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Dysregulated affective arousal regulates reward-based decision
making in patients with schizophrenia: an integrated study
Hong-Hsiang Liu1,2, Chih-Min Liu2, Ming H. Hsieh2, Yi-Ling Chien2, Yung-Fong Hsu1,3,4 and Wen-Sung Lai 1,3,4✉

Schizophrenia is a chronic and severe mental disorder. Dysregulated decision-making and affective processing have been
implicated in patients with schizophrenia (SZ) and have significant impacts on their cognitive and social functions. However, little is
known about how affective arousal influences reward-based decision-making in SZ. Taking advantage of a two-choice probabilistic
gambling task and utilizing three facial expressions as affective primes (i.e., neutral, angry, and happy conditions) in each trial, we
investigated how affective arousal influences reward-related choice based on behavioral, model fitting, and feedback-related
negativity (FRN) data in 38 SZ and 26 healthy controls (CTRL). We also correlated our measurements with patients’ symptom
severity. Compared with the CTRL group, SZ expressed blunted responses to angry facial primes. They had lower total game scores
and displayed more maladaptive choice strategies (i.e., less win-stay and more lose-shift) and errors in monitoring rewards. Model
fitting results revealed that the SZ group had a higher learning rate and lower choice consistency, especially in the happy condition.
Brain activity data further indicated that SZ had smaller amplitudes of FRN than their controls in the angry and happy conditions.
Importantly, the SZ group exhibited attenuated affective influence on decision-making, and their impairments in decision-making
were only correlated with their clinical symptoms in the angry condition. Our findings imply the affective processing is dysregulated
in SZ and it is selectively involved in the regulation of choice strategies, choice behaviors, and FRN in SZ, which lead to impairments
in reward-related decision-making, especially in the angry condition.
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INTRODUCTION
Schizophrenia is a severe mental illness that affects approximately
1% of the world’s population. Aberrant midbrain dopamine level
has been proposed as one of the key features in schizophrenia1.
Mounting evidence has linked it to dysregulated decision making,
as the updated reward prediction error (RPE)—a discrepancy
between the predicted and actual action outcomes—is encoded
by dopaminergic systems2,3. Abnormalities in the dopamine
system have been considered to alter the appraisal of stimuli
and reward processing in patients with schizophrenia (SZ)4,5.
These findings have now led to the neuroeconomic approach of
schizophrenia research, which brings out a broad set of tools and
experimental paradigms to characterize altered reward processing
and choice behavior in psychiatric populations5,6. For instance,
Juckel et al.7 applied the monetary incentive delay task to
unmedicated SZ. They found that, compared with healthy controls
(CTRLs), SZ had reduced activation in ventral striatal dopamine
projections during reward anticipation. In a reward-related
prediction-error task, Morris et al.8 reported that the differential
activation between expected and unexpected feedbacks was
attenuated in SZ, which was due to exaggerated ventral striatal
responses to expected rewards and blunted responses to
unexpected outcomes. The results of these studies have been
interpreted as dysregulated reward processing and RPE signaling
in SZ. Furthermore, Li, Lai, Liu, and Hsu9 examined the
mechanisms related to this dysregulated reward processing
through model fitting. They found that SZ exhibited lower reward
sensitivity with more frequently updated reward representation
than CTRL in a probabilistic gambling task. Importantly, they
found that patients’ unstable choice behavior appeared to be

correlated with their scores on P1 “delusion” and P3 “hallucinatory
behavior” in the Positive and Negative Syndrome Scale (PANSS)10,
suggesting a link between dysregulated decision making and the
severity of psychotic symptoms.
In addition to the associative-based reinforcement learning

model, the altered reward-based decision making in SZ was also
investigated with rule-based win-stay/lose-shift strategies11,12.
From an operant learning view, a rewarded choice should be
repeated (i.e., win-stay), whereas the choice leads to negative
outcome should subsequently be avoided in the next round (i.e.,
lose-shift)13,14. In a probabilistic reversal learning task, it was
reported that SZ has a trend level of less frequent win-stay and
more frequent lose-shift than CTRL11. With a similar design, Waltz
et al.12 also found that the patients exhibited significantly more
frequent shifts to rich option (i.e., high reward probability) than
CTRL regardless of the feedback type. Thus, these studies suggest
that the robustness of patients’ internal representation of correct
choice might be decreased, which render them to have a reduced
propensity for adaptive win-stay/lose-shift strategies.
Along with dysregulated decision making, SZ also suffer from

affective disturbances. Existing literature suggests that patients
have significantly worse performance in affect perception than
CTRLs across a range of sensory modalities15, and this abnormality
appears to be more specific to the interpretation of negative affect
than to positive ones16–19. For instance, Horley et al.17 analyzed
participants’ electroencephalograms (EEGs) when they were
passively viewing facial pictures and found that SZ displayed a
delayed and diminished frontal P200 response to angry faces
compared with CTRLs. The P200 component has been reported to
reflect the initial stages of facial expression processing and
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emotion analysis20–25. Therefore, their finding suggests a blunted
affective response to angry faces in SZ. Intriguingly, compared to
CTRLs, Premkumar et al.18 reported that SZ not only had lower
accuracy in recognizing negative affect but also exhibited
significant misattribution bias—they tended to misattribute angry
to neutral expressions. Thus, the blunted and attenuated response
to negative affect might be prominent features of affective
disturbance in SZ.
Given that dysregulated decision-making and affective proces-

sing have both been implicated in SZ and have significant impacts
on their cognitive and social functions, it is of interest to
investigate how these two deficits interact in this population. In
this study, we took advantage of facial expression primes (i.e.,
neutral, happy, and angry faces) from a culture-based facial
expression database to elicit affective responses and measured
choice behaviors in a probabilistic gambling task as reported
previously26. In addition to conventional behavioral data, an
integrated approach from choice strategy, model-fitting, and EEG
perspectives was conducted to characterize the deficits in reward-
based decision making and to determine the mental processes
that underlie choice behavior. In particular, we analyzed the win-
stay/lose-shift strategies in each participant to untangle their
choice behavior11–14, adopted a simplified reinforcement learning
model to unfold the mental processes underlying choice behavior,
and applied an EEG component termed feedback-related nega-
tivity (FRN, a neural index of prediction error)27–29 to index RPE
signaling that driving reward-based decision making30–33. Our
measurements across three prime conditions were also correlated
with symptom subscores of the PANSS to reveal the correlation
between each index and symptom severity in these patients.

RESULTS
Significant interaction between group and prime condition in
subjective affective response was identified
For subjective ratings of affective responses, there was a significant
group × prime condition × PANAS item interaction [F(2,124) =
12.23, p < 0.001]. For positive ratings (Fig. 1A), both the CTRL and SZ
groups had higher ratings in the happy conditions than in the
neutral and angry conditions (all p < 0.05). However, no significant
difference was found between the two groups in each condition (all
p > 0.05). For negative ratings (Fig. 1B), the CTRL group had a
significantly higher rating in the angry condition than in the other
two conditions (both p < 0.05), whereas no significant difference
between conditions was found in the SZ group (all p > 0.05).

SZ had worse task performances and displayed different
choice strategies compared to CTRL
As indicated in Fig. 1C, the SZ group had lower total game scores
than the CTRL group in all 3 facial prime conditions (all p < 0.05).
Their choice behavior was further revealed by analyzing win-stay/
lose-shift strategies. For the win-stay strategy (Fig. 1D), there were
significant main effects for group [F(1,62) = 711.89, p < 0.001] and
deck [F(1,62) = 7.40, p < 0.01] and their interaction [F(1,62) =
20.58, p < 0.001]. Post hoc analyzes revealed that the SZ group
exhibited an overall lower percentage of win-stay (69.07% ±
10.91%) than the CTRL group (97.09% ± 5.64%) across three
conditions. The CTRL group overall exhibited more win stays in the
choice of the rich deck than the poor decks (p < 0.01), whereas the
SZ group overall displayed the opposite pattern (rich deck < poor
deck, p < 0.01). For the lose-shift strategy (Fig. 1E), there were
significant main effects for group [F(1,62) = 606.46, p < 0.001],
deck [F(1,62) = 173.79, p < 0.001], prime condition [F(2,124) =
13.11, p < 0.001], and their interaction [F(2,124) = 4.414, p < 0.05].
Post hoc analyzes revealed that the SZ group overall exhibited a
higher percentage of lose-shift (60.19% ± 11.28%) than the CTRL
group (18.28% ± 14.43%) across the three conditions. Specifically,

the CTRL group overall exhibited higher percentages of lose-shift
in angry and happy conditions than in neutral condition (all p <
0.01), whereas SZ only had a higher percentage of lose-shift in the
happy condition compared to neutral and angry conditions (all
p < 0.01), but no difference was found between neutral and angry
conditions. Together, the win-stay/lose-shift results suggest that
angry faces had less impact on choice strategy in the SZ group
and that they were unable to optimize their action in the task.

Model-based analysis revealed an altered learning rate and
choice consistency in SZ
For the learning rate (α), there were significant main effects for
group [F(1,62) = 21.93, p < 0.01], prime condition [F(2,124) = 7.73,
p < 0.01], and their interaction [F(2,124) = 3.61, p < 0.05], as
depicted in Fig. 1F. Post hoc analyzes revealed that the SZ group
overall had a higher learning rate than the CTRL group across
three conditions, suggesting an unstable and rapidly updated
value representation in SZ. Compared to the neutral condition, the
CTRL group had higher learning rates in both emotional
conditions, whereas the SZ group only had a higher learning rate
in the happy condition (all p < 0.05).
For choice consistency (β), there were significant main effects

for group [F(1,62) = 6.25, p < 0.01], prime condition [F(2,124) =
8.82, p < 0.01], and their interaction [F(2,124) = 6.18, p < 0.01]
(Fig. 1G). Post hoc analyzes revealed that the SZ group overall had
a lower choice consistency than the CTRL group, suggesting that
SZ had unstable and exploratory choice behaviors. The CTRL
group had a higher choice consistency in the neutral condition
than in the angry and happy conditions, whereas the SZ group
had a lower choice consistency in the happy condition than in the
neutral and angry conditions (all p < 0.05).

Alterations of structural encoding of facial features, objective
affective responses, and FRNs were revealed in SZ
The N170 ERP component has been widely identified as a face-
sensitive neural marker. The grand averages of the N170 waveforms
at the P8 channel and the corresponding mean amplitudes are
shown in Fig. 2A, D, respectively. There were pronounced main
effects for the electrode [F(1,62) = 34.22, p < 0.001] and group [F
(1,62) = 332.07, p < 0.001]. Post hoc analyzes revealed that N170 was
significantly right lateralized (P7:−3.7 ± 0.16 μV; P8:−4.54 ± 0.20 μV),
as reported previously34,35. Importantly, the overall mean amplitude
of the N170 in SZ group (−3.51 ± 0.16 μV) was smaller than the one
in the CTRL group (−5.01 ± 0.20 μV). There were significant group
differences between SZ and CTRL across three facial prime conditions
(Fig. 2D, all p< 0.05). Compared to CTRL, the N170 result suggests a
disrupted structural encoding of facial features in SZ.
As depicted in Fig. 2B, E, objective affective responses were

characterized by the grand averages of the P200 waveforms at the
FCz channel and the corresponding mean amplitudes. There were
significant effects for the prime condition [F(2,124) = 10.92, p <
0.001] and its interaction with the group [F(2,124) = 3.44, p < 0.05].
Post hoc analyzes revealed that the CTRL group exhibited a larger
P200 in the angry and happy conditions than in the neutral
condition (both p < 0.001), suggesting a higher level of affective
response to emotional faces. In contrast, the SZ group had a
significantly larger P200 in the happy condition than in the other two
conditions (both p < 0.05), but no difference was found between the
angry and neutral conditions. Importantly, a simple main effect
between SZ and CTRL was found only in angry condition (Fig. 2E).
Complementary to the subjective ratings, these findings indicated
that SZ had an attenuated affective response to angry faces.
For RPE signaling, the grand averages of FRN waveforms at the

FCz channel and the corresponding mean amplitudes are shown in
Fig. 2C, F. There were significant main effects for group [F(1,62) =
26.57, p < 0.01], prime condition [F(2,124) = 9.08, p < 0.01], and
their interaction [F(2,124) = 4.43, p < 0.05]. Post hoc analyzes
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revealed that the SZ group overall had a smaller amplitude of FRN
than the CTRL group (−2.40 ± 0.18 vs. −3.88 ± 0.22 μV). Compared
to the neutral condition, the CTRL group had larger FRN in both
angry and happy conditions, whereas the SZ group only exhibited
a larger FRN in the happy condition (all p < 0.01, Fig. 2F).
Importantly, compared to the CTRL group, the SZ group only
exhibited significant group differences in the two emotional
conditions, especially in the angry condition (Fig. 2F, both p < 0.05).
This result suggests that SZ not only had aberrant RPE but also had
an attenuated affective influence on reward processing, especially
in angry and happy conditions.

The correlations between task measurements and the five
factors of PANSS
The correlations between the five factors of the PANSS and our
measurements across three emotional conditions in the SZ group

are indicated in Table 1. For the structural encoding of facial
features, no significant association was found between the
amplitude of N170 and any symptom subscore. In contrast, for
affective response, there were significantly negative correlations
between P200 amplitude and the negative and cognitive factors
of PANSS in the angry prime condition. However, none of the
correlations survived after the Holm–Bonferroni correction. For
model fitting parameters, the learning rate in the angry prime
condition is marginally correlated with the positive factor, whereas
the choice consistency in the angry prime condition is significantly
negatively correlated with the positive factor. For the FRN in the
angry prime condition, there were significantly negative correla-
tions between its amplitude and both the positive and cognitive
factors of PANSS. However, only the correlations between FRN in
the angry prime condition and PANSS factors survived after the
Holm–Bonferroni correction.

Fig. 1 Behavioral and model-fitting results. A, B Difference between pretest and posttest mean (±SEM) rating scores of the positive-affect
and negative-affect subscales from PANAS, respectively. Mean difference scores of the healthy controls (CTRL, open bars) and patients with
schizophrenia (SZ, striped bars) groups in the neutral (bars in white/gray), angry (bars in pink/light pink), and happy (bars in blue/light blue)
facial prime conditions are shown. CMean (±SEM) game scores. D, EMean (±SEM) percentage of win-stay and lose-shift. The results of rich and
poor decks are illustrated in black and gray lines, respectively. F, G Mean (±SEM) learning rate and choice consistency, respectively. *p < 0.05
between CTRL and SZ groups in the facial prime condition.
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DISCUSSION
In this study, we incorporated behavioral, model-fitting, and ERP
measures to characterize how affective response induced by facial
primes regulate reward-based decision making in a gambling task
and, importantly, how this process is altered in SZ. In our CTRL
group, the findings are consistent with our previous study in
which both angry and happy faces evoked higher levels of
affective responses than neutral faces26. These results imply that
the presentation of facial expressions can prime affective
responses, which then intensifies RPE signaling, interrupts reward
expectations, and leads to exploratory choices, supporting the
significant emotion regulation effect on decision making36. In
addition, a novel and intriguing result was found regarding the
affective modulation on participants’ win-stay/lose-shift strategies.
Previous studies have identified that abnormal affective arousal
reduces the propensity of advantageous strategies and hinders
individual’s choice behavior37,38. For instance, Dickstein et al.37

compared the choice behavior of youths with bipolar disorder
(BD), severe mood dysregulation (SMD), major depressive disorder
(MDD), and anxiety disorder (ANX) with healthy controls in a
probabilistic response reversal task. They found that BD and SMD
youths have less frequent win-stay and lose-shift to rich option
than controls. With a similar design, Xia, Xu, Yang, Gu, Zhang38

compared the choice behavior between high and low trait anxiety
in college students, and found that high trait anxiety students
exhibited less frequent loss-shift than those with low trait anxiety.
In complementary to these findings, in the present study, we took
one step further and showed that the frequency of lose-shift
would be exaggerated by merely priming the participants with
facial expressions even in healthy controls. Therefore, our finding
suggests that the choice strategies during reward-based decision
making might be more sensitive to individual’s affective state than
previous reports.
In agreement with previous studies7–9,11,12, we identified

significant impairments in reward processing. The SZ group had
lower monetary rewards (i.e., total game scores) than the CTRL
group across all three facial prime conditions. SZ overall exhibited
dysregulated choice strategies (i.e., less win-stay and more lose-
shift), impaired error monitoring (i.e., more win-stay in the choice
of poor deck than rich deck), fragile value representation (i.e.,
increased learning rate), unstable choice consistency (i.e., low

choice consistency), and disturbed RPE signaling (i.e., attenuated
FRN). Intriguingly, these impairments are mainly correlated with
the positive factor of PANSS. More importantly, it is of great
interest to observe and reconfirm impairments of structural and
affective facial processing in SZ group. Compared to CTRL group,
the reduction of N170 amplitude in our SZ suggests these patients
have a disturbed structural encoding of facial features in all three
facial prime conditions. Even though it is not associated with any
symptom subscore, it is in line with previous findings on the facial
recognition deficits in schizophrenia39,40. Furthermore, our find-
ings from both subjective (i.e., PANAS ratings) and objective (i.e.,
P200 amplitude) measurements of affective responses consis-
tently indicated that SZ showed a lower level of affective
responses to the angry faces than either the neutral or happy
ones. This result is in line with the findings of an attenuated
affective response17 and misattribution bias18 to negative facial
expressions in previous studies. In addition, our data support that
the level of disturbance has a trend of correlation (i.e., after
Holm–Bonferroni sequential correction) with the severity of both
negative and cognitive factors of PANSS, which is consistent with
previous findings in multiepisode schizophrenia41.
Importantly, the perception of facial expressions is a vital

mediator between cognitive and social functions. In SZ, blunted
responses to emotional faces could cause them to ignore salient
information (e.g., angry expression of others) during social
communication, which might lead to disturbances in interpersonal
skills42,43. In a similar vein, we reported that affective disturbance
in SZ also dysregulated their reward-based decision making in this
study. Compared to CTRL, our patients had a comparable level of
FRN in the neutral condition. This finding is consistent with a
recent meta-analysis study in which FRN and corresponding
mental processes are rather spared in psychosis44. On the other
hand, compared to CTRL group, SZ group displayed a reduction of
FRN ampultude in the two emotional conditions but no difference
was found between angry and neutral conditions. Unlike their
healthy controls, emotional faces had less impact on choice
behaviors and FRN in SZ, suggesting that their decision making is
less flexible in emotional conditions. Furthermore, in contrast to
the marginal correlation between the P1 and P3 scores of the
PANSS and patients’ choice consistency in Li et al.9, significant
correlations between the positive factor of PANSS and all the three

Fig. 2 EEG results. A–C Grand averaged waveforms of the N170, P200, and FRN for the control (CTRL, solid lines) and patients with
schizophrenia (SZ, dashed lines) groups in the neutral (gray lines), angry (red lines), and happy (blue lines) conditions. D–F Mean (±SEM)
amplitudes of the N170, P200, and FRN for the healthy controls (CTRL, open bars) and patients with schizophrenia (SZ, striped bars) groups in
the neutral (white bars), angry (pink bars), and happy (blue bars) prime conditions. *p < 0.05 between CTRL and SZ groups in the facial prime
condition.
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measurements of reward processing (i.e., learning rate, choice
consistency, and FRN) in the angry condition were reported in the
current study. On one hand, it is probable that the five-factor
model proposed by Wallwork et al.45 has more precise categor-
ization of psychopathology than the original three-dimension
model dose (Kay et al.10). On the other hand, our current findings
support the importance of affective disturbance in the regulation
of decision-making and imply a dysregulated affective arousal in
the regulation of reward-based decision making in SZ. Our
correlation data further indicated that both affective disturbance
and alteration of FRN in the angry condition are negatively
correlated with the cognitive factor of PANSS. Thus, these findings
suggest that dysregulated perception of emotional faces (espe-
cially angry faces) plays an important role in the regulation of
decision-making and other social-cognitive functions in patients
with schizophrenia.
In addition, our correlation data also revealed that these

impairments observed in our patients were mainly correlated with
positive PANSS factors. These findings are somewhat in line with
the predictive coding account of psychosis46,47, which posits that
our brain constantly makes inferences on the current state of the
environment by integrating prior experience with sensory inputs.
In a similar vein, the discrepancy between two sources of
information constitutes prediction error, which drives the learning
process and updates the internal representation of the environ-
ment, similar to the role of the RPE signal in our probabilistic
gambling task. It has been suggested that optimization of the
inference process depends on the balance between the precision
weighting of prior experience and sensory input, which are
implemented by glutamatergic N-methyl-D-aspartate receptor
(NMDAR) and dopaminergic signaling, respectively48,49. In SZ,
due to the hypofunction of NMDARs and increased dopaminergic
activity, this inference process is biased towards the sensory input
and away from the prior belief, resulting in an abnormally strong
weighting of prediction error, which, in our case, was character-
ized by a strong trend of increased learning rate in the angry
condition. This excessively weighted prediction error would then
lead to failure in sensory attenuation (aberrant salience) and
overreaction to environmental change, which was characterized
by lower choice consistency in our study. Interestingly, the
impairment of reward processing might also be related to deficits
in social functioning. Izuma, Saito, and Sadato50 proposed the
hypothesis of common neural currency—the shared neural basis
between monetary and social decision making. Levy and
Glimcher51 conducted a meta-analysis on thirteen fMRI studies
and showed that the overlapping brain areas associated with both
monetary and social rewards are subregions of the ventromedial
prefrontal cortex and orbitofrontal frontal cortex, validating the
existence of a common value path. These studies imply a relation
between deficits in social functioning and dysregulated reward
processing. It is worth further investigating the neural circuits and
underlying mechanism in future studies, especially in patients with
schizophrenia and other psychiatric disorders.
It is worth noting that there are two major limitations in

drawing inference from our findings. First, patients were not
stratified on the basis of their medication which may have
influence on their arousal states as well as the corresponding EEG
measures52,53. It is therefore possible to contribute to the failure of
detecting significant and reliable deficits of affective and reward
processing in these patients. Second, it is possible that patients
may have impaired emotion awareness that curbed their self-
report of affective experience. In the present study, PANAS scores
were used as a manipulation check for the influence of facial
prime on participants’ subjective affective experience, and their
affective arousal was objectively indexed by the P200 ERP
component. For the PANAS scores, we observed that the SZ
showed significant difference between prime conditions only in
positive ratings, but they were not different from the CTRL

(Fig. 1A). By contrast, for the P200, we identified a simple main
effect of group in angry condition, where the CTRL had a
significantly larger P200 than the SZ. The discrepancy between the
two measurements might link to the idea that, in addition to the
disturbed perception of others’ emotion, SZ also demonstrate
impairment in the awareness of their own feelings54–56. Kimhy
et al. used the Toronto Alexithymia Scale (TAS-2057) to assess
emotion awareness in SZ54–56 and clinical high risk individuals55.
They reported that there were significant differences between
healthy controls and these two clinical groups in their ability to
identify and describe feelings. Further, the impaired emotion
awareness impacted the use of emotion regulation in patients56

and could account for a substantial amount of their social
functioning variance54–56. Thus, together with our study, these
findings highlight the importance of assessing participants’ level
of emotion awareness while measuring their affective state with
self-report questionnaires. Meanwhile, biometrics like EEG/ERP
and electrocardiogram could serve as complementary measures
which provide objective information regarding individual’s
affective arousal.

METHOD
Participants
Thirty-eight patients who met the DSM-5 diagnostic criteria for SZ and 26
CTRL participated in this study. SZ were recruited from the outpatient
clinics of the Department of Psychiatry in National Taiwan University
Hospital (NTUH). Participants’ demographic data are presented in Table 2.
No significant difference between SZ and CTRL was found in age and
gender, except level of education (p < 0.001), which is consistent with
previous studies with Taiwanese populations9,58. All participants gave fully
informed written consent to participate, and all the procedures of the
study followed ethical guidelines and were approved by the Research
Ethics Committee of NTUH. Main exclusion criteria included (1) major
neurological diseases, (2) history of serious head injury or loss of
consciousness, (3) history of mental retardation or developmental
disability, (4) substance abuse, and (5) menstrual period or pregnancy
for females. Additional exclusion criteria for patients with schizophrenia
included (1) inpatient hospitalization, (2) change in antipsychotic medica-
tion in the 3 months prior to enrollment, (3) significant extrapyramidal
symptoms, and (4) comorbidity of mood disorders. Healthy controls that
have family history of psychotic history among first-degree relatives were
also excluded. All participants received a semistructured Diagnostic
Interview for Genetic Study (DIGS) Chinese Version59. Psychopathology
of schizophrenia was rated on the PANSS by experienced clinicians using
clinical interview10. The average number of days between the participants’
last experimental session and their PANSS ratings is 41.13 (±19.90).
Symptom subscores were derived and modified mainly based on a five-
factor model proposed by Wallwork, Fortgang, Hashimoto, Weinberger,
and Dickinson45, including positive, negative, cognitive, excitement, and
depressive factors, as indicated in the middle panel of Table 2. All
participants were instructed to have at least 8 h sleep at the nights before
each session of experiment, and their mean reported sleeping time was
8.74 (±1.48) hours. One of the participants in this study was a smoker
(averaged daily nicotine intake: 2 mg). He was instructed to abstain from
smoking on each testing day of experiment to eliminate possible impact
on EEG60.

General procedures
As illustrated in Fig. 3A, all participants underwent three experimental
sessions separated by 1 week intervals, and each session would be
pseudorandomly assigned with one of the three facial prime conditions
(i.e., neutral, angry, and happy conditions). The experimenter was blind to
the participants’ intervention status. In each daily session, participants first
engaged in the training phase of the probabilistic gambling task and then
proceeded to the experimental phase after they were familiar with the rule
(Fig. 3B, C). They were asked to complete the Chinese version of
the Positive and Negative Affect Schedule (PANAS)61 before and after
the experimental phase. Mean difference scores of the positive and the
negative items between the post-test and pretest PANAS ratings were
calculated to indicate participants’ subjective change in positive and
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negative affective activities, respectively. At the end of each session,
participants were asked to report whether they used different strategies
from previous sessions and their self-evaluation of task performance in the
debriefing phase.

Task structure in each session and behavioral data
The probabilistic gambling task employed a trial-by-trial two-choice
scenario was modified from Rutledge et al.62 and Liu et al.26, which
consisted of a training phase and an experimental phase. As illustrated in
Fig. 3B, a pair of decks with a certain reward probability ratio (6:1 or 1:6, a
total of 60%) was presented on the screen in each trial of training phase,
and the participants had to choose between the two decks by key
pressing. When a reward had been scheduled to their choice, a digit “1”
would then be displayed on the center of the screen to represent a one-
point gain. Otherwise, the displayed digit was “0”, which represented a
non-reward outcome. After they completed 20 trials, the participants were
asked to identify the rich and poor decks (i.e., higher vs. lower reward
probability) in the pair, and the training phase was repeated until their
answers were correct. In the experimental phase (Fig. 3C), participants
were informed that there was a task-irrelevant face picture prior to the
choice display, and that the reward distribution would be randomly shifted
after certain trials. Unbeknown to the participants, the experimental phase
comprised 480 trials that were pseudorandomly divided into six 70–90 trial
blocks with four reward probability ratios within each deck pair (Fig. 3D).
The neutral, happy, and angry prime conditions are composed of
corresponding facial expression pictures selected from a culture-
dependent database63,64. To be noted, these facial expression pictures
from the database were not from any patient. The subject was instructed
to maximize the total points, and a monetary reward was provided to him/
her based on his/her total game scores at the end of each daily session.

Table 1. Correlations between task measurements and symptom severity in patients with schizophrenia.

Positive Negative Cognitive Excitement Depressive

P200 Pearson’s r −0.273 −0.267 −0.263 0.153 0.009

(Neutral condition) p-value 0.097 0.105 0.111 0.360 0.957

P200 Pearson’s r −0.291 −0.362a −0.344a −0.133 −0.178

(Angry condition) p-value 0.076 0.025 0.035 0.426 0.284

P200 Pearson’s r −0.226 −0.154 −0.267 0.081 −0.109

(Happy condition) p-value 0.172 0.355 0.104 0.629 0.514

Learning rate Pearson’s r 0.046 −0.178 −0.056 0.130 −0.077

(Neutral condition) p-value 0.786 0.286 0.738 0.436 0.645

Learning rate Pearson’s r 0.310 0.113 0.015 −0.011 −0.253

(Angry condition) p-value 0.058 0.498 0.930 0.947 0.125

Learning rate Pearson’s r 0.197 0.078 0.127 −0.025 −0.124

(Happy condition) p-value 0.235 0.642 0.449 0.884 0.456

Choice consistency Pearson’s r −0.307 0.026 −0.150 −0.017 0.164

(Neutral condition) p-value 0.061 0.876 0.367 0.920 0.325

Choice consistency Pearson’s r −0.334a −0.093 −0.181 0.066 −0.046

(Angry condition) p-value 0.040 0.580 0.276 0.695 0.784

Choice consistency Pearson’s r −0.059 −0.254 −0.132 0.031 0.189

(Happy condition) p-value 0.726 0.124 0.428 0.855 0.256

FRN Pearson’s r −0.289 −0.007 −0.091 −0.037 −0.126

(Neutral condition) p-value 0.078 0.969 0.587 0.825 0.451

FRN Pearson’s r −0.436b −0.023 −0.447b −0.062 −0.207

(Angry condition) p-value 0.006 0.891 0.005 0.712 0.213

FRN Pearson’s r −0.271 −0.079 −0.196 0.047 −0.055

(Happy condition) p-value 0.099 0.638 0.239 0.781 0.741

Differences considered as statistically significant (p < 0.05) are marked by bold fonts.
aStatistically significant.
bStatistically significant after the Holm–Bonferroni correction.

Table 2. Demographic information of the patients with schizophrenia
(SZ) and the healthy control (CTRL) groups.

SZ
(N = 38)

CTRL
(N = 26)

Mean (SD) Mean (SD)

Age 33.74 (7.76) 34.63 (8.59)

Gender (M:F) 20: 18 14: 12

Education (year) 14.45 (2.31) 16.69 (1.93)

Age of onset 22.65 (5.12) –

Symptom (PANSS score)

Total 60.37 (15.55) –

Positive (P1 + P3 + P5 + G9)) 8.39 (3.53) –

Negative (N1 + N2 + N3 + N4 +
N6 + G7)

12.68 (4.03) –

Cognitive (P2 + N5 + G11) 6.68 (2.52) –

Excitement (P4 + P7 + G8 + G14) 5.45 (2.37) –

Depressive (G2 + G3 + G6) 4.95 (1.89) –

Medication (N)

Typical 3 –

Atypical 24 –

Combined 7 –

None 4 –
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EEG acquisition and analysis
Online data were acquired through the NuAmps system (NeuroScan, El
Paso, Texas, USA) from 32 scalp electrodes (QuikCap, NeuroScan, El Paso,
Texas, USA) (sampling rate: 1000 Hz; online bandpass: D.C. −100 Hz;
reference: nose-tip). Impedances were kept below 5 kΩ. The raw
continuous data were offline preprocessed using the EDIT module from
Scan 4.5 (NeuroScan, Charlotte, North Carolina, USA). In the preprocessing
pipeline, the raw continuous data were subjected to a 0.1–40 Hz bandpass
filter and an EOG artifact reduction procedure, by which the continuous
data were mathematically corrected for eyeblink artifacts through a built-in
pattern recognition algorithm65. The corrected continuous data were then

rereferenced to the averaged mastoids and segmented into epochs of
−100 to 500ms following the onset of the facial primes to extract the ERP
indices for structural encoding and the corresponding affective response
to facial features (i.e., N170 and P200, respectively)20–24,34,35 and epochs of
−100 to 900ms following the onset of feedback display to extract ERPs for
RPE signaling during reward-based decision making (i.e., raw and
difference waves of the FRN)30–33. Baseline corrections were applied to
the epoched data with respect to the mean activity of the prestimulus
window. The epochs were then subjected to an artifact rejection
procedure in which the epochs that contained activities exceeding
±50 µV were excluded from further analysis. The ERPs were obtained by

Fig. 3 General procedure and task structure. A Each session was assigned one of the three kinds of facial prime conditions (i.e., neutral,
happy, and angry) and comprised of five phases. B, C The training phase comprised a minimum of 20 training trials without the facial prime,
whereas the experimental phase comprised 480 trials with a facial prime prior to the choice display in each trial. D An example of a block
sequence and the underlying reward-probability structure. Reward ratios of the deck-pair varied from block to block.
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averaging all the artifact-free epochs for each electrode and condition. For
statistical analysis, the amplitude of the N170 following the facial prime
was evaluated as the mean activity within the 150–210ms poststimulus
interval at channels P7 and P8; the P200 amplitude was evaluated as the
mean activity within the 170–230ms poststimulus interval at channels Fz,
Cz, and Pz20–24.
The FRN component was considered an ERP signature of reward

processing and, importantly, RPE signaling in the present study. Existing
literature has identified an interaction between the factors of reward
valence (i.e., win vs. loss) and reward probability (expected vs. unexpected)
in the ERP associated with reward processing, and the FRN made by the
different activities between unexpected loss and unexpected win is more
closely related to the RPE signaling33. Accordingly, two raw waveforms of
the FRN component were extracted for each participant. They are (1) the
unexpected win, which was obtained from the ERPs in the unexpected
reward-delivery trials in which the participants selected cards from the
poor deck and obtained game points; and (2) the unexpected loss, which
was obtained from the ERPs in the unexpected reward-omission trials in
which the participants selected cards from the rich deck and obtained zero
points. Then, to isolate the activities associated with the RPE signals from
the other temporospatially overlapping ERP components, we subtracted
the unexpected Win waveform from the unexpected loss waveform to
create the FRN component (i.e., the unexpected loss – the unexpected Win
difference wave)31,33. For statistical analysis, the amplitude of the FRN
component was evaluated as the mean activity within the 300–600ms
poststimulus interval at the Fz, FCz, and Cz channels26,29.

Analysis of win-stay/lose-shift behavioral strategies
To assess whether the participants could formulate adaptive strategies
from the received feedbacks, we first quantified their trial-by-trial choice
behavior following immediate wins and losses, with win-stay referring to
the proportion of times the same deck was chosen immediately after a
reward was received, and lose-shift as the proportion of times a different
deck was chosen after receiving a non-reward outcome. Then, we
considered the validness of feedback and separated participants’ win-
stay/lose-shift behavior into (1) win-stay in rich decks, (2) win-stay in poor
decks, (3) lose-shift in rich decks, (4) lose-shift in poor decks. Thus, the
participants would exhibit more frequent win-stay and less frequent lose-
shift to the rich decks and show exactly opposite pattern of strategy to the
poor decks, if they successfully tracked the dynamic of reward distribution
and optimize their choice accordingly.

Reinforcement learning model and parameter estimation
protocol
To explore the mechanism governing RPE-driven choice behavior, we fit a
simplified reinforcement learning model66,67 closely follows the one
described in Liu et al.26 and Li et al.9 to the trial-by-trial choice data from
all participants. This model comprises two parts: The first part concerns
how the expectation of each choice option is affected and updated by the
RPE, and the second part concerns how the updated information is
transformed into choice behavior. Importantly, the essence of the first part
is characterized by a “learning rate (α)” parameter showing how rapidly the
expectation is updated, and the essence of the second part is
characterized by a “choice consistency (β)” parameter showing the choice
tendency guided by the updated expectation. The model equation and the
parameter estimation protocol are briefly described as follows.
First, following Sutton and Barto67, we used a simplified temporal

difference model to characterize the dynamics of RPE signaling during the
probabilistic gambling task. Specifically, the expectation of the deck was
updated based on the so-called “delta learning rule”68. We use deck A (see
Fig. 3B, C) as an example. The rule postulates that the expectation QA(t) is
updated as follows:

QA tð Þ ¼ QA t � 1ð Þ þ α � RA tð Þ � QA t � 1ð Þ½ �; (1)

where RA(t) is the actual outcome from choosing deck A in trial t, and
½RA tð Þ � QA t � 1ð Þ� is the RPE representing the discrepancy between the
actual outcome received in the current trial and the expectation of Deck A
from the previous trial. The parameter α represents the “learning rate”; it
reflects how rapidly the expectation is updated.
Second, we assumed that the updated expectation QA(t) from Eq. (1) is

mapped into the probability of choice through a logistic transformation.
Using deck A as an example, we had that the probability of choosing A in

trial t, PA(t), is

PA tð Þ ¼ eβ�QAðtÞ

eβ�QAðtÞ þ eβ�QBðtÞ
(2)

The parameter β represents the “choice consistency”; it reflects the choice
tendency guided by the updated expectation.
The parameter estimation protocol also closely follows the protocol

described in Liu et al.26. We used the Markov chain Monte Carlo (MCMC)
method under the hierarchical Bayesian framework to the trial-by-trial data
from the probabilistic gambling task for estimating α in (1) and β in (2). See
Fig. 4 for a graphical display of the framework. For participant i, the
learning rate parameter αi and the choice consistency parameter βI were
each assumed to be normally distributed at the group level, with means μα
and μβ, respectively) and standard deviations σα and σβ, respectively). To
this end, we used WinBUGS software69 to perform the fit. Specifically, we
used three MCMC chains, with each chain consisting of 16,000 iterations.
For each chain, the first 6000 iterations were used as burn-in, and thinning
with an interval of five was applied to the remaining 10,000 iterations to
reduce the effect of autocorrelation. Overall, for each parameter, we
obtained a total of 6000 posterior samples from the three chains.
Regarding the priors for the two parameters α and β, we assumed that
both μα and σα are uniformly distributed between 0 and 1, μβ is uniformly
distributed between 0 and 10 and σβ is uniformly distributed between 0
and 5.

Statistical analysis
Repeated measures analysis of variance was used to assess all the
measures under the different combinations of conditions. Post hoc
analyzes were performed using Tukey’s test when the F-value indicated
a significant difference. Statistical significance was set as p < 0.05. A
Greenhouse–Geisser adjustment of degrees of freedom and a Bonferroni
correction were used when necessary. To evaluate the relations between
indices of affective response (i.e., P200) and reward processing (i.e., FRN,
learning rate, and choice consistency) and psychopathology, Pearson
correlation coefficients were calculated and then corrected with a
Holm–Bonferroni sequential correction to control for the impact of
multiple comparisons.

Fig. 4 Graphic display of the Bayesian hierarchical framework for
parameter estimation. Following the approach described in Lee
and Wagenmakers70, the shaded squares, double-bordered circles,
and single-bordered circles represent the observed discrete
variables, deterministic continuous variables, and latent continuous
variables, respectively. The arrows indicate dependencies among
these variables. Specifically, Ri,j–1 is the reward feedback (i.e., 1 or 0)
received by participant i in trial j−1, and Ci,j is the choice (i.e., A or B)
made by participant i in trial j. Qi,j and Pi,j are the expectation and
choice probability of participant i in trial j.
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