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Using machine learning of computerized vocal expression to
measure blunted vocal affect and alogia
Alex S. Cohen1,2✉, Christopher R. Cox 1, Thanh P. Le1,2, Tovah Cowan 1,2, Michael D. Masucci1,2, Gregory P. Strauss3 and
Brian Kirkpatrick4

Negative symptoms are a transdiagnostic feature of serious mental illness (SMI) that can be potentially “digitally phenotyped” using
objective vocal analysis. In prior studies, vocal measures show low convergence with clinical ratings, potentially because analysis
has used small, constrained acoustic feature sets. We sought to evaluate (1) whether clinically rated blunted vocal affect (BvA)/
alogia could be accurately modelled using machine learning (ML) with a large feature set from two separate tasks (i.e., a 20-s
“picture” and a 60-s “free-recall” task), (2) whether “Predicted” BvA/alogia (computed from the ML model) are associated with
demographics, diagnosis, psychiatric symptoms, and cognitive/social functioning, and (3) which key vocal features are central to
BvA/Alogia ratings. Accuracy was high (>90%) and was improved when computed separately by speaking task. ML scores were
associated with poor cognitive performance and social functioning and were higher in patients with schizophrenia versus
depression or mania diagnoses. However, the features identified as most predictive of BvA/Alogia were generally not considered
critical to their operational definitions. Implications for validating and implementing digital phenotyping to reduce SMI burden are
discussed.
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INTRODUCTION
Blunted vocal affect (BvA) and alogia, defined in terms of reduced
vocal prosody and verbal production, respectively, are diagnostic
criteria of schizophrenia1 and are present in major depressive, post-
traumatic, neurocognitive, and neurodegenerative spectrum dis-
orders2–4. BvA and alogia are typically measured using clinical
ratings of behavior observed during a clinical interview, and have
been associated with a host of functional maladies, such as
impoverished quality of life, and poor social, emotional and
cognitive functioning5–7. Their etiology and biological roots are as
yet unknown and treatments alleviating their severity are undeve-
loped8. Given that BvA and alogia reflect overt behaviors that can be
quantified, it has long been proposed that computerized acoustic
analysis could be used to measure them9–12. Presumably, this type
of “digital phenotyping”13 could be automated to provide a
relatively efficient and sensitive “state” measure of negative
symptoms; with applications for improving diagnostic accuracy
and for efficiently tracking symptom severity, relapse risk, treatment
response, and pharmacological side effects14–16. Moreover, acoustic
analysis is based on speech analysis technologies that are freely
available, well-validated for a variety of applications, and can be
collected using a wide range of unobtrusive and in situ remote
technologies (e.g., smartphones, archived videos)17. Despite the
existence of several dozen studies evaluating computerized acoustic
analysis of natural speech to measure BvA and alogia, there is
insufficient psychometric support to consider them appropriate for
clinical applications16, as they have shown only modest convergence
with clinical ratings. For example, in a study of 309 patients with
schizophrenia, clinically rated negative symptoms were non-
significantly and weakly associated with pause times, intonation,
tongue movements, emphasis, and other acoustically derived
aspects of natural speech (absolute value of r’s, 0.03–0.14)18. Null,

variable, and even counterintuitive findings are reported in many
studies19–24. These findings are summarized in meta-analyses of
12 studies25 and 55 studies24 comparing acoustic features in
schizophrenia patients versus controls. Both meta-analyses reported
large heterogeneity in effects between studies, and overall effects
(with the exception of pause duration mean and variability) that
were relatively weak (i.e., range of other d’s=−1.18 to 0.33 in ref. 25;
a range of other g’s=−1.26 to −0.05 in ref. 24) compared to
differences seen with clinical ratings (e.g., d= 3.54 in ref. 25). While
interesting, these findings fall considerably short of the threshold of
reliability and validity expected for a clinically deployable assess-
ment tool18,26,27. The present study used machine-learning analysis
of computerized vocal measures procured from a large sample of
patients with serious mental illness (SMI) to redress issues with these
prior studies.
The underwhelming/inconsistent convergence between clinical

ratings and objective measures of negative symptoms raises
questions about whether negative symptoms can be accurately
modeled using objective technologies at all. We see two areas for
improvement. The first involves context. Like many clinical
phenomena, blunted affect and alogia must be considered as a
function of their cultural and environmental context. Evaluating
alogia, for example, requires a clinician to consider the quantity of
speech within the context of a wide array of factors, such as what
question was asked, and the patient’s age, gender, culture, and
potential motivations for answering. For this reason, a simple word
count of spoken words without regard to context may not be
informative for quantifying severity of alogia. “Non-alogic” indivi-
duals will appropriately provide single word responses in certain
contexts, whereas alogic individuals may provide comparatively
lengthy responses in different contexts (e.g., a memory test). Most
prior studies have failed to systematically consider speaking task,
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important in that dramatic speech differences in frequency and
volume can emerge as a function of social, emotional, and
cognitive demands of the speaking task28–30. The second area
involves the feature set size and comprehensiveness. The human
vocal expression can be quantified using thousands of acoustic
features based on various aspects of frequency/volume/tone and
how they change over time. For example, the winning algorithm of
the 2013 INTERSPEECH competition, held to predict vocal emotion
using acoustic analysis of an archived corpus, contained ~6500
vocal features31. Nearly all studies of vocal expression in schizo-
phrenia have employed small feature acoustic sets—on the order
of 2–10 features25. Thus, it could be the case that larger and more
conceptually diverse acoustic feature sets can capture BvA and
alogia in ways more limited features sets cannot.
The present study applied regularized regression, a machine-

learning procedure that can accommodate large feature sets
without inherently increasing type 1 errors or overfitting, to a large
corpus of speech samples from two archived studies of patients
with SMI. Data using conventional “small feature set” analyses (i.e.,
2–10 features) of these data have been published elsewhere18,21,32.

Our aims were to: (1) evaluate whether clinically rated BvA and
alogia can be accurately modeled from acoustic features extracted
from the natural speech of two distinct speaking tasks, (2) evaluate
if model accuracy changes as a function of these separate speaking
tasks, (3) evaluate the convergence/divergence of BvA/alogia
measured using machine learning versus clinical ratings to
demographic characteristics, psychiatric symptoms and cognitive
and social functioning, and (4) evaluate the key features from the
models. This final step involved “opening the contents of the black
box”, as it were, to provide potential insight into how BvA/alogia is
rated by clinicians. A visual heuristic of the studies methods and
key terms is provided in Fig. 1.

RESULTS
Can clinically rated blunted affect and alogia be accurately
modeled from vocal expression? (Table 1, Supplementary Tables 1
and 2)
Average accuracy across the 10 analytic-folds for BvA and alogia
classifications were 90% and 95% respectively for the training sets.
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Fig. 1 Methods and critical terms used in this study. This figure depicts the data collection, processing and analysis stages of the project. It
also defines critical terms used throughout the paper.

Table 1. Summary of ML-based analyses, predicting clinical ratings of blunted vocal affect and alogia.

Training set Test set

Criterion Speaking task K Neg/Pos cases Hit rate Correct rejection Accuracy Hit rate Correct rejection Accuracy

Blunted vocal affect All 1204/404 0.74 0.95 0.90 0.65 0.92 0.85

Blunted vocal affect Picture task 915/317 0.84 0.97 0.94 0.70 0.93 0.87

Blunted vocal affect Free speech 289/87 0.88 0.99 0.96 0.60 0.93 0.85

Alogia All 1452/253 0.75 0.98 0.95 0.66 0.96 0.92

Alogia Picture task 1220/140 0.89 1.00 0.99 0.76 0.99 0.96

Alogia Free speech 232/113 0.96 0.98 0.97 0.82 0.92 0.89

ML machine learning.
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Average accuracy from the test sets was similar (i.e., within 5%)
and well above chance (i.e., 50%). For all models, this reflected
good hit and excellent correct rejection rates. The model features,
and their weights, are included in supplementary form (Supple-
mentary Tables 1 and 2).

Do these models (and their accuracy) change as a function of
speaking task (Supplementary Table 3)?
When vocal expression for the Picture and Free Recall speaking
tasks were modeled separately, there was a general improvement
in hit rate, even though there were fewer samples available for
analysis. Accuracy improvement was particularly notable when
modeling alogia from the Picture Task data, where average
accuracy reached 99% and 96% in the training and test sets
respectively. Predicted scores from the BvA and Alogia models
(i.e., ML BvA /alogia) showed high convergence with clinical
ratings of BvA and Alogia (i.e., clinically rated BvA/alogia; r’s= 0.73
and 0.57 respectively, p’s < 0.001). Predicted BvA and Alogia scores
were modestly related to each other (r= 0.25, p < 0.01) as were
clinical ratings of BvA and Alogia (r= 0.46, p < 0.01).
To evaluate whether these models were equivalent, we

extended our cross-validation approach by applying the models
developed for one task to the other task (see Supplementary Table
3). Adjusted accuracy dropped to near chance levels, suggesting
that the models were task-specific. For example, accuracy for
predicting alogia from a speech in the picture task dropped from
99% (in the training set) to 50% when applied to the Free Speech
task. The range of adjusted accuracy rates ranged from 0.50 to
0.63; all much lower than those seen in Table 1.
These data suggest that model accuracy is enhanced by

considering speaking task. For consequent analyses, we employed
machine-learning scores from the Picture Task data, as these
models showed the highest accuracy in predicting clinical ratings
and had more samples available for analysis. For participants
completing the Picture Task, 68% (N= 39; K audio samples= 915)

of participants were BvA negative while 32% (N= 18; K= 317 audio
samples) were BvA positive. 82% (N= 39; K audio samples= 1220)
of participants were alogia-negative while 18% (N= 10; K audio
samples= 140) were alogia-positive.

Do machine-learning scores converge with demographic,
diagnostic, clinical, and functioning variables? (Table 2 and 3)
Neither predicted scores nor clinical ratings significantly differed
between men (n= 35) and women (n= 22; t’s < 1.26, p’s > 0.21,
d’s < 0.35). In contrast, predicted and clinically rated alogia were
more severe/higher in men than women at a trend level or greater
(t= 4.41, p < 0.01, d= 1.20 and t= 1.77, p= 0.08, d= 0.44)
respectively. African-Americans (n= 30) and Caucasian (n= 27)
participants did not significantly differ in predicted scores or
clinical ratings (t’s < 1.36, p’s > 0.18, d’s < 0.36). Age was not signifi-
cantly correlated with predicted scores (absolute value of r’s < 0.14,
p’s > 0.31) or clinical ratings (absolute value of r’s < 0.25, p’s > 0.07).
Bivariate correlational analysis (Table 2; see Supplementary

Table 4 for correlations by task) suggested that predicted scores
were not significantly related to non-negative psychiatric symp-
toms. Importantly, they were not significantly associated with
negative affect, hostility/aggressiveness, positive or bizarre
behavior; all of which are symptoms associated with secondary
negative symptoms4,33. Clinical ratings of BvA were associated
with more severe positive symptoms and hallucinations. With
respect to functioning, more severe predicted BvA was signifi-
cantly associated with poorer cognitive performance and social
functioning. More severe predicted alogia was associated with
poorer social functioning. These results were supported using
linear regressions (Table 3), where the contributions of predicted
scores and clinical ratings to cognitive and social functioning were
essentially redundant. Neither contributed significantly to func-
tioning once the other’s variance was accounted for.
Predicted scores were next compared as a function of DSM

diagnosis (Supplementary Fig. 1). The “Other SMI” group was excluded

Table 2. Correlations between clinical variables and ML-predicted/clinically rated scores.

Blunted vocal affect Alogia

Clinical ratings Predicted scores Clinical ratings Predicted scores

Global psychiatric symptoms

BPRS: Agitation −0.09 −0.22 0.02 0.15

BPRS: Positive 0.28* 0.06 0.14 −0.02

BPRS: Negative 0.82* 0.63* 0.46* 0.20

BPRS: Affect −0.11 −0.13 −0.06 0.06

Schizophrenia-spectrum symptoms

SAPS: Hallucinations 0.37* 0.19 0.13 −0.05

SAPS: Delusions 0.27 0.26 0.27 0.05

SAPS Bizarre behavior 0.07 −0.02 0.18 0.03

SAPS: Thought disorder −0.13 −0.12 0.17 0.19

SANS: Blunted affect 0.85* 0.62* 0.43* 0.20

SANS: Alogia 0.46* 0.34* 1.00 0.57*

SANS: Apathy −0.17 0.10 0.07 0.00

SANS Anhedonia 0.14 0.18 0.19 0.08

Functioning

Cognition −0.30* −0.29* −0.14 0.03

Social functioning −0.27+ −0.28+ −0.28+ −0.31*

Bivariate correlations between ML “Predicted” scores (from Machine Learning) and Clinically Rated Blunted Vocal Affect and Alogia scores and clinical
symptom and functioning variables. ML scores for each audio recording were averaged across participants (total K samples= 1745, n= 55).
ML machine learning.
*p < 0.05; +p < 0.10.
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from statistical analysis, as it included relatively few participants. There
were statistically significant group differences for machine-learning
and clinically rated BvA (F’s= 4.30 and 4.33, p’s= 0.04), but not alogia
(F’s < 2.14, p’s > 0.15). The schizophrenia group showed medium
effect size differences in machine learning-based BvA compared to
the mania (d= 0.50) and depression (d= 0.79) groups. The mania and
depression groups were relatively similar (d= 0.26).

What are the key model features? (Table 4 and Supplementary
Table 1)
Stability selection analysis yielded two and three critical features
for predicting clinically rated BvA and alogia respectively (Table 4).
These features are notable for two reasons. First, these features do
not appear central to their operational definitions. Thus, the
features identified as most “stable” are not necessarily those that

Table 4. The most stable features for predicting BvA and alogia from vocal acoustics.

Feature name How feature is computed What feature means

Alogia

Unvoiced Segment Length: SD
(StddevUnvoicedSegmentLength)

Standard deviation of unvoiced
segments length

Captures the variability in pause length. This is
potentially related to articulation rate and speech
production, and conceptually critical to alogia.

Blunted affect

Mel-Frequency-Capstral-Coefficients – 2: SD
(mfcc2_sma3_stddevNorm)

Computed as a spectrum of transformed
frequency values over time

Captures variability in the global signature of the
signal spectrum over time, based on a short-term
frequency representation based on a nonlinear
mel scale of frequency. It broadly reflects global
changes in the vocal tract and is critical for
speech recognition in humans and in automated
systems. The MFCC2 reflects finer spectral details
than MFCC1.

Harmonic Difference: H1 – A3 (logRelF0-H1-
A3_sma3nz_amean)

Mean ratio of energy of the first F0 harmonic
(H1) to the energy of the highest harmonic in
the third formant range (A3)

Ratio of energy of the first F0 harmonic to the
third F0 harmonic - generated from the vocal
folds as opposed to the vocal tracts. A measure of
“spectral tilt” (i.e., tendency for lower frequencies
to have less volume), and associated with breathy
voice in men, and lack of “creaky voice”

Both blunted vocal affect and alogia

Second Formant: M
(F2frequency_sma3nz_amean)

Average of formant 2 frequency values Captures spectral shaping of vocal signal,
computed as the average frequency from vowel
shaping. The second formant typically reflects
tongue body movement from front to back.

Acoustic features determined to be most stable using stability selection.
BvA blunted vocal affect.

Table 3. Contributions of ML-predicted versus clinically rated BvA and alogia to cognitive/social functioning, beyond demographics (entered in
step 1).

DV: Cognitive functioning DV: Social functioning

ΔR2 ΔF B (se) ΔR2 ΔF B (se)

Symptom of interest: blunted vocal affect (BvA)

Unique contribution of Clin Rat BvA

Step 2: Predicted measure Only 0.08 4.13* −0.53 (0.23) 0.11 4.62* −0.66 (0.31)*

Step 3: Clin Rat measure only 0.07 0.47 −0.35 (0.33) 0.00 0.13 −0.05 (0.15)

Unique contribution of ML BvA

Step 2: Clin Rat measure only 0.07 4.65* −0.18 (0.08)* 0.07 3.15+ −0.18 (0.10)+

Step 3: Predicted measure only 0.02 1.14 −0.35 (0.33) 0.04 1.58 −0.55 (0.44)

Symptom of interest: Alogia

Unique contribution of Clin Rat Alogia

Step 2: Predicted measure only 0.00 0.02 −0.03 (0.018) 0.10* 4.88* −0.46 (0.21)*

Step 3: Clin Rat measure only 0.02 0.90 −0.17 (0.18) 0.01 0.55 −0.18 (0.24)

Unique contribution of ML alogia

Step 2: Clin Rat measure Only 0.01 0.74 −0.13 (0.14) 0.09* 4.11* −0.36 (0.18)

Step 3: Predicted measure Only 0.01 0.18 0.09 (0.22) 0.03 1.32 −0.32 (0.28)

Note: Step 1 demographics R2= 0.19; Step 1 demographics R2= 0.01.
ML machine learning, BvA blunted vocal affect, Clin Rat clinical rating, se standard error.
*p < 0.05.
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are most conceptually relevant to clinically rated negative
symptoms. Second, there was an overlapping feature between
the models: “F2frequency_sma3nz_amean”. This feature is pri-
marily related to vowel shaping, and while not entirely unrelated
to BvA or alogia, it is not a feature with substantial conceptual
overlap. It is noteworthy that conceptually critical features are, in
some cases, highly inter-correlated (see next section for elabora-
tion), and thus were potentially unstable across iterations of the
stability selection analysis. Nonetheless, it is unexpected that the
selected features were so distally related to the conceptual
definitions of BvA and alogia.
The relative unimportance of “conceptually critical” features in

the models was corroborated with additional analyses. First, we
inspected the top features in the models (Supplementary Tables 1
and 2), and those with relatively modest to high feature weights
(i.e., values exceeding 1.0), creating a “sparse matrix”. A minority of
features in the alogia model were directly tied to speech
production: only three of 17 (i.e., “utterance_number”, “silence_-
percent”, “StddevUnvoicedSegmentLength”). Similarly, a minority
of features in the BvA were directly (and exclusively) tied to
fundamental frequency or intensity values—approximately 11 of
40. In contrast, features related to the Mel-Frequency cepstrum
(MFCC), spectral, and formant frequency (i.e., F1, F2, and F3 values)
were well represented in both models, with ~12 of 17 of the top
features in the sparse matrix predicting alogia, and ~24 of 40 in
the sparse matrix predicting BvA. Second, the correlational
analysis suggested that our conceptually critical features were
often not highly associated with machine learning or clinical
rating measures (Supplementary Tables 1 and 2). Of the 12
potential correlations computed between predicted scores, clinical
ratings and the four conceptually critical measures defined in the
“acoustic analysis” section above, only three were statistically
significant and only one was in the expected direction (Supple-
mentary Table 5). Decreased intonation was associated with more
severe machine-learning alogia (r=−0.55, p < 0.01), and
increased pause times were significantly associated with machine
learning and clinically rated BvA (r’s 0.30 and 0.29 respectively, p’s
< 0.05), but not with alogia.

Follow-up analyses: how important are conceptually critical
features in explaining functioning? (Table 5)
Given that alogia is generally defined in terms of long pauses and
few utterances, and BvA is generally defined in terms of relatively
monotone speech with respect to intonation and emphasis, we

examined whether acoustic features more directly tapping these
abilities explained variance in cognitive and social dysfunction
beyond the predicted scores and clinical ratings. For regression
analysis, we examined demographics (step 1), predicted scores
and clinical ratings (step 2), and conceptually critical features (step
3) in their prediction of cognitive functioning (model 1) and social
functioning (model 2). Pause mean time and Utterance numbers
were highly redundant (r=−0.90), so we omitted the latter from
our regression models. Both Pause Mean and Emphasis made
significant contributions in predicting cognitive functioning. This
suggests that Pause Mean and Emphasis, conceptually critical
components to alogia and BvA respectively, explain aspects of
cognitive functioning missed by predicted scores and clinical
ratings.

DISCUSSION
The present study examined whether clinically rated BvA and
alogia could be modeled using acoustic features from relatively
brief audio recordings in a transdiagnostic outpatient SMI sample.
This study extended prior literature by using a large acoustic
feature set and a machine-learning-based procedure that could
accommodate it. There were four notable findings. First, we were
able to achieve relatively high accuracy for predicting BvA and
alogia. Second, this accuracy improved when we took speaking
task into consideration, suggesting that model solutions are not
ubiquitous across speaking tasks and recording samples. Third,
there were no obvious biases with respect to demographic
characteristics in our prediction model that were not also present
in clinical ratings (see below for elaboration). Fourth, predicted
scores were essentially redundant with clinical ratings in explain-
ing demographic, clinical, cognitive, and social functioning
variables. Finally, the acoustic features most stable for predicting
clinical ratings were not necessarily those most conceptually
relevant. These additional “conceptual-based” features explained
unique variance in cognitive functioning, raising the possibility
that clinicians are missing critical aspects of alogia, at least as
operationally defined, when making their ratings.
From a pragmatic perspective, the present study reflects an

important “proof of concept” for digitally phenotyping key
negative symptoms from brief behavioral samples10,13. Clinical
ratings can be expensive in terms of time, staff, and space
resources and generally require active and in vivo patient
participation. The promise of efficient and accurate digital
phenotyping of audio signal can significantly reduce these
burdens, and offer potential remote assessment using archived,
telephone, and other samples. Moreover, the use of ratio-level
data can improve sensitivity in detecting subtle changes in
symptoms for clinical trials of psychosocial and pharmacological
interventions, monitoring treatment side-effects, and designing
biofeedback interventions34. Highly sensitive measures of nega-
tive symptoms can also be potentially important for under-
standing their environmental antecedents. It could be the case
that, for example, a particular individual tends to show BvA and
alogia primarily with respect to positively-, but not negatively
valenced emotion35, or when their “on-line” cognitive resources
are sufficiently taxed21. It is well known that negative symptoms
are etiologically heterogeneous4,33, and sensitive measures able to
track their severity as individuals navigate their daily environment
could be essential for understanding, measuring, and addressing
the various primary and secondary causes of negative symptoms.
In terms of optimizing ML solutions for understanding negative

symptoms using behavioral samples, it is important to consider
speaking task and individual differences. While good accuracy was
obtained in the present study regardless of speaking task, model
accuracy did improve when speaking task was considered. The
tasks examined in this study were relatively similar to each other
in that they were brief, were conducted in a laboratory setting and

Table 5. Contributions of Conceptually Critical Features for predicting
cognitive/social functioning, beyond demographics (entered in
step 1).

Conceptually
critical features:

DV: Cognitive functioning DV: Social functioning

ΔR2 ΔF B (se) ΔR2 ΔF B (se)

Symptom of Interest: blunted vocal affect

Intonation 0.01 0.78 −0.21 (0.21) 0.02 1.17 0.30 (0.28)

Emphasis 0.06 4.52* −0.40 (0.19)* 0.00 0.12 −0.08 (0.24)

Symptom of Interest: Alogia

Pause mean 0.13 9.59* −0.54 (0.17)* 0.01 0.25 −0.11 (0.22)

Relative contributions of Conceptually Critical Features (Step 3) beyond
that of Predicted and Clinical Symptom Rating measures (Step 2) and
demographics (Step 1) for predicting cognitive and social functioning
(Dependent variables; DV). Note: Step 1 demographics R2= 0.19; Step 1
demographics R2= 0.12; Step 1 demographics R2= 0.27; Step 1 demo-
graphics R2= 0.12.
se standard error, DV dependent variable.
*p < 0.05.
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involved interacting with a relative stranger. Hence, it is not clear
whether the models derived in this study are of any use for
predicting speech procured from other settings/contexts. Model
accuracy in this study did not notably differ as a function of
gender or ethnicity beyond those differences observed with
clinical ratings. Importantly, the participants in this study were
sampled from a constrained geographic catchment region and
reflect a limited representation of the world’s diverse speaking
styles. Moreover, gender differences were observed in both the
clinical ratings and ML measures of BvA. While clinically rated
negative symptoms are commonly reported as being more severe
in men than women36, and in African Americans versus
Caucasians37, it is as yet unclear whether this reflects a genuine
phenotypic expression, a cultural bias of clinicians, or bias in the
operational definitions of negative symptoms. Regardless, a
machine-learning model built on biased criteria will show similar
biases. Examples of this in computerized programs analyzing
objective behavior are increasingly becoming a concern38,39.
The present study offers a unique insight into the acoustic

features that clinicians consider critical for evaluating BvA and
alogia. Features related to the MFCC, spectral, and formant
frequency (i.e., F1, F2, and F3 values) were particularly important,
as they represented at least half of the top features in models
predicting alogia and three-quarters of the top in models
predicting BvA. These features have not been typically examined
in the context of SMI, as they are not captured by the VOXCOM or
CANS systems (refs. 40,41; but see12,42 for an exception).
Collectively, these features concern the spectral quality and
richness or speech, reflecting the involvement of a much broader
vocal system than those typically involved in psychopathology
research, e.g., “pitch” and “volume”. These “spectral” measures
involve coordination between vocal tracts, folds and involve the
shaping of sounds with mouth and tongue43. The MFCC values
have become particularly important for speech and music
recognition systems, and figure prominently in machine
learning-based applications of acoustic features more gener-
ally44,45. Applications for understanding SMI are relatively limited,
though links between reduced MFCC and clinically rated
depression in adults (e.g., with 80% classification accuracy46) and
adolescents (e.g., with 61.1% classification accuracy47) have been
observed. Moreover, Compton et al.12,42 have demonstrated
statistically significant relationships between formant frequencies
and clinically rated negative symptoms (e.g., r=−0.4512). In short,
clinicians appear to be intuitively evaluating a much broader
feature set than is included in most prior studies.
However, it is not entirely clear that clinicians are accurately

capturing the most essential acoustic features of patient speech
when evaluating BvA and alogia. It is unexpected that pause
length and utterance number didn’t figure more prominently in
models predicting alogia, and that F0 and intensity variability (i.e.,
intonation and emphasis) didn’t figure more prominently in
models predicting BvA. There are two potential explanations for
this. First, it could be that clinicians are correctly ignoring aspects
of vocal expression that are included in the operational definitions
of BvA and alogia but are actually nonessential to negative
symptoms. If true, the operational definitions of BvA and alogia
should be updated accordingly. Second, it could be that clinicians
aren’t accurately evaluating features that are critically relevant to
BvA and alogia. Alpert and colleagues48 have proposed that
clinical ratings of vocal deficits are conflated by perceptions of
global impressions of patient behavior rather than precise
evaluations of relevant behavioral channels; experimental and
correlational support for this claim exists11,19,48–51. While beyond
the present study to resolve, a major challenge in digital
phenotyping and modeling of clinical symptoms more generally
involves defining the “ground truth” criteria. Should models be
built to predict facets of psychopathology defined based on
conceptual models, based on clinician ratings, or based on other

variables, such as cognitive, social or other dysfunctions more
generally? Importantly, a burgeoning area of medicine includes
developing “models of models”52, and this may allow integration
of models built on different criteria. Nonetheless, deciding on the
optimal criterion for a model, and how it should reflect clinical
ratings, dysfunction or theory, is critical to the field of computa-
tional psychiatry.
It is a bit surprising that measures of alogia (particularly

predicted from machine learning) weren’t more related to
cognitive functioning. In at least some prior studies, measures of
speech production have been associated with measures of
attention, working memory, and concentration21,51, and experi-
mental manipulation of the cognitive load has caused exagger-
ated pause times in patients with SMI21. Some have proposed that
cognitive deficits reflect a potential cause of alogia2, and may
differentiate schizophrenia from mania-psychosis53. In the present
study, average pause times explained 15% of the variance in
cognitive functioning beyond the negligible contribution made by
clinical ratings and predicted scores (Table 5). This supports the
notion that there is something important in the operational
definitions of alogia that is missed by clinical ratings. The lack of
replication in this study could also reflect context, as the speech
tasks were not particularly taxing in cognitive resources—at least,
in terms of overall speech production. It could be that patient’s
speech was informationally sparser, for example, characterized by
more “filler” words (e.g., “uhh”, “umm”), more repetition, and more
automated or cliched speech. This highlights a potential limitation
of relying solely on acoustic analysis, in that other aspects of vocal
communication are not considered. This is being addressed in
other lines of research54,55.
Some limitations warrant mention. First, we were unable to

meaningfully evaluate the role of primary versus secondary
negative symptoms, or the degree to which these symptoms
were enduring. It is possible that alogia and BvA secondary to
depression, medication side effects, or anxiety, for example, differ
in their vocal sequelae and in their consequent predictive
modeling. There were no significant correlations between
machine learning-based scores and psychiatric symptoms other
than negative symptoms. Nonetheless, this is an important area of
future research. Second, the speech tasks were relatively
constrained. This issue was compounded by the fact that sample
sizes were relatively low for the free speech task. Future studies
should involve a greater breadth of speaking tasks, to include
those that are more natural (spontaneous conversation) to those
that are even more constrained (e.g., memory tasks) in terms of
task demands, and ensure that there are adequate samples for
analysis. Cross-validation involving novel data is important for
generalization, and also for addressing potential overfitting in the
training models. The latter is something we could not optimally
address in the present study using our cross-validation strategy.
Third, extreme levels of negative symptom severity were not
particularly well represented in our sample. Although extreme BvA
and alogia are not particularly common within the outpatient
populations, future modeling should ensure a good representa-
tion of patients with extreme levels of alogia (either present or
absent). Finally, we did not control or account for the effects of
medication.

METHODS
Participants (Supplementary Table 6)
Participants (N= 121 total; 57 in Study 1 and 64 in Study 2) were stable
outpatients meeting United States federal definitions of SMI per the
ADAMHA Reorganization Act with a depressive, psychosis or bipolar
spectrum diagnosis and current and severe functional impairment. All
were receiving treatment for SMI from a multi-disciplinary team and were
living in a group home facility. The sample was ~61% male/39% female
and 51% Caucasian/48% African-American. The average age was 41.88
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(standard deviation= 10.95; range= 18–63). Approximately two-thirds of
the sample met criteria for schizophrenia (n= 76), with the remainder
meeting criteria for major depressive disorder (n= 18), bipolar disorder
(n= 20), or other SMI disorders (e.g., psychosis not otherwise specified;
n= 7). Participants were free from major medical or other neurological
disorders that would be expected to impair compliance with the research
protocol. Participants did not meet the criteria for DSM-IV substance
dependence within the last year, as indicated by a clinically relevant
AUDIT/DUDIT score56,57. The reader is referred elsewhere for further details
about the participants (Study 132; Study 221; a collective reanalysis of this,
and other data18). All data were collected as part of studies approved by
the Louisiana State University Institutional Review Board. Participants
offered written informed consent prior to the study, but were not asked
whether their raw data (e.g., audio recordings) could be made public. For
this reason, the raw data are not available to the public. The processed, de-
identified datasets generated analyzed for this current study are available
from the corresponding author on reasonable request

Measures
Clinical measures. Structured clinical interviews58 were conducted by
doctoral students under the supervision of a licensed psychologist (AS
Cohen). Psychiatric symptoms were measured using the Expanded Brief
Psychiatric Rating Scale (BPRS59) and the Scales for the Assessment of
Positive and Negative Symptoms (SAPS & SANS60,61). Diagnoses and
symptom ratings reflected consensus from the research team. For the
BPRS, we used scores from a factor solution62 with some minor
modifications to attain acceptable internal consistency (>0.70). For the
SANS, we used the BvA and global alogia ratings as a criterion for the
machine-learning modeling—those most relevant to our acoustic features.
To evaluate the convergent/divergent validity of our models, we used the
global scores from the SAPS/SANS. Symptom data were missing for 407 of
the audio samples.

Cognitive and social functioning. Cognitive functioning was measured
using the Repeatable Battery for the Assessment of Neuropsychological
Status global cognitive index score (RBANS63). Social functioning was
measured using the Social Functioning Scale: Total score (SFS64). These
measures were available for Study 1 data only.

Speaking tasks. Participants were audio-recorded during two separate
tasks. The first involved discussing reactions to visual pictures displayed on
a computer screen for 20 s. This “Picture Task” was administered in Study 1,
and involved a total of 40 positive, negative- and neutral-valenced images
from the International Affective Picture System (IAPS)65 shown to patients
across one of two testing sessions (20 pictures each session; with sessions
scheduled a week apart). Participants were asked to discuss their thoughts
and feelings about the picture. The second task involved patients
providing “Free Recall” speech describing their daily routines, hobbies
and/or living situations, and autobiographical memories (Studies 1 and 2)
for 60 s each. While these tasks weren’t designed as part of an a priori
experimental manipulation, they do systematically differ in length,
constraints on speaking topic, and personal relevance. The administration
was standardized such that, for all tasks, instructions, and stimuli
presentation (e.g., IAPS slides) were automated on a computer, and
participants were encouraged to speak as much as possible. Research
assistants were present in the room, and read instructions to participants,
but were not allowed to speak while the participant was being recorded.

Acoustic analysis
Acoustic analysis was conducted using two separate, conceptually
different, software programs. The first was designed to capture relatively
global features conceptually relevant in psychiatric symptoms and reflects
an iteration of the VOXCOM system developed by Murray Alpert40. The
second captures more basic, psychophysically complex features relevant to
affective science more generally. The first was the Computerized
assessment of Affect from Natural Speech (CANS)66,67. Digital audio files
were organized into “frames” for analysis (i.e., 100 per second). During each
frame, basic speech properties are quantified, including fundamental
frequency (i.e., frequency or “pitch”) and intensity (i.e., volume) and
summarized within vocal utterances (defined as silence bounded by 150+
milliseconds). Support for the CANS comes from over a dozen studies from
our lab, including psychometric evaluation in 1350 nonpsychiatric adults67

and 309 patients with SMI18. The CANS feature set includes 68 distinct

acoustic features related to speech production (e.g., number of utterances,
average pause length) and speech variability (e.g., intonation, emphasis).
The second program involved the Extended Geneva Minimalist Acoustic
Parameter Set (GeMAPS)31. GeMAPS was derived using machine learning-
based feature reduction procedures on a large feature set as part of the
INTERSPEECH competitions from 2009 to 201368. GeMAPS contains 88
distinct features. Validity for this feature set, for predicting emotional
expressive states in demographically diverse clinical and nonclinical
samples, can be found elsewhere (e.g.69). Recordings that contained fewer
than three utterances were excluded from analyses.
As part of exploratory analyses, we selected four features from our CANS

analysis deemed “conceptually critical” to the operational definitions of
BvA (i.e., intonation: computed as the average of the standard deviation of
fundamental frequency values computed within each utterance; emphasis:
computed as the average of the standard deviation of intensity/volume
values computed within each utterance) and alogia (i.e., mean pause time:
average length of pauses in milliseconds; the number of utterances:
number of consecutively voiced frames bounded on either side by silence).
These are by no means comprehensive, nonetheless, they reflect “face
valid” proxies of their respective constructs. These features have been
extensively examined in psychiatric and nonpsychiatric populations, and
reflect key features identified in principal components analysis of
nonpsychiatric and psychiatric samples11,18,40,67.

Analyses: aims and statistical approaches
Our analyses addressed four aims. First, we were interested in evaluating
whether clinical ratings could be accurately modeled from acoustic
features. We hypothesized that good accuracy would be achieved (i.e.,
exceeding 80%). Second, we evaluated whether model accuracy changed
as a function of the speaking task. Third, we used the models derived from
the first two aims to compute machine learning-based “predicted” scores
for each vocal sample. These scores were then examined in their
convergence with demographic (i.e., age, gender, ethnicity), diagnostic
(i.e., DSM IV-TR diagnosis), clinical symptom (BPRS and SANS/SANS factor/
global ratings) and cognitive (i.e., RBANS total scores) and social (i.e., SFS
total scores) functioning variables. We employed linear regressions
comparing the relative contributions of predicted versus clinician-rated
symptoms in predicting social and cognitive functioning. Regressions, as
opposed to multi-level modeling, were necessary due to the dependent
variables being “level 2” variables (i.e., reflecting data that are invariant
across sessions within a participant). For these analyses, scores were
averaged within participants. Correlations and group comparisons were
included for informative purposes. We hypothesized that predicted scores
and clinician ratings would explain similar variance in cognitive and social
functioning, given that the ML models are built to approximate, as closely
as possible, the clinical ratings. Fourth, we identified and qualitatively
evaluated the individual acoustic features associated with each model. This
was done by inspecting the model weights, correlations, and by using
stability selection (see next section). Generally, we expected that predicted
scores would be highly related to acoustic features deemed conceptually
critical to their operational definitions. A limited set of these was identified
for alogia (i.e., mean pause times, the total number of utterances) and BvA
(i.e., intonation, emphasis). All data were normalized and trimmed (i.e.,
“Winsorized” at 3.5/−3.5) before being analyzed.

Machine learning. We employed Lasso regularized regression, with 10-
fold cross-validation70. Each case in the dataset was one of ten groups such
that the ratio of positive and negative cases in each group was the same.
Then, a test set was formed by selecting one of these groups, and a
training set was formed by combining the remaining nine groups. A model
was fit to the training set and evaluated on the test set. This was repeated
so that each of the 10 groups was used as the test set. We report hit rate
and correct rejection values that have been averaged over these 10 folds.
We report accuracy as the sum of the hit rate and correct rejection rate
divided by 2 so that 0.5 corresponds to random performance. Feature
selection was informed by stability selection71, a subsampling procedure
that resembles bootstrapping72. Additional information is available in
Supplementary Note 1.
For model building purposes, we defined positive and negative cases of

BvA/alogia based on SANS ratings of “moderate” or greater, and “absent”
severity of symptoms respectively. Cases where SANS ratings were
“questionable” or “mild” were excluded from model building. After
satisfactory models were established, they were then used to compute
individual “predicted” scores for all data (i.e., including, “questionable” and
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“mild” cases). Given that our model was based on binary classification, this
helped to remove potentially ambiguous cases when building our model
and helped define the extreme “ends” of the continuum when applied to
individual scores (i.e., with zero reflecting “absent” and one reflecting
“moderate and above). Our use of a binary criterion is not meant to imply
that the symptom is binary in nature; modeling allows a “degree of fit”
score that is continuous in nature. Using these criteria, 64% (n= 77; k audio
samples= 1671) of participants were BvA negative while 36% (n= 44; k=
825 audio samples) were BvA positive. 70% (n= 85; k audio samples=
1916) of participants were alogia-negative while 30% (n= 36; k audio
samples= 580) were BvA alogia-positive.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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