal traits, underwent a well-established psychophysics force discrimination task to
quantify how they perceived self-generated and externally generated touch. The perceived intensity of tactile stimuli delivered to
their left index finger (magnitude) and the ability to discriminate the stimuli (precision) was measured. We observed that higher
positive schizotypal traits were associated with reduced somatosensory attenuation and poorer somatosensory precision of self-
generated touch, both when treating schizotypy as a continuous or categorical variable. These effects were specific to positive
schizotypy and were not observed for the negative or disorganized dimensions of schizotypy. The results suggest that positive
schizotypal traits are associated with a reduced ability to predict and process self-generated touch. Given that the positive
dimension of schizotypy represents the analogue of positive psychotic symptoms of schizophrenia, deficits in processing self-
generated tactile information could indicate increased liability to schizophrenia.
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INTRODUCTION
Distinguishing between the two causes of our sensory input—the
self and the environment—is fundamental for survival. First, it
enables the nervous system to detect physically harmful situations
for the organism and to act accordingly1–3: for example, the touch
of a spider crawling up one’s arm (externally generated touch)
elicits a dramatically different response from the same touch
applied by one’s other hand (self-generated touch). Second, this
distinction is a prerequisite for maintaining our self-consciousness
and consequently our mental health because it allows us to
delimit our own intentions, sensations, actions, thoughts, and
emotions from those of others4–6. For example, we do not mistake
our thoughts for the voices of other people we simultaneously
have conversation with, because we attribute the cause of our
thoughts to ourselves (self-generated ‘voices’) and the cause of
the voices we hear to others (externally generated voices).
How do we make this distinction? The brain uses internal

forward models to predict the sensory consequences of move-
ments (corollary discharge) using copies of the motor commands
(efference copy)3,7,8. These predictions are essential for the fast,
online control of movements because they allow the brain to
estimate and correct the body’s state despite the inherent delays
in the sensory system3,9–11. Importantly, these predictions allow
the brain to differentiate between self-generated and externally
generated sensations: accordingly, those sensations that match
the sensory predictions are self-generated, while those that
deviate from the predicted ones, or have not been predicted,
are attributed to external causes12. Moreover, the brain uses these
predictions to attenuate the intensity of the self-generated signals,
thereby amplifying the difference between self-generated and
externally generated information8,13–15. In the tactile domain, this

attenuation manifests as perceiving self-generated touch as
weaker than an externally generated touch of the same
intensity15–26 and in yielding weaker activity in the secondary
somatosensory cortex and the cerebellum23,27 and increased
functional connectivity between the two areas23. This somatosen-
sory attenuation is considered one of the reasons why we cannot
tickle ourselves8,28,29.
In contrast to healthy individuals, patients with schizophrenia

show significantly less attenuation of self-generated tactile
sensations at the behavioral level30 and do not exhibit attenuation
of somatosensory cortical activation for self-generated forces as
healthy controls do31. Moreover, patients with positive symptoms,
such as auditory hallucinations and delusions of control, often fail
to attenuate self-generated touch and perceive it as if it were
externally generated32. Critically, this failure of attenuation is
positively correlated with the severity of their hallucinations: the
more severe the hallucinations, the lower the somatosensory
attenuation31.
These findings have supported the neuropsychiatric view that

the positive symptoms of schizophrenia can be explained by a
deficit in predicting and processing self-generated sensa-
tions33,34. Such a deficit should hinder the distinction between
self-generated and externally generated sensations35, reduce
the sense of agency6,36, and produce perceptual aberrations37,
including delusions of control5 and auditory hallucinations36.
Consequently, schizophrenia is tightly linked to an atypical
perception of self-generated sensations but not externally
generated sensations. Despite the heterogeneity of symptoms,
schizophrenia has been primarily described as a disorder of the
sense of self38–40, and self-disorders have been shown to
constitute a crucial, trait-like phenotype of the schizophrenia
spectrum41.
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If the positive symptoms of schizophrenia are intrinsically linked
to deficits in predicting and processing self-generated somato-
sensation, then a similar relationship should exist between
positive schizotypy and impaired prediction and processing of
self-generated somatosensation in nonclinical individuals. Impor-
tantly, this approach circumvents many of the methodological
confounds arising from patient studies, such as antipsychotic
treatment, hospitalization, and disease chronicity, that the patient
groups are typically subjected to42. Schizotypy, or psychosis-
proneness, describes subclinical psychosis-like symptoms or
personality characteristics, including peculiar beliefs, unusual
sensory experiences and odd behavior43,44, that apply to the
general population45–50. Schizotypal traits are presumed to
originate from the same combination of genetic, neurodevelop-
mental and psychosocial factors as schizophrenia51–59, they lie on
a continuum with schizophrenia50 and are considered a valid
phenotypic indicator for the liability to psychosis spectrum
disorders and for understanding the underlying psychopathol-
ogy45,46,48,57. Similar to schizophrenia symptom clusters, schizo-
typy consists of three dimensions, positive, negative, and
disorganized45,50,60, that broadly correspond to the positive (e.g.,
hallucinations and delusions), negative (e.g., alogia and apathy)
and disorganized symptoms of schizophrenia (e.g., thought
disorder and bizarre behavior)46,61–66.
Here, we investigated the relationship between schizotypal

traits and the perception of self-generated and externally
generated somatosensation in 100 healthy individuals. We
hypothesized that high positive schizotypy would be associated
with reduced somatosensory attenuation and lower precision of
self-generated touch.

MATERIALS AND METHODS
Participants
The data of one hundred and two participants were used in the present
study. Current or history of psychological or neurological conditions, as
well as the use of any psychoactive drugs or medication, were criteria for
exclusion. All participants reported being completely healthy without
neurological or psychiatric disorders or taking any medication to treat such
conditions. Our sample size was based on two previous studies assessing
the relationship between schizotypy and tactile perception in non-clinical
samples67,68. The data were pooled from three studies (40, 30, and
32 subjects), all including the same psychophysics task and schizotypy
measure, and identical experimental conditions. Two participants were
excluded because of missing data in the schizotypy measure. Thus, the
final sample consisted of one hundred (100) adults (53 women and 47
men; 91 right-handed, 5 ambidextrous, and 4 left-handed; age range:
18–40 years). Handedness was assessed using the Edinburgh Handedness
Inventory69. All participants provided written informed consent, and the
Swedish Ethical Review Authority (https://etikprovningsmyndigheten.se/)
approved all three studies (#2020-03647, #2020-03186, #2020-05457).

Psychophysical task
The psychophysical paradigm was a two-alternative forced-choice force-
discrimination task that has been extensively used to assess somatosen-
sory attenuation15,18,24,25,70,71. On each trial, the participants received two
taps (test and comparison taps) on the pulp of their left index fingers, and
they had to verbally indicate which felt stronger: the first or the second
tap. The intensity of the test tap was set to 2 N, while the intensity of the
comparison tap was systematically varied among seven force levels (1, 1.5,
1.75, 2, 2.25, 2.5 or 3 N). In the externally generated touch condition (Fig. 1a),
the participants kept both of their hands relaxed while receiving the test
tap and comparison taps on their left index finger. In the self-generated
touch condition (Fig. 1b), the participants actively tapped a force sensor
with their right index finger and triggered the test tap on their left index
finger. Then, they remained relaxed while receiving the comparison tap.
Each condition consisted of 70 trials, resulting in 140 trials per participant.
The order of the intensities was randomized across participants. The order
of the conditions was counterbalanced across participants. For detailed
description, see Supplementary Material.

Psychophysical fits
In each condition, the participants’ responses were fitted with a general-
ized linear model using a logit link function (Eq. 1)

p ¼ eβ0þβ1x

1þ eβ0þβ1x
(1)

Two parameters of interest were extracted. The point of subjective

equality PSE ¼ � β0
β1

� �
represents the intensity at which the test tap felt as

strong as the comparison tap (p = 0.5) and quantifies the participants’
perceived intensity of the test tap. Subsequently, somatosensory attenua-
tion is calculated as the difference between the PSEs of the two conditions
(PSEexternal – PSEself)15,18,24,25,70,71. The just noticeable difference parameter

JND ¼ logð3Þ
β1

� �
reflects the participants’ sensitivity in the psychophysics

task and quantifies their somatosensory precision in each condition. The
PSE and JND are independent qualities of sensory judgments.

Schizotypal traits
After the psychophysical task, participants completed the Schizotypal
Personality Questionnaire (SPQ)44, a 74-item self-report schizotypy assess-
ment instrument with excellent internal reliability (Cronbach’s alpha=
0.91) and test-retest reliability (0.82)44. It was developed on the basis of the
nine features of schizotypal personality disorder, as defined by the DSM-III-
R criteria (American Psychiatric Association, 1987)44. We used the three-
factor model to partition the dimensions of the construct of schizo-
typy60,61,63,72–75, and we calculated the total score for the cognitive-
perceptual, interpersonal and disorganized factors that reflect the positive,
negative, and disorganized dimensions of schizotypy, respectively. There
has been discussion as to whether schizotypy constitutes a continuous or a
categorical construct46,68,76–78. In line with the predominant conceptualiza-
tion of schizotypy as a continuous variable within the general popula-
tion46,47,50,79, our main analysis comprised treating positive schizotypal
traits as a continuous variable across the entire sample. Nonetheless, to
attain methodological rigor and to account for both notions, we performed
a secondary analysis treating schizotypy as a categorical variable.

Statistical analysis
Data were analyzed using R80 and JASP81. Data normality was assessed
using the Shapiro–Wilk test, and planned comparisons were made
using parametric (independent or paired t-test) or nonparametric
(Mann–Whitney or Wilcoxon) statistical tests. For each test, 95%
confidence intervals (CI95) are reported. Depending on the data normality,
effect sizes are given by Cohen’s d or by the matched rank biserial
correlation rrb. For the ANOVAs, effect sizes are given by the partial eta-
squared (ηp2). Spearman correlation coefficients were used as the data
were not normally distributed. Model comparison was performed using
the Akaike information criterion. A Bayesian factor analysis was carried out
for all statistical comparisons of our categorical analyses (default Cauchy
priors with a scale of 0.707) and correlations (Kendall’s tau-b) to provide
information about the level of support for the null hypothesis compared
to the alternative hypothesis (BF01) given the data. All statistical tests were
two-tailed.

RESULTS
Somatosensory attenuation and precision across the entire
sample
The PSE was significantly lower in the self-generated touch
condition than in the externally generated touch condition across
the entire sample: n= 100, V= 625, p < 0.001, CI95 = [−0.185,
−0.105], rrb=−0.747, BF01 < 0.001 (Fig. 1c, d). This indicates that
self-generated tactile stimuli felt weaker than externally generated
stimuli of identical intensity, replicating previous find-
ings15,18,24,25,70,71. When removing the extreme PSE value of one
participant (Fig. 1c), the same results were obtained: n= 99, V=
625, p < 0.001, CI95= [−0.180, −0.105], rrb=−0.742, BF01 < 0.001.
Attenuation was observed in 80% of participants (Fig. 1e).
JNDs did not significantly differ between the two conditions:

n= 100, V= 2592, p= 0.335, CI95= [−0.01, 0.03], rrb= 0.113
(Fig. 1f, g). This was strongly supported by a Bayesian analysis
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Fig. 1 Experimental methods and results. a, b The two experimental conditions. c The boxplots show the median and interquartile ranges
for the PSEs, the jittered points denote the raw data, and the violin plots display the full distribution of the data in each condition. A lower PSE
value indicates a lower perceived magnitude. d Line plots illustrate the decreases in PSEs when experiencing self-generated tactile stimuli
compared to externally generated stimuli. The PSEs were significantly decreased in the self-generated touch condition compared to the
externally generated touch condition. e Density plot for somatosensory attenuation (difference in the PSEs between the two conditions). f A
lower JND value indicates a higher somatosensory precision. g Line plots illustrate the changes in JNDs when experiencing self-generated
tactile stimuli compared to externally generated stimuli. The JNDs did not significantly differ between the self-generated touch and externally
generated touch conditions. h Density plot for the difference in the sensory precision between the two conditions.
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(BF01= 5.417) indicating that self-generated and externally
generated taps were perceived with similar sensory precision, in
line with previous studies24,25. When removing the extreme JND
value of one participant (Fig. 1f), the same results were obtained:
n= 99, V= 2592, p= 0.247, CI95= [−0.005, 0.03], rrb= 0.137,
BF01= 3.480. As seen in Fig. 1h, approximately half of the
participants increased and half decreased their JNDs between
the conditions (44% increased, 52% decreased, 4% remained
unchanged).
No significant correlation was observed between the PSEs and

JNDs in either the self-generated touch condition (n= 100, rho=
0.079, p= 0.437) or in the externally generated touch condition
(n= 100, rho= 0.046, p= 0.647), and this was strongly confirmed
by a Bayesian analysis (BF01= 5.452 for the self-generated touch
condition, and BF01= 6.560 for the externally generated touch
condition). This corroborates the notion that sensory magnitude
(PSE) and precision (JND) are independent measures, and is in line
with previous findings25. No order effects were detected neither
in the PSEs nor in the JNDs. Supplementary Material shows all
individual fits.

Schizotypal traits and somatosensory attenuation
Figure 2a–d shows the distribution of the total SPQ scores (μ=
20.87, σ= 12.165, range= 0–53, Cronbach’s alpha= 0.821), as well
as those of the cognitive-perceptual, interpersonal, and disorga-
nized factors in our sample. Our schizotypy distributions were very
similar to those of previous studies using random sampling
methods, both in terms of mean and variability (e.g.,68,82). The
sample had comparable levels of positive, negative, and
disorganized schizotypy. For details, see Supplementary Material.
Confirming our first hypothesis, we observed a negative

correlation between somatosensory attenuation and schizotypal
traits (n= 100, rho =−0.215, p= 0.031, BF01= 0.865) (Fig. 2e),
which was driven by the scores of the cognitive-perceptual factor
(i.e., the positive dimension of schizotypy) (Fig. 2f): n= 100, rho=
−0.259, p= 0.009, BF01= 0.243. This means that the higher the
positive schizotypal traits of the participants, the lower their
somatosensory attenuation. The individual PSEs did not signifi-
cantly correlate with positive schizotypy (self-generated touch
condition: n= 100, rho=−0.097, p= 0.335; externally generated
touch condition: n= 100, rho=−0.180, p= 0.074). The absence of
these significant correlations was supported by a Bayesian analysis
(BF01= 4.794 for the self-generated touch condition and BF01=
1.502 for the externally generated touch condition), indicating that
positive schizotypal traits are associated with the perceived
difference between the intensities of a self-generated and an
externally generated touch (i.e., somatosensory attenuation).
Critically, the relationship between attenuation and schizotypy
was found only for positive schizotypy and not for the negative
(i.e., interpersonal factor) (n= 100, rho=−0.179, p= 0.074)
(Fig. 2g) or the disorganized dimension (i.e., disorganized factor)
(n= 100, rho=−0.106, p= 0.294) (Fig. 2h), and a Bayesian
analysis further supported the absence of these relationships
(BF01= 1.552 for the negative and BF01= 4.337 for the disorga-
nized dimension).
To test the predictive power of each schizotypy dimension on

somatosensory attenuation, we built three different linear models
with the positive, negative, and disorganized schizotypy as
independent predictors of somatosensory attenuation (difference
in the PSEs), respectively. In all three models, three participants
(out of 100) were considered outlier values based on a normal Q-Q
plot and were removed. Residual errors were normally distributed.
When comparing the three models, the Akaike information
criterion favored the one with positive schizotypy (AIC=
−55.548), followed by the one with disorganized schizotypy
(AIC=−49.981) and then the one with negative schizotypy (AIC=
−49.961). To further test whether positive schizotypy was a better

predictor of somatosensory attenuation, over-and-above the other
two schizotypy dimensions, we built a model with all three
schizotypal dimensions included as simultaneous predictors. All
three regressors had low variance inflation factors (<1.86) and the
residual errors were normally distributed. Positive schizotypy was
a significant negative regressor on somatosensory attenuation
(n= 97, t=−2.292, p= 0.024) but neither the negative (n= 97,
t= 0.547, p= 0.586), nor the disorganized dimensions of schizo-
typy (n= 97, t=−0.372, p= 0.711) were significant predictors of
attenuation. These results suggest that the predictive power of
positive schizotypy is higher than that of negative and disorga-
nized schizotypy in accounting for the attenuation effect and
demonstrates the specificity of the positive subscale.

Schizotypal traits and somatosensory precision
Confirming our second hypothesis, we observed a positive
correlation between the JND of self-generated touch and positive
schizotypal traits (n= 100, rho= 0.339, p < 0.001, BF01= 0.018)
(Fig. 2j), which effectively is a negative correlation between the
somatosensory precision of self-generated touch and positive
schizotypal traits. In other words, the higher the positive
schizotypal traits of the participants, the lower their somatosen-
sory precision of self-generated touch. In contrast, somatosensory
precision for externally generated touch did not correlate with
positive schizotypy (n= 100, rho= 0.114, p= 0.257, BF01= 3.639),
suggesting that positive schizotypy does not generically influence
the precision with which touch is perceived but only that of self-
generated touch. Finally, the somatosensory precision of self-
generated touch significantly correlated only with positive
schizotypy but not with the full SPQ (n= 100, rho= 0.167, p=
0.096) (Fig. 2i), or the negative (n= 100, rho= 0.039, p= 0.699)
(Fig. 2k) or disorganized dimension (n= 100, rho= 0.092, p=
0.364) (Fig. 2l). As above, the Bayesian analyses strongly supported
the absence of these relationships (BF01= 6.600 for the negative
dimension and BF01= 4.682 for the disorganized dimension).
As with somatosensory attenuation, to test the predictive power

of each schizotypy dimension on the precision of self-generated
touch, we built three different linear models with the positive,
negative, and disorganized schizotypy as independent predictors
of somatosensory precision (JNDself), respectively. In all three
models, three participants (out of 100) were considered outlier
values based on a normal Q-Q plot and were removed. Residual
errors were normally distributed for the positive and the negative
schizotypy. They were not normally distributed for the disorga-
nized dimension but followed a bell-shaped curve. When
comparing the three models, the Akaike information criterion
favored the one with positive schizotypy (AIC=−218.68),
followed by the one with negative schizotypy (AIC=−207.732)
and then the one with disorganized schizotypy (AIC=−207.322).
To further test whether positive schizotypy was a better predictor
of the precision of self-generated touch, over-and-above the other
two schizotypy dimensions, we built a model with all three
schizotypal dimensions included as simultaneous predictors. All
three regressors had low variance inflation factors (<1.69). The
residuals were not normally distributed but followed a bell-shaped
curve. Similar to somatosensory attenuation, positive schizotypy
was a significant regressor on somatosensory precision (n= 97,
t= 8.436, p= 0.005) while neither the negative (n= 97, t= 0.353,
p= 0.725), nor the disorganized dimensions of schizotypy (n= 97,
t=−1.062, p= 0.291) were significant regressors. Together, these
results suggest that the predictive power of positive schizotypy is
higher than that of negative and disorganized schizotypy in
accounting for the lower precision of self-generated touch and
demonstrates the specificity of the positive subscale.
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Fig. 2 Schizotypal traits and somatosensory attenuation and precision. a–d Density plots of the Schizotypal Personality Questionnaire
(SPQ) scores (possible score ranges: total, 0–74; cognitive-perceptual, 0–33; interpersonal, 0–33; disorganized, 0–16). e–h Correlations between
the Schizotypal Personality Questionnaire (SPQ) scores and somatosensory attenuation. i–l Correlations between the Schizotypal Personality
Questionnaire (SPQ) scores and the inverse somatosensory precision of self-generated touch (JND). Note that the y-axis displays the JNDs (i.e.,
the inverse somatosensory precision). e–l Regression lines are shown for illustrative purposes only, since we used the Spearman correlation
coefficient to calculate the correlation between the variables. The positive schizotypy was the only dimension that significantly correlated with
somatosensory attenuation and the precision of self-generated touch.
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Schizotypy as a categorical variable
Finally, we treated positive schizotypal traits as a categorical
variable. Given the absence of established cut-off values for the
SPQ estimates, we split the sample into 3 subgroups with equal
numbers of participants based on their scores in the cognitive-
perceptual factor: the low (nlow= 34), medium (nmed= 33), and
high (nhigh= 33) positive schizotypy groups (Fig. 3a). This
approach was deemed appropriate to discern the differences
between the two extremes (i.e., low and high).
For the PSEs, a mixed ANOVA with condition (self-generated

versus externally generated) as the within-subjects’ factor, and
positive schizotypy group (high versus low) as the between
subjects’ factor revealed a significant main effect of condition
(F(1,65)= 25.94, p < 0.001, ηp2= 0.285), a non-significant effect of
schizotypy group (F(1,65) = 0.041, p= 0.840, ηp2 < 0.001), and a

significant interaction (F(1,65)= 6.402, p= 0.014, ηp2= 0.090). The
interaction was driven by a significantly higher somatosensory
attenuation for the low positive schizotypy group compared to the
high positive schizotypy group (Fig. 3b): nlow= 34, nhigh= 33, W=
770, p= 0.009, CI95= [0.030, 0.230], rrb= 0.373, BF01= 0.280.
For the JNDs, the mixed ANOVA revealed a non-significant

main effect of condition (F(1,65)= 1.890, p= 0.174, ηp2= 0.028),
a significant effect of schizotypy group (F(1,65)= 9.508, p=
0.003, ηp2= 0.128), and a significant interaction (F(1,65= 8.346,
p= 0.005, ηp2= 0.114). The interaction term was driven by lower
JNDs in the self-generated touch condition for the low positive
schizotypy group compared to the high positive schizotypy
group (nlow= 34, nhigh= 33, t(48.7)=−3.626, p < 0.001, CI95=
[−0.133, −0.038], Cohen’s d=−0.89, BF01= 0.018) (Fig. 3c). In
contrast, JNDs in the externally generated touch condition did not
significantly differ between the two groups (nlow= 34, nhigh= 33,

Fig. 3 Somatosensory attenuation and precision in individuals with low, medium, and high positive schizotypal traits. a Density plots for
the three positive schizotypy subgroups of our sample. Vertical dotted lines indicate the mean of each subgroup. b The high positive
schizotypy group showed significantly less somatosensory attenuation than the low positive schizotypy group. c The high positive schizotypy
group showed significantly less somatosensory precision (significantly higher JND) in the self-generated touch condition than the low
schizotypy group. d Group psychometric fits using the total sample. The fits for each condition were generated using the mean PSE and the
mean JND across participants. e, f Group psychometric fits for the low (e) and the high (f) positive schizotypy groups. The high positive
schizotypy group shows a substantially smaller shift in the curves between the self-generated and externally generated touch conditions
(i.e., less attenuation) and a flatter slope for the self-generated touch condition (i.e., higher JND).
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W= 477.5, p= 0.296, CI95= [−0.050, 0.020], rrb=−0.149,
BF01= 2.46).
Figure 3d–f illustrates these effects for the entire sample

(Fig. 3d), the low (Fig. 3e) and the high positive schizotypy
subgroups (Fig. 3f). In the entire sample, the psychometric curve
shifted to the left for the self-generated touch condition compared
to the externally generated touch condition without any changes in
the slope; thus, self-generated touch felt weaker than external
touch, but they were perceived with similar precision (Fig. 3d).
Critically, as seen in Fig. 3e and f, the high positive schizotypy
group showed less of a shift between the PSEs in the self-
generated and externally generated touch conditions (less attenua-
tion) and a flatter curve in the self-generated touch condition
(higher JND) compared to the low schizotypy group.

DISCUSSION
The present study has two main findings. First, individuals with
higher positive schizotypal traits exhibited less attenuation of their
self-generated touch than individuals with low positive schizoty-
pal traits. This result strongly mirrors previous clinical findings of
reduced somatosensory attenuation in patients with schizophre-
nia30–32. This is also in line with earlier observations that
nonclinical individuals with high schizotypy subjectively rate
self-generated touch as more ticklish78 and intense68 than those
with low schizotypy. Second, our experimental task (i.e., the force-
discrimination task) enabled the measurement not only of the
perceived magnitude but also of somatosensory precision and
consequently, the assessment of its relationship with schizotypy.
Individuals with higher positive schizotypal traits perceived self-
generated touch with less sensory precision than individuals with
lower positive schizotypal traits, without any effect on the
precision of externally generated touch. This result indicates for
the first time that high positive schizotypal traits are not
accompanied by generic deficits in processing afferent somato-
sensory information but only self-generated somatosensory feed-
back and enforces the view that self-disorders lie at the core of the
schizophrenia spectrum38,39,41,83,84. Critically, both in terms of
attenuation and precision of self-generated touch, it was the
positive dimension of schizotypy that drove the effects and not
the negative or disorganized dimensions. This parallels the
association previously observed between somatosensory attenua-
tion and the severity of hallucinations31, as well as the delusional
ideation85,86 and passivity experiences78 of nonclinical individuals.
Deficits in somatosensory attenuation and precision can fall

within the scope of subtle neurological aberrations in sensor-
imotor performance87,88, that are present with variable severity
across the psychosis continuum89–93. Neurological soft signs have
been repeatedly associated with the negative symptoms of
schizophrenia and negative schizotypy in non-clinical indivi-
duals94–104, and less robustly with the positive and disorganized
dimensions89,105–107. Instead, our data revealed a relationship of
somatosensory attenuation and precision only with positive
schizotypy, and not with the negative and the disorganized
dimensions. Consequently, our findings suggest that somatosen-
sory attenuation and precision constitute a special category of
neurological soft signs that is specifically related to the self and
the positive dimension of psychotic and psychotic-like symptoms.
Our results provide important insights for understanding the

mechanism underlying the positive symptoms of schizophrenia.
From a computational perspective, our effects can be explained by
a deficit in the internal forward model that predicts the
somatosensory consequences of the movement. Earlier studies
have shown that somatosensory attenuation relies on spatiotem-
poral motor predictions18,19,71 and not on postdictive pro-
cesses25,70, and it requires conditions where the received touch
can be predicted by the motor command15,17,18,20–22,24,70. In our
study, reduced attenuation indicates that with the same motor

command, the brain of an individual with high positive schizotypy
does not accurately predict the sensory consequences of the
voluntary movement, leading to less attenuation of the self-
generated somatosensory feedback compared to an individual
with low positive schizotypy. The combination of this inaccurately
predicted somatosensory information with the actual somatosen-
sory feedback further leads to the decreased precision of self-
generated touch. Within a Bayesian framework where prediction
corresponds to prior expectations and sensory feedback to
sensory evidence35, our study indicates that high positive
schizotypy is related to atypical prior expectations (generated by
the internal forward model) and atypical combinations of prior
knowledge with sensory evidence.
The cerebellum has been repeatedly implicated in predicting

the sensory consequences of one’s own actions11,70,108–112, and
we previously showed that participants with stronger functional
connectivity between the cerebellum and the primary and
secondary somatosensory cortices during self-generated touch
compared to externally generated touch, show greater somato-
sensory attenuation23. Schizophrenia is also strongly associated
with alterations in structural and functional cerebellar connectiv-
ity113,114. Patients show impairments in cerebellar-mediated motor
tasks115, deficits in the integrity of the cerebellar white matter
tracts116,117, and altered cerebellar connectivity118–124 and activa-
tion125 compared to healthy controls. Individuals at ultra-high-risk
for psychosis have decreased resting-state cerebellocortical
connectivity compared to controls126, and their functional and
structural cerebellocortical connectivity relates to their positive
symptom progression127. Based on our findings, we speculate that
positive schizotypy and consequently the positive symptoms of
schizophrenia are related to altered corticocerebellar connectivity.
Future efforts should exploit the perception of self-generated

somatosensation as a potential indicator of psychosis proneness.
In contrast to other markers, including prepulse inhibition,
mismatch negativity and the P300128, which reflect deficits in
processing externally generated information in schizophrenia, our
results emphasize deficits in processing self-generated informa-
tion. Furthermore, given that the positive symptoms in the
prodromal phase are highly predictive of the transition from a
high-risk state to schizophrenia129,130, self-generated somatosen-
sation could function as a sign of neurocognitive impairment that,
when combined with other genetic, biochemical and neuroima-
ging markers131,132, forms a multilayered ‘signature’ for schizo-
phrenia liability. This could enable early detection of psychosis
proneness using objective measures that are not susceptible to
self-report bias like scale-based measures. So far, this perspective
is still at a premature stage and the implementation in clinical
settings is far from complete. Undoubtedly, appropriate clinical
contextualization and validation through future longitudinal
studies are necessary. Nonetheless, the present study suggests
that deficits in processing self-generated touch can indicate
increased liability for schizophrenia.
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