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In silico hippocampal modeling for multi-target
pharmacotherapy in schizophrenia
Mohamed A. Sherif1,2,3✉, Samuel A. Neymotin4 and William W. Lytton3,5,6,7

Treatment of schizophrenia has had limited success in treating core cognitive symptoms. The evidence of multi-gene involvement
suggests that multi-target therapy may be needed. Meanwhile, the complexity of schizophrenia pathophysiology and psychopathology,
coupled with the species-specificity of much of the symptomatology, places limits on analysis via animal models, in vitro assays, and
patient assessment. Multiscale computer modeling complements these traditional modes of study. Using a hippocampal CA3 computer
model with 1200 neurons, we examined the effects of alterations in NMDAR, HCN (Ih current), and GABAAR on information flow
(measured with normalized transfer entropy), and in gamma activity in local field potential (LFP). We found that altering NMDARs,
GABAAR, Ih, individually or in combination, modified information flow in an inverted-U shape manner, with information flow reduced at
low and high levels of these parameters. Theta-gamma phase-amplitude coupling also had an inverted-U shape relationship with
NMDAR augmentation. The strong information flow was associated with an intermediate level of synchrony, seen as an intermediate
level of gamma activity in the LFP, and an intermediate level of pyramidal cell excitability. Our results are consistent with the idea that
overly low or high gamma power is associated with pathological information flow and information processing. These data suggest the
need for careful titration of schizophrenia pharmacotherapy to avoid extremes that alter information flow in different ways. These results
also identify gamma power as a potential biomarker for monitoring pathology and multi-target pharmacotherapy.
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INTRODUCTION
Schizophrenia is a chronic disease with a lifetime prevalence of
around 4/10001, which usually produces life-long disability2.
Cognitive impairment and information processing deficits are chief
causes of disability3–5. The most affected cognitive domains are
processing speed, working memory, episodic memory, and verbal
learning and memory6–8. Current antipsychotic medications have
limited impact on cognitive symptoms and information processing
deficits9,10. Therefore, there are significant gaps in therapy and
patients’ clinical care11.
Recent research has emphasized the role of glutamatergic

transmission as an extension of the dopaminergic hypothesis for
schizophrenia pathophysiology, especially to capture cognitive
impairment associated with schizophrenia (CIAS) and information
processing deficits12. The role of glutamatergic transmission has
been supported by the psychotomimetic effect of N-methyl-D-
aspartate (NMDA) receptor (NMDAR) antagonists like phencycli-
dine (PCP) and ketamine in healthy volunteers13,14. Ketamine also
worsened cognitive symptoms in schizophrenia patients15.
Oscillations are abnormal in schizophrenia patients, both in the

low (delta and theta) and high (gamma) frequency ranges16,17. For
example, a positive correlation was found between power of theta
oscillations in the temporal lobe and positive symptoms using
resting state MEG18. In a 40 Hz auditory steady-state response
(ASSR) paradigm, theta power was found to be increased, and this
was associated with impaired verbal memory19. Cortico-
hippocampal theta oscillations play multiple roles in memory
encoding and retrieval (reviewed in ref. 20), and mediate
sequencing of events through theta/gamma coupling21,22.

Gamma oscillations are also involved in sensory integration23,
enabling local computations within cortical microcircuits24 by
providing binding among neurons belonging to a particular neuronal
ensemble25,26, and routing information across brain regions27.
Multiple studies revealed reduction in induced and evoked gamma
power28–31 in schizophrenia patients. By contrast, presymptomatic,
clinically high-risk individuals demonstrated an increase in resting
gamma power32. Ketamine increased resting gamma power in
healthy volunteers33. Interestingly, acute ketamine increased resting
and evoked gamma power in rodent hippocampal CA334, while
chronic ketamine reduced gamma power35, similar to what has been
reported in patients with chronic schizophrenia32.
Combining evidence from gamma studies and ketamine studies

suggests a role for NMDAR dysfunction in gamma abnormalities
and in CIAS. Additional evidence comes from the schizophrenia
genome-wide association study (GWAS) published in 2014, which
identified GRIN2A (glutamate ionotropic NMDA-type receptor
subunit 2A) on chromosome location 16p13 as being close to one
of the 108 gene loci identified36. Clinically, agonists for NMDARs
that have been studied for the treatment of CIAS include glycine
and D-serine, both of which bind to an allosteric site on the
GluN1 subunit of NMDAR and are obligatory for NMDAR activation
by glutamate37. D-cyclo-serine, a partial agonist at the glycine
site38, has also shown efficacy in some studies. However, these
studies yielded mixed results; a recent meta-analysis found no
overall significant effect on cognition, although young patients
aged 30–39 years old showed some benefit39.
Another molecular aspect that we consider in this paper is the

involvement of the HCN1 gene (hyperpolarization-activated cyclic
nucleotide-gated channel type 1) that codes for Ih channels
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(hyperpolarization-activated current, also known as anomalous
rectifier, If, Iq)

40–42. Along with NMDAR, this channel plays a role in
the generation and modulation of neuronal oscillations43,44. The
HCN1 gene on chromosome location 5p21 is also close to one of
the GWAS loci associated with schizophrenia36. The role of Ih in
oscillations, and evidence from the GWAS study, suggest HCN1
product as another potential therapeutic target for CIAS45.
Manipulating the GABAergic system provides another potential

treatment target46. The GABAergic system shapes synchronized
neuronal activity during oscillations47–51, and is impaired in
schizophrenia. Postmortem studies have revealed low inhibitory
interneuron glutamic acid decarboxylase enzyme (GAD67), low GABA
transporter, and low pyramidal cell GABAA receptor (GABAAR)
α1 subunit mRNA transcripts in the frontal lobe of patients52. Similar
findings were also demonstrated in the hippocampus, where a
reduction in numbers of somatostatin-positive and parvalbumin-
positive interneurons was also found53. The GABAergic deficit
hypothesis for schizophrenia is further supported by reduced
postmortem immunoreactivity of GAD65/67 in interneuronal neuro-
pil in the hippocampus54. Reduced GABA tone has been suggested
to mediate hippocampal hyperactivity in these patients55–59.
Schizophrenia pathology spans the multiple hippocampal

subfields, as well as affecting adjacent para-hippocampal areas.
We focus here on area CA3, an area that shows increased activity
in schizophrenia but is relatively preserved in comparison to CA1.
CA3 hyperactivity is seen in schizophrenia patients56, and in
animal models of psychosis60,61. CA3 projects strongly to CA1,
which also shows evidence of hyperactivity62,63, presumably as a
consequence of these projections. CA1 shows shrinkage, even
early in the illness64–66, suggesting early and prominent cell loss in
CA1. A recent postmortem subfield transcriptome analysis of
schizophrenia suggested that immune-mediated changes in CA3
might be one cause of CA3 excitability, which could subsequently
produce synaptic scaling after cell loss in CA167, thereby further
augmenting CA1 neuron loss68. Another reason to focus on CA3 is
its possible role in pattern completion69–71, a component of
cognitive processing. In this context, a hyperactive CA3 might alter
pattern completion through activity spill-over59,72,73.
As described above, schizophrenia pathophysiology is extre-

mely complex, with abnormalities at multiple scales, from genes,
second messenger cascades, and cells, up to local networks and
inter-areal communication. Given this complexity, it is reasonable
to consider that multi-target pharmacotherapeutic approaches
will be useful74. Targets in multi-target pharmacotherapy interact
in highly non-linear ways, making it impossible to intuitively
predict the effects75–77. We, therefore, use simulations to study
these interactions. In this study, we investigated how alterations in
the three targets mentioned above—NMDAR, Ih, GABAAR—will
affect (1) oscillations and (2) information flow in a biophysically-
realistic computer model of the CA3 region of the hippocampus.
This builds on our prior results which identified the effects of
blocking NMDARs on oriens-lacunosum moleculare (OLM) inter-
neurons on gamma oscillations and information flow78.

RESULTS
Baseline network activity produced theta with nested gamma
oscillations
More than 2000 simulations were run using NEURON 7.479,80. These
included 175 simulations for the NMDAR augmentation (5 input
random seeds × 5 connectivity random seeds × 7 NMDAR scalings),
and 1575 simulations for the tri-scaling interactions of NMDAR, Ih,
and GABAAR (3 input random seeds × 3 connectivity random
seeds × 7 NMDAR scalings × 5 Ih simulations × 5 GABAAR simulations),
with additional preliminary simulations to tune the model. Multiple
versions of individual simulations with different randomizations were
run to ensure that results were reliable and not due to specific

network architecture or background input. An individual simulation
of 7 s model time required about 5min computer time using an
integration timestep of 0.1ms on a Linux system with eight 2.67-GHz
Intel Xeon quad-core CPUs. The full study utilized ~160 core-hours of
high-performance computing time. Simulations were also run with
finer timestep to assess numerical stability. We investigated the
correlations between ion channel manipulations, scaling gNMDAR, gh,
and gGABAAR, with information flow and gamma oscillation strength.
We present the baseline simulations first, then NMDAR augmentation
simulations, followed by the results from the simultaneous
manipulation of NMDAR, Ih, and GABAAR.
In baseline simulations (Fig. 1), firing of the three neuronal

populations was synchronized at two primary frequencies: gamma
(~25–50 Hz) and theta (~6–8 Hz). Synchronized activity resulted from
the following sequence of events: pyramidal neuronal firing triggered
firing of PV basket interneurons, which in turn turned off the
pyramidal neurons until inhibition wore off (pyramidal interneuron
network gamma, PING oscillations) (Fig. 1c). Pyramidal neurons also
triggered the firing of OLM interneurons, which provided further
feedback inhibition to the pyramidal neurons, but at a slower rhythm
(theta) due to OLM interneurons’ longer-lasting inhibition from
longer GABAAR time constants. Synchronization at the theta
frequency was also mediated by inhibitory input from the medial
septum to both OLM and PV interneurons, but was not dependent
on it. While pyramidal neurons were under the inhibitory influence of
the OLM interneurons, the firing and reciprocal inhibition between
PV basket interneurons generated interneuron network gamma (ING)
oscillations (Fig. 1d). The synchronized firing of the pyramidal
neurons, PV basket, and OLM interneurons was reflected in the local
field potential (LFP) (Fig. 1b). The LFP showed both gamma and theta
frequencies. The power spectral density (PSD) (Fig. 1e) showed the
peaks of gamma (~35 Hz) and theta (~7 Hz) oscillations in this
representative simulation.

Augmenting OLM NMDARs modulated circuit oscillations and
information flow
Our first step was studying the effects of augmenting NMDAR of
OLM interneurons on gamma oscillations and information flow
across the model (Fig. 2). OLM interneurons were the location
where NMDAR antagonism produced theta and gamma oscillatory
changes similar to what was seen with ketamine in hippocampal
CA334,78. Taking the simulations in Fig. 1 as the baseline, we then
scaled gNMDAR of OLM interneurons from 1.5× to 30× the control
simulations. This scaling could reflect a conductance increase due
to phosphorylation or insertion of different isoforms with or
without an increase in the number of NMDAR channels. Scaling
gNMDAR of OLM interneurons reduced gamma power ~10-fold until
it disappeared at above 30× control (Fig. 2b, left y-axis).
Scaling OLM gNMDAR upward increased drive onto OLM

interneurons and therefore increased the firing rate of these
inhibitory cells (Fig. 2b, blue line), which reduced the firing of the
other two cell types that received OLM projections (PV, green; PYR,
red). Information transfer (nTE) across the excitatory (PYR)
population (Fig. 2a black) peaked at an intermediate level of
PYR and PV firing, and showed far lower values with firing rate
extremes, low or high. Cross-frequency coupling between theta
phase and gamma amplitude, measured by modulation index
(MI), also showed the inverted-U relationship with NMDAR scaling,
correlating with information flow (Fig. 2a red). We found a similar
inverted-U that related information flow to gamma power, a
measure of synchronized firing (Fig. 2c). Note that the values of
gNMDAR are reversed in Fig. 2c relative to 2a and 2b, with high
gNMDAR on the left associated with low PYR firing and low gamma.
There were two causes for low gamma with low PYR rate: (1)
reduced number of spikes, which also reduced the strength of
theta; (2) reduction in spiking coherence which was no longer as
sharply shaped by PING and ING (Fig. 2d, scale= 30).
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Modulating information flow with multiple channel manipulations
Consideration of multi-target pharmacotherapy requires deter-
mining how actions at different targets combine. We, therefore,
looked at alterations in Ih and GABAAR, both of which are
considered possible factors in schizophrenia pathophysiology36,53,
along with gNMDAR. Having previously demonstrated strong effects
on gamma of HCN channels of pyramidal and PV neurons43, we
focused here on Ih at these two locations. The inverted-U
configuration of the nTE peak for gNMDAR augmentation was seen
at all Ih scalings except for 10× (Fig. 3). An inverted-U pattern
could also be seen for GABAAR scaling with gNMDAR 10×, again at
all but the highest Ih value. Similarly, the inverted-U peak can be
detected for Ih scaling around the point marked H1, with a less
well-defined, broader surface peaking around the point marked by
H2. Thus, we have identified parameter ranges that identify a set
of peaks which are points of strong nTE in a 4-D space based on
this 3D parameter space.
Firing patterns from regions of low (L1–2; Fig. 4) and high (H1–2;

Fig. 4) nTE were easily distinguishable. Two patterns of neuronal

firing were seen which produced low nTE: (L1) low firing; (L2) over-
synchrony. L1 exhibited low oscillatory power in addition to low
firing. This was because of the combined inhibitory effect of high
NMDAR scaling on OLM interneurons (30×) and high GABAAR
scaling on pyramidal neurons (10×), leading to inhibition of
pyramidal neurons and PV basket interneurons. In L2, highly
synchronized phase-locked pyramidal neuron firing was driven by
strong PV basket feedback inhibition, permitting little of the
variation required to transfer information. This highly synchro-
nized dynamics resulted from high Ih scaling (10×) on pyramidal
neurons and PV interneurons, increasing their excitability and their
synchronous activity, similar to what we reported before43. The
different dynamics between L1 and L2 were reflected in their
gamma power (bottom panel of Fig. 4).
Examination of rasters from points of high information flow-

through (H1–H2 in Fig. 3) showed moderate levels of activity
(H1–H2 in Fig. 4). Firing here was intermediate between the low
firing of L1 and the strong phase-locking of L2, consistent with the
inverted-U pattern. This intermediate synchronization allowed the
pyramidal neurons to be excitable enough for the timing of their

Fig. 1 Baseline simulation generated theta (6–8 Hz) with nested gamma (30–40 Hz) rhythm. a Raster plot where each row represents a
neuron and each dot represents an action potential (x-axis: time; y-axis: neuron identity; OLM interneurons in blue, PV basket interneurons in
green, pyramidal neurons in red). b Simulated local field potential (LFP). c, d Simplified network diagrams showing mechanisms generating
PING and ING oscillations. Arrows indicate activation while bar-headed lines represent inhibition. e Power spectral density (PSD) of LFP
showed theta (~7 Hz) and gamma (30–40 Hz) peaks.
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Fig. 2 Augmenting gNMDAR on OLM interneurons. a Information transfer (nTE) and modulation index (MI) showed an inverted-U relationship
with scaling OLM gNMDAR up (mean ± SEM). b Increasing OLM gNMDAR increased activity of OLM interneurons (blue), reduced pyramidal (red)
and PV (green) neuronal firing, and reduced gamma power (mean ± SEM). c Inverted-U relationship between gamma power and information
flow shown with different levels of OLM gNMDAR (mean ± SEM). Note that highest gNMDAR is now at the left (values in shaded rectangles).
d Raster plots and LFP at different gNMDAR scaling relative to control.

Fig. 3 Multi-target manipulations modulate information flow. Ih scaled in panels (a–e), with gNMDAR and gGABAAR on x- and y-axis in each case.
Values are interpolated from simulation results (small circles). L1 and L2 are points in the tri-scaling parameter space with low information
flow, while H1 and H2 are points in the tri-scaling parameter space with high information flow.
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firing to be appropriately biased by driving input to allow
information flow. Gamma power of H1 and H2 in the bottom
panel of Fig. 4 was also intermediate between gamma power of L1
and L2. This pattern generalized across all manipulations, where
maximum nTE was found at a mid-gamma-power range. As shown
in Fig. 5, gamma power from the tri-scaling simulations was in the
range of 0.01–10.8 mV2/Hz. However, the simulations with nTE in
the top 10th percentile had gamma power at an intermediate
range of 0.02–2.12 mV2/Hz.
The interaction between excitability and synchrony could be seen

in the inverted-U shaped relationship of information flow with the
firing rate of pyramidal neurons and PV interneurons (Fig. 6). At low-
firing rate of pyramidal neurons, reflecting low excitability, there was
reduced information flow (Fig. 6a, left). As firing rate increased,
information flow increased. However, after a certain degree of
excitability, information flow started decreasing. This could be
explained by the limiting effect of highly synchronized firing on
information flow, as reflected in the population synchrony of
pyramidal neurons (red markers in Fig. 6c). Population synchrony
was estimated using the coefficient of variation from the interspike
intervals across all the neurons in a population81. Population
synchrony ~1 represents interspike intervals that belong to a Poisson
distribution, reflecting random population firing driven by the
Poisson driving input. In a synchronized population, the upper range
of population synchrony approaches

ffiffiffiffi

N
p

, where N is the number of
neurons firing synchronously at each firing cycle. At highly
synchronous firing of pyramidal neurons (red markers in Fig. 6c)
and PV interneurons (red markers in Fig. 6d), information flow was
reduced. The coloring in panels a–d of Fig. 6 is for quintiles of
pyramidal neuronal population synchrony, to keep track of the
simulations with similar manipulations across firing rate and

population synchrony. There was no clear relationship between
OLM interneuronal firing pattern and information flow (Supplemen-
tary Fig. 1).

DISCUSSION
Using a computer model of the CA3 microcircuit, we found an
inverted-U pattern which related information flow both to
potential therapeutic targets for schizophrenia—NMDAR, GABAAR,
Ih, and to gamma activity. These findings suggest an interesting
interaction between pyramidal neuronal excitability and syn-
chrony (Fig. 7). At low excitability, pyramidal neurons were below
firing threshold and showed low activity. A driving input was less
likely to alter spike timing. Therefore, information flow was low. As
excitability increased, more pyramidal neurons were closer to the
firing threshold, and the driving input could more strongly bias
firing, increasing information flow. At the other extreme of
excitability, high pyramidal neuronal activity increased activity of
basket interneurons, increasing gamma power via both ING and
PING mechanisms (Fig. 1). With increased gamma power,
pyramidal cell firing was increasingly locked into the oscillation,
reducing the ability of inputs to influence firing times and
reducing information flow. These findings provide a mechanistic
explanation connecting pyramidal neuronal excitability and
activity, with population dynamics and oscillations, in the context
of potential therapeutic targets in schizophrenia.
Our study makes the following testable predictions: (1)

Augmenting NMDARs on OLM interneurons, for example using
photo-switchable NMDAR GluN2A or GluN2B subunits82 expressed
specifically in the OLM interneurons, will show alterations in
gamma activity in vivo. (2) The effect of augmenting NMDARs on

Fig. 4 Intermediate excitability with intermediate synchrony allowed for high information transfer across tri-scaling manipulations.
Raster plots based on parameters labeled L1, L2 (with reduced information flow), and H1, H2 (with increased information flow) on Fig. 3 for an
example simulation. L1 showed low firing; L2 showed high synchrony. H1 and H2 showed similar firing patterns, where both excitability and
synchrony were midway in comparison to simulations in L1 and L2. In bottom panel, gamma power reflected the different raster dynamics,
with intermediate gamma power for H1 and H2 simulations in comparison to gamma power of simulations L1 and L2. nTE showed an
inverted-U pattern with increasing gamma power.
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information flow will depend on the dynamic state of the network
reflected by gamma power. Optogenetic stimulation of
channelrhodopsin-2 expressed in the PVs at gamma frequency
could be used to manipulate gamma power83. Information flow
could be measured by nTE using LFPs84. (3) Manipulations of Ih
with photo-activated adenylate cyclase expressed specifically in
PVs and PYRs, or by using norepinephrine, will produce our
observed changes in gamma and information flow.
Either extreme of information flow will interfere with informa-

tion processing in the brain. Brain organization is thought to be
grossly hierarchical85. As a first approximation, we can ignore
feedback circuits and consider the processing of information at
each level from the prior processing stage86,87. We have previously
hypothesized, and demonstrated in a model, that proper
information processing at each stage requires a balance between
information flow-through and information from the area itself,
related to local resonance properties88. In the present model,
where there is relatively low information flow-through, flow-
through maximization would be optimal. Decreased flow-through
across the CA3 microcircuit would provide decreased information
at CA1, the next step in processing, with activity primarily related
to CA3 dynamical state rather than to input from dentate gyrus.
Excessive dependence on internal activity has been proposed as a

possible pathophysiological mechanism underlying the development
of delusions in schizophrenia. Similar to our conclusions, Tamminga
et al.59 suggested that CA3 hyperactivity in schizophrenia patients
might indicate that the hypothesized pattern completion function of
CA3 is excessive, resulting in faulty pattern completion that is not
based on environmental input, producing delusions. In the cognitive
domain, decreased information flow would impair performance
because information being conveyed would be related more strongly
to the dynamical patterns intrinsic to the CA3 microcircuit, rather
than being related to the current task or to sensory input.
Coordination between different neural processes (neural coordina-

tion), including neuronal firing and oscillations, has been proposed to

be important in cognitive coordination required to coordinate two or
more frames of reference (e.g., visual and olfactory frames of
reference in rodents), whether maintained in separate ensembles
simultaneously or provided by alternating ensemble activation at
delta or theta frequency89. Neural discoordination would then
underlie cognitive symptoms (cognitive discoordination) in schizo-
phrenia16,90,91. Failure to coordinate multiple frames could result in
difficulty separating frames reflecting internal processing (expecta-
tions, Bayesian priors, imagining, planning) from frames reflecting
external realities (stimulus associated). In our model, moderately-
synchronized pyramidal neuronal firing was needed to increase
information flow.
Impaired excitation/inhibition balance has been proposed to be

one of the pathophysiological mechanisms in schizophrenia. In a
combined fMRI and computer modeling study, Starc et al.92 showed
impaired working memory deficits suggestive of cortical disinhibi-
tion. Impaired PV functioning in schizophrenia suggested the shift of
the excitation/inhibition balance toward more excitable microcircuit
as well93–95. Our model suggested how more excitable microcircuit
can reduce information flow through increased synchrony.
Other groups have studied the relationship between gamma

power and information flow outside the context of schizophrenia.
Buehlmann et al.96 showed increased transfer entropy with increased
gamma power between two sets of excitatory and inhibitory
integrate-and-fire neurons. In addition to having a simpler model,
they performed a modulation different than what we used here, the
gAMPAR
gNMDAR

ratio, which may not have permitted them to explore as broad
a range of gamma power. Akam et al.97 described a model where
oscillations provided an additional channel for information flow
besides the rate of neuronal firing. They studied the flow of
information from four input populations of excitatory and inhibitory
neurons into one output population. Switching the dynamics of one
input population from irregular to oscillatory firing resulted in
additional information flow, consistent with our study.
The major limitations of this study are the limitations that are

inherent in all modeling studies—we necessarily made choices as to
what to include and what to leave out. The things left out include
both “known unknowns ... and unknown unknowns.”With respect to
the unknown unknowns, we have limitations that are comparable,
though more severe, than those of other studies—once you move to
an animal disease model (in vivo) or remove tissue from the
organism (in vitro) or simply extract parameters (in silico), you are
eliminating much of the clinical phenomenology. With respect to the
known unknowns, we are progressively adding detail and specifics
using the best information available, but we continue to have
computing and research limitations that reduce the fidelity of the
model. In particular, (1) we omitted interneuron populations other
than PV, OLM cells; (2) we omitted dopaminergic and serotonergic
receptors, the targets of most current antipsychotic medications; (3)
we modeled PV and OLM interneurons as having the same
proportions; (4) we modeled PV and OLM as single compartments
without 3D details; (5) there is inadequate information regarding the
distribution of voltage- and calcium-sensitive ion channels in PYR
dendrites.
Our multiscale modeling study suggests that network synchroni-

zation and pyramidal neuronal excitability are potential dynamical
targets for the treatment of cognitive symptoms and information
processing deficits in schizophrenia. We showed how manipulating
multiple molecular elements in a multi-target pharmacotherapy
approach explains some of the inverted-U shaped phenomena seen
in schizophrenia98. Therefore, each patient may have to be carefully
“tuned” to the middle range (either with DBS or pharmacology). Such
an approach, a personalized medicine approach, fits the hetero-
geneity of the symptoms and genetic risk for the illness.
Multi-target pharmacotherapy is necessarily already used in

schizophrenia treatment. Clozapine, often used after the failure of
multiple other antipsychotic medications99, is considered a “dirty”
medication that targets a wide array of receptors100. A multi-target

Fig. 5 High nTE values were found at intermediate gamma power,
suggesting that extremes of gamma power reduced information
flow. Top panel shows gamma power versus nTE in simulations from
tri-interaction pharmacological manipulations. Each dot represents a
simulation. The red set represents manipulations with nTE values in
the top 10th percentile, which lied in an intermediate gamma-power
range from 0.02 to 2.12 mV2/Hz. Bottom panel shows a histogram of
the distribution of the data points in the top panel.
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Fig. 6 Pyramidal and basket cell population firing rates and synchrony were associated with information flow changes. Variability of
population firing measured with population synchrony. Points in the panels, representing individual simulations, are color-coded according to
quintiles measured for pyramidal population synchrony. Quintiles show a general consistency across these four measures.

Fig. 7 Interaction between pyramidal neuronal excitability and synchrony affected response to driving input, and thus information flow.
Driving inputs arriving at a population of pyramidal neurons (red circles) increases excitability (arrows). At low excitability, driving input is not
enough to reach threshold and trigger firing, reducing information flow from driving input. At moderate excitability, pyramidal neurons
population is close to firing threshold and so driving input is enough to push cells into firing. At high excitability, pyramidal neurons are
pushed back-and-forth between synchronized firing with little driving input influence relative to internal drive, and synchronized inhibition
with little input influence due to distance from threshold (RMP: resting membrane potential).
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pharmacotherapy approach is also supported by the evidence
that multiple genes and proteins have been identified in the
pathophysiology of schizophrenia (e.g., see ref. 101).
A number of FDA approved pharmacological agents act on the

molecular targets we investigated here, and so could be explored
for multi-target drug therapy complementing NMDAR augmenta-
tion in the treatment of cognitive symptoms in schizophrenia.
GABAAR modulators include benzodiazepines, which are not
subunit-specific, as well as subunit-specific agents, e.g., zolpi-
dem102. But until now, GABAAR modulators are not neuronal
subpopulation specific. In regard to Ih, two medications, lamo-
trigine and gabapentin, used for various neurological and
psychiatric disorders, upregulate HCN1 levels103.
Our study points to a possible explanation of a non-intuitive

relationship between gamma power and symptoms of schizo-
phrenia. In schizophrenia and pharmacological models of schizo-
phrenia, gamma power has been found to be decreased16,104,105

or increased32,106,107, depending on the study. Our results suggest
a way to resolve the paradox: both extremes of gamma-power
interfere with information processing. Psychotic symptoms, such
as delusions of control and hallucinations, as well as cognitive
symptoms, have been conceptualized as being due to

“dysconnection” syndromes108, where the communication
between different brain regions is disrupted. We would instead
suggest that the complexity and variability of psychotic manifes-
tations might instead be due to re-connection or re-wiring
syndromes, where areas of decreased oscillatory strength will be
disconnected and areas of increased oscillatory strength hyper-
connected but with little variability and responsiveness to outside
inputs (stereotypic thoughts and behaviors). This rewiring would
be due to areas being pushed out of an essential central
functional regime of gamma power. This further suggests the
importance of careful titration when using schizophrenia medica-
tion; it would be easy to overshoot a target gamma-power zone.

METHODS
Model
The full model is available on modelDB#258738 as http://modeldb.yale.
edu/258738. It is based on refs. 43,78, modelDB#139421. The model was
implemented in NEURON 7.479 running in parallel on eight 2.67 GHz Intel
Xeon quad-core CPUs80. Result robustness was tested by using multiple
random wirings and random stimulation input patterns for each parameter
set, resulting in around 1900 simulations.

PV

P

OLM

Schaffer
collaterals

to CA1

MS

GABAafast 0.07, 9.1 ms
GABAaslow 0.2, 20 ms
GABAaveryslow 20, 40 ms
AMPA 0.05, 5.3 ms
NMDA 15, 150 ms

Receptors
(activation, inactivation time constants)

Excitatory input

Inhibitory input

Fig. 8 Schematic diagram for the in silico CA3 network model showing targets for multi-drug target manipulations. Population of
pyramidal neurons (n= 800) is represented by the red cell, PV basket interneurons (n= 200) by the green cell, and OLM interneurons (n= 200)
by the blue cell. Dotted lines represent the random input driving the pyramidal neuron population (driving inputs). Output represents the
spiking output of pyramidal neurons. MS is medial septum, providing inhibitory input onto the PV basket and OLM interneurons. Numbers on
connections are convergence ratios for connectivity between different populations. Cyan boxes show the molecular targets that are being
investigated in this study and their locations: gNMDAR on OLM interneurons, gGABAAR on pyramidal neurons, and gh on pyramidal neurons and
PV basket interneurons. Activation and inactivation time constants for each of the receptor types are shown.

Table 1. Synaptic parameters for neuronal connectivity.

Presynaptic Postsynaptic Receptor τ1 (ms) τ2 (ms) Conductance (nS) Convergence

Pyramidal Pyramidal AMPA 0.05 5.3 0.02 25

Pyramidal Pyramidal NMDA 15 150 0.004 25

Pyramidal Basket AMPA 0.05 5.3 0.36 100

Pyramidal Basket NMDA 15 150 1.38 100

Pyramidal OLM AMPA 0.05 5.3 0.36 10

Pyramidal OLM NMDA 15 150 0.7 10

Basket Pyramidal GABAA 0.07 9.1 0.72 50

Basket Basket GABAA 0.07 9.1 4.5 60

Basket OLM GABAA 0.07 9.1 0.023 1

OLM Pyramidal GABAA 0.2 20 72 20
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The model consisted of 800 pyramidal (PYR) neurons, 200 oriens-
lacunosum moleculare (OLM) interneurons, and 200 parvalbumin-positive
(PV) fast-spiking basket interneurons (Fig. 8). We used equal numbers of PV
and OLM interneurons as PV interneurons provide the most prevalent
feedback inhibition to pyramidal soma, while OLM interneurons provide the
most dominant feedback inhibition targeting distal dendrites (reviewed in

Fig. 9 Schematic diagram for steps to calculate transfer entropy (TE) from input to output spikes of a single pyramidal neuron. a Input
signal is represented by red arrows (darker red for Past, lighter red for Future). Output signal is represented by green arrows (darker green for
Past, lighter green for Future). Spikes in both input and output signals were binned, and the spike counts were used to generate probability
distributions to calculate entropy. b The entropies of the signals are overlapped, represented by areas of overlap of the sets in the Venn
diagram. The overlap of the entropies is partly because of the flow of information between the different signals, and partly because of chance.
c The blue region, representing the overlap between H(inputPast) and HðoutputFutureÞ, is the mutual information (MI) between the Past of the
input signal and the Future of the output signal (IðHðinputPastÞ;HðoutputFutureÞÞ). The striped portion of the blue region represents TE from the
Past of the input signal to the Future of the output signal. TE was calculated as the MI between H(inputPast) and HðoutputFutureÞ, given the Past
of the output signal (IðHðinputPastÞ;HðoutputFutureÞjHðoutputPastÞÞ).

Table 2. Synaptic parameters for modeling background activity.

Cell Section Synapse τ1 (ms) τ2 (ms) Conductance (nS)

Pyramidal Soma AMPA 0.05 5.3 0.05

Pyramidal Soma GABAA 0.07 9.1 0.012

Pyramidal Dend AMPA 0.05 5.3 0.05

Pyramidal Dend NMDA 15 150 6.5

Pyramidal Dend GABAA 0.07 9.1 0.012

Basket Soma AMPA 0.05 5.3 0.02

Basket Soma GABAA 0.07 9.1 0.2

OLM Soma AMPA 0.05 5.3 0.0625

OLM Soma GABAA 0.07 9.1 0.2

Table 3. Manipualtions done in the study.

Channel Cell Manipulation

NMDAR OLM ⇑

GABAA Pyramidal ⇕

Ih Pyramidal & Basket ⇕
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chapter 2 of ref. 109, and similar to other models43,78,110). These two
interneurons are also hypothesized to generate theta-modulated gamma
oscillations110–112. All neurons were modeled using multiple channels defined
using Hodgkin–Huxley parameterizations. PYRs had five compartments
comprising soma, apical dendrite, and basal dendrite. OLM and PV cells
were single compartment. All neurons contained leak, fast sodium, delayed
rectifier, and Ih. PYRs also had A-current, and had increasing Ih conductance
up apical dendrite113. OLM added Ca2+-gated K2 current and high-threshold
Ca2+ current with intracellular calcium dynamics.
PYRs projected both AMPARs and NMDARs on all cell types, with mid-

apical projections onto other PYRs. PVs and OLMs projected to GABAAR:
PV→ PYR soma; OLM→ PYR distal apical. OLM, PV received GABAAR input
from medial septum (MS) at 6.7 Hz (theta). Synapses were modeled as
double exponential mechanisms with parameters from ref. 110 (Table 1).
Background activity was simulated low amplitude Poisson input to all
populations114 (Table 2). Five seconds of simulation time were used for
analysis, after discarding the first two seconds to allow network dynamics
to stabilize. Local field potential (LFP) was calculated as voltage difference
between apical and basal dendrites of all PYRs.

Manipulations
Target locations for NMDAR and Ih pathological manipulations were based
on our prior work: NMDAR on OLM: modelDB#13942134,78; Ih on PYR, PV
modelDB#15128243. We manipulated GABAARs on PYRs based on
localization evidence from mRNA study in schizophrenia52 (Table 3).

Output measures
LFP power spectrum density (PSD) was calculated using Welch method
(Python Scipy signal module)115 after removing DC component. Gamma
power was measured as a 25–50 Hz band. Normalized transfer entropy
(nTE) was used to measure information flow with 15ms binning88,116; see
ModelDB#136095 and Fig. 9. We measured phase-amplitude coupling
between theta phase and gamma amplitude using modulation index
(MI)117,118. Firing synchrony was measured using population coefficient of
variance (popCV): standarddeviationisimeanisi

for interspike intervals (isi) of the neuronal
populations81.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The model full code is available on modeldb: http://modeldb.yale.edu/258738. It
includes the code that could be used to run the simulations.
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The model full code will be available on modeldb: http://modeldb.yale.edu/258738.

Received: 10 October 2019; Accepted: 23 June 2020;

REFERENCES
1. Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the pre-

valence of schizophrenia. PLoS Med. 2, e141 (2005).
2. Knapp, M., Mangalore, R. & Simon, J. The global costs of schizophrenia. Schi-

zophrenia Bull. 30, 279–293 (2004).
3. Matza, L. S. et al. Measuring changes in functional status among patients with

schizophrenia: the link with cognitive impairment. Schizophrenia Bull. 32,
666–678 (2006).

4. Kitchen, H., Rofail, D., Heron, L. & Sacco, P. Cognitive impairment associated with
schizophrenia: a review of the humanistic burden. Adv. Ther. 29, 148–162 (2012).

5. Green, M. F., Kern, R. S., Braff, D. L. & Mintz, J. Neurocognitive deficits and
functional outcome in schizophrenia: are we measuring the “right stuff”? Schi-
zophrenia Bull. 26, 119–136 (2000).

6. Dickinson, D. & Harvey, P. D. Systemic hypotheses for generalized cognitive
deficits in schizophrenia: a new take on an old problem. Schizophrenia Bull. 35,
403–414 (2009).

7. Bowie, C. R. & Harvey, P. D. Cognition in schizophrenia: impairments, determi-
nants, and functional importance. Psychiatr. Clin. North Am. 28, 613–33 (2005).

8. Harvey, P. D. & Rosenthal, J. B. Cognitive and functional deficits in people with
schizophrenia: Evidence for accelerated or exaggerated aging? Schizophrenia
Res. 196, 14–21 (2018).

9. Carbon, M. & Correll, C. U. Thinking and acting beyond the positive: the role of
the cognitive and negative symptoms in schizophrenia. CNS Spectr. 19, 38–52
(2014).

10. Citrome, L. Unmet needs in the treatment of schizophrenia: new targets to help
different symptom domains. J. Clin. Psychiatry 75, 21–26 (2014).

11. Forray, C. & Buller, R. Challenges and opportunities for the development of new
antipsychotic drugs. Biochemical Pharmacol. 143, 10–24 (2017).

12. Moghaddam, B., Adams, B., Verma, A. & Daly, D. Activation of glutamatergic
neurotransmission by ketamine: a novel step in the pathway from NMDA
receptor blockade to dopaminergic and. J. Neurosci. 17, 2921–2927 (1997).

13. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of
schizophrenia. Am. J. Psychiatry 148, 1301–1308 (1991).

14. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K. & Delaney, R. et al. Sub-
anesthetic effects of the noncompetitive NMDA antagonist, ketamine, in
humans. psychotomimetic, perceptual, cognitive, and neuroendocrine respon-
ses. Arch. Gen. Psychiatry 51, 199–214 (1994).

15. Malhotra, A. K., Pinals, D. A., Adler, C. M., Elman, I. & Clifton, A. et al. Ketamine-
induced exacerbation of psychotic symptoms and cognitive impairment in
neuroleptic-free schizophrenics. Neuropsychopharmacology 17, 141-150 (1997).

16. Uhlhaas, P. J. & Singer, W. Oscillations and neuronal dynamics in schizophrenia:
the search for basic symptoms and translational opportunities. Biol. Psychiatry
77, 1001–1009 (2014).

17. Javitt, D. C. et al. A roadmap for development of neuro-oscillations as transla-
tional biomarkers for treatment development in neuropsychopharmacology.
Neuropsychopharmacology 45, 1411–1422 (2020).

18. Siekmeier, P. J. & Stufflebeam, S. M. Patterns of spontaneous magnetoence-
phalographic activity in patients with schizophrenia. J. Clin. Neurophysiol. 27,
179–190 (2010).

19. Kirihara, K., Rissling, A. J., Swerdlow, N. R., Braff, D. L. & Light, G. A. Hierarchical
organization of gamma and theta oscillatory dynamics in schizophrenia. Biol.
Psychiatry 71, 873–880 (2012).

20. Karakas, S. A review of theta oscillation and its functional correlates. Int. J.
Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2020.04.008 (2020) (ahead of
print).

21. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci.
35, 203–225 (2012).

22. Lisman, J. The theta/gamma discrete phase code occuring during the hippo-
campal phase precession may be a more general brain coding scheme. Hip-
pocampus 15, 913–922 (2005).

23. Wang, X.-J. Neurophysiological and computational principles of cortical rhythms
in cognition. Physiol. Rev. 90, 1195–1268 (2010).

24. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma
oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56
(2007).

25. de Almeida, L., Idiart, M. & Lisman, J. E. A second function of gamma frequency
oscillations: an E%-max winner-take-all mechanism selects which cells fire. J.
Neurosci. 29, 7497–7503 (2009).

26. Lisman, J. & Buzsáki, G. A neural coding scheme formed by the combined
function of gamma and theta oscillations. Schizophr. Bull. 34, 974–980 (2008).

27. Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T. & Bonnevie, T. et al. Frequency of
gamma oscillations routes flow of information in the hippocampus. Nature 462,
353–357 (2009).

28. Kissler, J., Müller, M. M., Fehr, T., Rockstroh, B. & Elbert, T. MEG gamma band
activity in schizophrenia patients and healthy subjects in a mental arithmetic
task and at rest. Clin. Neurophysiol. 111, 2079–2087 (2000).

29. Krishnan, G. P., Vohs, J. L., Hetrick, W. P., Carroll, C. A. & Shekhar, A. et al. Steady
state visual evoked potential abnormalities in schizophrenia. Clin. Neurophysiol.
116, 614–624 (2005).

30. Light, G. A., Hsu, J. L., Hsieh, M. H., Meyer-Gomes, K. & Sprock, J. et al. Gamma
band oscillations reveal neural network cortical coherence dysfunction in
schizophrenia patients. Biol. Psychiatry 60, 1231–1240 (2006).

31. Thuné, H., Recasens, M. & Uhlhaas, P. J. The 40-Hz auditory steady-state
response in patients with schizophrenia: A meta-analysis. JAMA Psychiatry 73,
1145–1153 (2016).

32. Grent, T. et al. Resting-state gamma-band power alterations in schizophrenia
reveal E/I-balance abnormalities across illness-stages. eLife 7, e37799 (2018).

33. Rivolta, D., Heidegger, T., Scheller, B., Sauer, A. & Schaum, M. et al. Ketamine
dysregulates the amplitude and connectivity of high-frequency oscillations in
cortical-subcortical networks in humans:. Schizophrenia Bull. 41, 1105–1114
(2015).

M.A. Sherif et al.

10

npj Schizophrenia (2020)    25 Published in partnership with the Schizophrenia International Research Society

http://modeldb.yale.edu/258738
http://modeldb.yale.edu/258738
https://doi.org/10.1016/j.ijpsycho.2020.04.008


34. Lazarewicz, M. T. et al. Ketamine modulates theta and gamma oscillations. J.
Cogn. Neurosci. 22, 1452–1464 (2010).

35. Kittelberger, K., Hur, E. E., Sazegar, S., Keshavan, V. & Kocsis, B. Comparison of the
effects of acute and chronic administration of ketamine on hippocampal
oscillations: relevance for the NMDA receptor. Brain Struct. Funct. 217, 395–409
(2012).

36. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biolo-
gical insights from 108 schizophrenia-associated genetic loci. Nature 511,
421–427 (2014).

37. Mothet, J. P., Parent, A. T., Wolosker, H., Brady, R. O. & Linden, D. J. et al. D-serine
is an endogenous ligand for the glycine site of the n-methyl-d-aspartate
receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000).

38. Sheinin, A., Shavit, S. & Benveniste, M. Subunit specificity and mechanism of
action of NMDA partial agonist D-cycloserine. Neuropharmacology 41, 151–158
(2001).

39. Chang, C.-H. et al. Effect of n-methyl-d-aspartate-receptor-enhancing agents on
cognition in patients with schizophrenia: a systematic review and meta-analysis
of double-blind randomised controlled trials. J. Psychopharmacol. 33, 436–448
(2019).

40. Accili, E. A., Proenza, C., Baruscotti, M. & DiFrancesco, D. From funny current to
HCN channels: 20 years of excitation. Physiology 17, 32–37 (2002).

41. Chen, S., Wang, J. & Siegelbaum, S. A. Properties of hyperpolarization-activated
pacemaker current defined by coassembly of HCN1 and HCN2 subunits and
basal modulation by cyclic. J. Gen. Physiol. 117, 491–504 (2001).

42. Santoro, B. & Baram, T. Z. The multiple personalities of h-channels. Trends
Neurosci. 26, 550–554 (2003).

43. Neymotin, S. A. et al. Ih tunes theta/gamma oscillations and cross-frequency
coupling in an in silico CA3 model. PLoS ONE 8, e76285 (2013).

44. Neymotin, S. A. et al. Optimizing computer models of corticospinal neurons to
replicate in vitro dynamics. J. Neurophysiol. 117, 148–162 (2017).

45. Kauppi, K. et al. Revisiting antipsychotic drug actions through gene networks
associated with schizophrenia. Am. J. Psychiatry 175, 674–682 (2018).

46. Xu, M.-Y. & Wong, A. H. C. GABAergic inhibitory neurons as therapeutic targets
for cognitive impairment in schizophrenia. Acta Pharmacologica Sin. 39,
733–753 (2018).

47. Lytton, W. W. & Sejnowski, T. J. Simulations of cortical pyramidal neurons syn-
chronized by inhibitory interneurons. J. Neurophysiol. 66, 1059–1079 (1991).

48. Chen, X. & Dzakpasu, R. Observed network dynamics from altering the balance
between excitatory and inhibitory neurons in cultured networks. Phys. Rev. E 82,
031907 (2010).

49. Skinner, F. K. Cellular-based modeling of oscillatory dynamics in brain networks.
Curr. Opin. Neurobiol. 22, 660–669 (2012).

50. Pittman-Polletta, B. R., Kocsis, B., Vijayan, S., Whittington, M. A. & Kopell, N. J.
Brain rhythms connect impaired inhibition to altered cognition in schizophrenia.
Biol. Psychiatry 77, 1020–1030 (2015).

51. Roux, L. & Buzsáki, G. Tasks for inhibitory interneurons in intact brain circuits.
Neuropharmacology 88, 10–23 (2015).

52. Hashimoto, T., Arion, D., Unger, T., Maldonado-Avilés, J. G. & Morris, H. M. et al.
Alterations in gaba-related transcriptome in the dorsolateral prefrontal cortex of
subjects with schizophrenia. Mol. Psychiatry 13, 147–161 (2008).

53. Konradi, C., Yang, C. K., Zimmerman, E. I., Lohmann, K. M. & Gresch, P. et al.
Hippocampal interneurons are abnormal in schizophrenia. Schizophrenia Res.
131, 165–173 (2011).

54. Steiner, J., Brisch, R., Schiltz, K., Dobrowolny, H. & Mawrin, C. et al. GABAergic
system impairment in the hippocampus and superior temporal gyrus of patients
with paranoid schizophrenia: A post-mortem study. Schizophrenia Res. 177,
10–17 (2016).

55. Heckers, S. & Konradi, C. GABAergic mechanisms of hippocampal hyperactivity
in schizophrenia. Schizophrenia Res. 167, 4–11 (2015).

56. Li, W., Ghose, S., Gleason, K., Begovic, A. & Perez, J. et al. Synaptic proteins in the
hippocampus indicative of increased neuronal activity in CA3 in schizophrenia.
Am. J. Psychiatry 172, 373–382 (2015).

57. Tamminga, C. A. Psychosis is emerging as a learning and memory disorder.
Neuropsychopharmacology 38, 247 (2013).

58. Tamminga, C. A. et al. Bipolar and schizophrenia network for intermediate
phenotypes: outcomes across the psychosis continuum. Schizophr. Bull. 40,
S131–S137 (2014).

59. Tamminga, C. A., Southcott, S., Sacco, C., Wagner, A. D. & Ghose, S. Glutamate
dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling.
Schizophrenia Bull. 38, 927–935 (2012).

60. Bygrave, A. M., Jahans-Price, T., Wolff, A. R., Sprengel, R. & Kullmann, D. M. et al.
Hippocampal-prefrontal coherence mediates working memory and selective
attention at distinct frequency bands and provides a causal link. Transl. Psy-
chiatry 9, 142 (2019).

61. Segev, A. et al. Reduced GluN1 in mouse dentate gyrus is associated with CA3
hyperactivity and psychosis-like behaviors. Mol. Psychiatry https://doi.org/
10.1038/s41380-018-0124-3 (2018).

62. Talati, P., Rane, S., Kose, S., Blackford, J. U. & Gore, J. et al. Increased hippocampal
CA1 cerebral blood volume in schizophrenia. NeuroImage. Clin. 5, 359–364
(2014).

63. Schobel, S. A., Lewandowski, N. M., Corcoran, C. M., Moore, H. & Brown, T. et al.
Differential targeting of the CA1 subfield of the hippocampal formation by
schizophrenia and related psychotic disorders. Arch. Gen. Psychiatry 66, 938–946
(2009).

64. Nakahara, S., Matsumoto, M. & van Erp, T. G. M. Hippocampal subregion
abnormalities in schizophrenia: A systematic review of structural and
physiological imaging studies. Neuropsychopharmacol. Rep. 38, 156–166
(2018).

65. Ho, N. F., Iglesias, J. E., Sum, M. Y., Kuswanto, C. N. & Sitoh, Y. Y. et al. Progression
from selective to general involvement of hippocampal subfields in schizo-
phrenia. Mol. Psychiatry 22, 142–152 (2017).

66. Lieberman, J. A. et al. Hippocampal dysfunction in the pathophysiology of
schizophrenia: a selective review and hypothesis for early detection and inter-
vention. Mol. Psychiatry 23, 1764–1772 (2018).

67. Perez, J. M. et al. Hippocampal subfield transcriptome analysis in schizophrenia
psychosis. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0696-6 (2020).

68. Rowan, M. S., Neymotin, S. A. & Lytton, W. W. Electrostimulation to reduce
synaptic scaling driven progression of alzheimer’s disease. Front. Comput.
Neurosci. 8, 39 (2014).

69. Rolls, E. T. The mechanisms for pattern completion and pattern separation in the
hippocampus. Front. Syst. Neurosci. 7, 74 (2013).

70. Grande, X. et al. Holistic recollection via pattern completion involves hippo-
campal subfield CA3. J. Neurosci. 39, 8100–8111 (2019).

71. Witter, M. P. Intrinsic and extrinsic wiring of CA3: indications for connectional
heterogeneity. Learn Mem. 14, 705–713 (2007).

72. Tamminga, C. A., Stan, A. D. & Wagner, A. D. The hippocampal formation in
schizophrenia. Am. J. Psychiatry 167, 1178–1193 (2010).

73. Fellini, L., Florian, C., Courtey, J. & Roullet, P. Pharmacological intervention of
hippocampal CA3 NMDA receptors impairs acquisition and long-term memory
retrieval of spatial pattern. Learn. Mem. 16, 387–394 (2009).

74. Kondej, M., Stepnicki, P. & Kaczor, A. A. Multi-target approach for drug discovery
against schizophrenia. Int. J. Mol. Sci. 19, 3105 (2018).

75. Neymotin, S. A., Dura-Bernal, S., Lakatos, P., Sanger, T. D. & Lytton, W. W. Mul-
titarget multiscale simulation for pharmacological treatment of dystonia in
motor cortex. Front. Pharmacol. 7, 157 (2016).

76. Lytton, W. W. et al. Multiscale modeling in the clinic: diseases of the brain and
nervous system. Brain Inform 4, 219–230 (2017).

77. Neymotin, S. A., Dura-Bernal, S., Moreno, H. & Lytton, W. W. Computer modeling
for pharmacological treatments for dystonia. Drug Discov. Today Dis. Models 19,
51–57 (2016).

78. Neymotin, S. A. et al. Ketamine disrupts theta modulation of gamma in a
computer model of hippocampus. J. Neurosci. 31, 11733–11743 (2011).

79. Carnevale, N. T. & Hines, M. L. The NEURON Book (Cambridge University Press,
2006).

80. Hines, M. L., Davison, A. P. & Muller, E. Neuron and python. Front. Neuroinfor-
matics 3, 1 (2009).

81. Tiesinga, P. H. E. & Sejnowski, T. J. Rapid temporal modulation of synchrony by
competition in cortical interneuron networks. Neural Comput. 16, 251–275
(2004).

82. Berlin, S. et al. A family of photoswitchable NMDA receptors. eLife 5, e12040
(2016).

83. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls
sensory responses. Nature 459, 663–667 (2009).

84. Kale, P., Acharya, J. V., Acharya, J., Subramanian, T. & Almekkawy, M. Normalized
transfer entropy as a tool to identify multisource functional epileptic networks.
In 40th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 1218–1221 (IEEE, 2018).

85. Van Essen, D. C., Anderson, C. H. & Felleman, D. J. Information processing in the
primate visual system: an integrated systems perspective. Science 255, 419–423
(1992).

86. Himberger, K. D., Chien, H.-Y. & Honey, C. J. Principles of temporal processing
across the cortical hierarchy. Neuroscience 389, 161–174 (2018).

87. Linde-Domingo, J., Treder, M. S., Kerrén, C. & Wimber, M. Evidence that neural
information flow is reversed between object perception and object recon-
struction from memory. Nat. Commun. 10, 179 (2019).

88. Neymotin, S. A., Jacobs, K. M., Fenton, A. A. & Lytton, W. W. Synaptic information
transfer in computer models of neocortical columns. J. Comput. Neurosci. 30,
69–84 (2011).

M.A. Sherif et al.

11

Published in partnership with the Schizophrenia International Research Society npj Schizophrenia (2020)    25 

https://doi.org/10.1038/s41380-018-0124-3
https://doi.org/10.1038/s41380-018-0124-3
https://doi.org/10.1038/s41380-020-0696-6


89. Lee, H., Dvorak, D. & Fenton, A. A. Targeting neural synchrony deficits is suffi-
cient to improve cognition in a schizophrenia-related neurodevelopmental
model. Front Psychiatry 5, 15 (2014).

90. Lee, H. et al. Early cognitive experience prevents adult deficits in a neurode-
velopmental schizophrenia model. Neuron 75, 714–724 (2012).

91. Olypher, A. V., Klement, D. & Fenton, A. A. Cognitive disorganization in hippo-
campus: a physiological model of the disorganization in psychosis. J. Neurosci.
26, 158–168 (2006).

92. Starc, M. et al. Schizophrenia is associated with a pattern of spatial working
memory deficits consistent with cortical disinhibition. Schizophr. Res. 181,
107–116 (2016).

93. Beneyto, M. & Lewis, D. A. Insights into the neurodevelopmental origin of
schizophrenia from postmortem studies of prefrontal cortical circuitry. Int. J.
Develop. Neurosci. 29, 295–304 (2011).

94. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schi-
zophrenia. Nat. Rev. Neurosci. 6, 312–324 (2005).

95. Ferguson, B. R. & Gao, W.-J. PV interneurons: critical regulators of E/I balance for
prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural
Circuits 12, 37 (2018).

96. Buehlmann, A. & Deco, G. Optimal information transfer in the cortex through
synchronization. PLoS Comput. Biol. 6, e1000934 (2010).

97. Akam, T. & Kullmann, D. M. Oscillations and filtering networks support flexible
routing of information. Neuron 67, 308–320 (2010).

98. Krystal, J. H. et al. Impaired tuning of neural ensembles and the pathophysiology
of schizophrenia: A translational and computational neuroscience perspective.
Biol. Psychiatry 81, 874–885 (2017).

99. Nucifora, F. C., Mihaljevic, M., Lee, B. J. & Sawa, A. Clozapine as a model for
antipsychotic development. NeuroTherapeutics: J. Am. Soc. Exp. NeuroTher-
apeutics 14, 750–761 (2017).

100. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets:
selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev.
Drug Discov. 3, 353–359 (2004).

101. Yang, A. C. & Tsai, S.-J. New targets for schizophrenia treatment beyond the
dopamine hypothesis. Int. J. Mol. Sci. 18, 1689 (2017).

102. Sanna, E. et al. Comparison of the effects of zaleplon, zolpidem, and triazolam at
various GABA(A) receptor subtypes. Eur. J. Pharmacol. 451, 103–110 (2002).

103. Postea, O. & Biel, M. Exploring HCN channels as novel drug targets. Nat. Rev.
Drug Discov. 10, 903–914 (2011).

104. Uhlhaas, P. J. & Singer, W. High-frequency oscillations and the neurobiology of
schizophrenia. Dialogues Clin. Neurosci. 15, 301–313 (2013).

105. Rutter, L. et al. Magnetoencephalographic gamma power reduction in patients
with schizophrenia during resting condition. Hum. Brain Mapp. 30, 3254–3264
(2009).

106. Hong, L. E. et al. Gamma and delta neural oscillations and association with
clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology
35, 632–640 (2010).

107. Hirano, Y. et al. Spontaneous gamma activity in schizophrenia. JAMA Psychiatry
72, 813–821 (2015).

108. Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in schizophrenia: from
abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35,
509–527 (2009).

109. Cutsuridis, V., Graham, B., Cobb, S. & Vida, I. Hippocampal Microcircuits: A Com-
putational Modeler’s Resource Book, 5 (Springer Science & Business Media, 2010).

110. Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T. & Kopell, N. J. On the
formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare
interneurons in the hippocampus. Proc. Natl Acad. Sci. USA 104, 13490–13495
(2007).

111. Wang, X. J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippo-
campal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996).

112. Wang, X.-J. Pacemaker neurons for the theta rhythm and their synchronization
in the septohippocampal reciprocal loop. J. Neurophysiol. 87, 889–900 (2002).

113. Kole, M. H. P., Hallermann, S. & Stuart, G. J. Single Ih channels in pyramidal
neuron dendrites: properties, distribution, and impact on action potential out-
put. J. Neurosci. 26, 1677–1687 (2006).

114. Destexhe, A., Rudolph, M. & Paré, D. The high-conductance state of neocortical
neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003).

115. Jones, E., Oliphant, T., & Peterson, P. SciPy: Open source scientific tools for
Python http://www.scipy.org/. (2001).

116. Gourévitch, B. & Eggermont, J. J. Evaluating information transfer between
auditory cortical neurons. J. Neurophysiol. 97, 2533–2543 (2007).

117. Tort, A. B. L. et al. Dynamic cross-frequency couplings of local field potential
oscillations in rat striatum and hippocampus during performance of a t-maze
task. Proc. Natl Acad. Sci. USA 105, 20517–20522 (2008).

118. Tort, A. B. L. et al. Measuring phase-amplitude coupling between neuronal
oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210 (2010).

ACKNOWLEDGEMENTS
Supported by The department of Veterans Affairs, Veterans Health Administration, VISN 1
Career Development Award, and VA Special Psychopharmacology Research Fellowship
Program, Leet and Patterson Trust Mentored Research Award, and New York State
Tuition scholarship for graduate students to M.A.S.; IMAG (U01EB017695) and NIMH
(R01MH086638) to W.W.L.; and NIDCD (R01DC012947-06A1) and Army Research Office
Grant (W911NF-19-1-0402) to S.A.N. We would like to thank Larry Eberle (SUNY
Downstate) for Neurosim lab support; Tom Morse and Ted Carnevale (Yale) for ModelDB
support; and the Shepherd lab (Yale) for helpful comments. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research Office
or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation herein.

AUTHOR CONTRIBUTIONS
Conception of the work: M.A.S., S.A.N., and W.W.L. Data acquisition and analysis: M.A.
S. Interpretation of data: M.A.S., S.A.N., and W.W.L. Preparation and revision of
manuscript: M.A.S., S.A.N., and W.W.L.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41537-020-00109-0.

Correspondence and requests for materials should be addressed to M.A.S.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

M.A. Sherif et al.

12

npj Schizophrenia (2020)    25 Published in partnership with the Schizophrenia International Research Society

http://www.scipy.org/
https://doi.org/10.1038/s41537-020-00109-0
https://doi.org/10.1038/s41537-020-00109-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia
	Introduction
	Results
	Baseline network activity produced theta with nested gamma oscillations
	Augmenting OLM NMDARs modulated circuit oscillations and information flow
	Modulating information flow with multiple channel manipulations

	Discussion
	Methods
	Model
	Manipulations
	Output measures
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




