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Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult
articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can
be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs
possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and
multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and
therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify
ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this
promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous
progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and
osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage
repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775).
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INTRODUCTION

Hyaline cartilage facilitates smooth movement of articular joints
and transmission of mechanical forces. The mechanical strength of
cartilage tissue is provided by the combination of highly
organized collagen arcades and negatively charged proteoglycans
that draw water into the tissue'. Persisting damage to this
structural organization leads to a change in the distribution of
forces and loss in mechanical strength?. Cartilage injury can be
post-traumatic, where defects are generally isolated, or it can
occur during the progression of osteoarthritis (OA) where defects
can emerge simultaneously. Both focal defects and OA impair
quality of life leading to pain, reduced mobility, and disability>*.
As the healthy articular cartilage is an avascular tissue, its
endogenous healing capacity is limited.

Adult chondrocytes, the cells residing in articular cartilage, are
used to treat cartilage defects in autologous chondrocyte
implantation®. Due to the low cell density in cartilage, chondro-
cytes are culture-expanded to obtain a sufficient number of cells
for treatment. Expansion of chondrocytes is limited in population
doublings®, as they tend to acquire a fibroblastic appearance and
lose their chondrogenic phenotype’?, before becoming senes-
cent. Alternatively, the use of mesenchymal stromal cells (MSCs)
for cartilage repair has been evaluated extensively in clinical
studies®. Despite their capacity to generate cartilaginous tissue,
MSCs have a tendency for differentiation into hypertrophic
chondrocytes and subsequent endochondral ossification'®. In
contrast, MSCs are suggested to have chondro-inductive effects
when combined with autologous chondrons for the treatment of
focal cartilage defects'.

A distinct population of endogenous progenitor cells that
resides in articular cartilage, named articular cartilage-derived
progenitor cells (ACPCs), has been described in the last two
decades'>'®, The key in vitro characteristics of ACPCs include stem
cell-like properties such as clonal expansion, extensive

proliferation, and differentiation potential into multiple mesench-
ymal lineages, including the chondrogenic lineage. ACPCs were
first identified in bovine cartilage'®, and later also in different
species, including equine”' and human cartilage'”'8, Interest-
ingly, ACPCs were shown not to upregulate type X collagen gene
expression in vitro, a marker for hypertrophic differentiation during
redifferentiation, contrary to MSCs”'3, The use of an endogenous
cartilage progenitor cell population for treatment of cartilage
defects and tissue engineering purposes therefore seems favorable
over the use of other cell types'*'92°, Yet, isolation protocols and
specific characterization for these cells differ greatly amongst
researchers. In addition, a wide range of terms is being used to
name the cells, like chondrogenic progenitor cells, cartilage stem
cells, mesenchymal progenitor cells, or cartilage-derived stem/
progenitor cells. For clarity, this review refers to ACPCs to address
all endogenous progenitor populations identified in adult hyaline
cartilage and characterized in vitro.

The purpose of this review is to systematically evaluate the
available literature on ACPCs derived from healthy and diseased
adult articular cartilage. We summarize the state-of-the-art
research and discuss its potential for clinical use in cartilage
repair therapies.

RESULTS

The literature search yielded 1017 studies in EMBASE and
662 studies in PubMed. After duplicate removal, 1064 studies
were identified. After title and abstract screening, the full text of
180 studies was screened. A total of 84 studies were then found
eligible based on the inclusion and exclusion criteria (Fig. 1).

Markers to identify ACPCs in vivo

The presence of ACPCs was first described by Dowthwaite et al. in
2004'6, Enhanced expression of fibronectin and one of its key
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Fig. 1 Flow diagram of the literature search. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) workflow

showing systematic selection process for studies.

receptors, integrin-a5f1, was found in the superficial zone of
bovine articular cartilage. Isolation of this fraction resulted in a
population with high clonogenicity. As a unique marker or marker
set is lacking, MSC or chondrocyte markers are mostly used for
identification (Table 1). Classical MSC markers CD105%'23,
CD166%*, CD146%°, VCAM?5, or combinations including these
markers?”-2 have been used by others. In essence, this results in
the identification of an MSC-like population in articular cartilage.
Additional markers have been described to identify ACPCs in the
tissue more specifically. Proteins involved in the Notch signaling
pathway, like Notch-1, Notch-2, Delta, and Jagged?%?°, or integrin-
a5B12", proteoglycan 4 (PRG4, or lubricin)*°, and laminin®' are
used. Alternative approaches to identify ACPCs in cartilage tissue
have focussed on visual distinction by an elongated cell
morphology of ACPCs in cartilage tissue samples®'3?, cell
clustering of ACPCs>3, proliferation marker Ki-673>3%, and migra-
tion of ACPCs upon stimulation of the cartilage®.

Methods for isolation of ACPCs from cartilage

A protocol for selective isolation of ACPC by differential adhesion
to fibronectin (DAF) was established'®'7?°, taking advantage of
the enriched expression of the fibronectin receptor'® and the

finding that isolation based on integrins resulted in selection for
stem cells rather than transit-amplifying cells®®. In two-thirds of
the studies using DAF, this protocol is followed by isolation of
colonies, that are subsequently formed by the cells that adhere
(generally) in 20 min'31417.1822.29.37-43 gjy oyt of nineteen studies
did not perform colony isolation and the complete pool of cells
that adhered to fibronectin was isolated>*#4-48,

Alternatively, ACPCs are sorted from the total cell population
either via immunomagnetic separation or fluorescence-activated
cell sorting (FACS). ACPCs were isolated by FACS based on co-
expression of CD105 and CD166'%, a marker combination that
defines a subset of bone marrow-derived MSCs*® and was
proposed to select for ACPCs. Another marker set used for cell
sorting that resulted in an ACPC population is CD9*"/CD90*/
CD166™°°,

Finally, cells migrating out of cartilage explants, whether or not
the cartilage is stimulated in any way, hold progenitor character-
istics such as multilineage differentiation potential and colony
forming efficiency (CFE)'9283251-53 These migratory cells were
distinctly different from chondrocytes and osteoblasts®®. To
stimulate migration of cells, explants were stimulated by nerve
growth factor (NGF)*?, platelet lysate'®, or migrating cells were
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isolated after partial digestion of the tissue by collagenase®. Cell
migration could also be triggered by induction of injury3%>3, Cells
with progenitor characteristics migrated towards the site of
cartilage injury and a role in the repair of adult cartilage upon
damage was suggested by the authors®2,

Nine studies did not report on any distinct method to isolate a
population from the total cell population”3%>>=6'  Five others
performed an isolation step after one or two passages in
culture?#2562-64 |t can therefore be questioned whether these
are investigating a population that is different from what is
generally referred to as chondrocytes, as most of the studies were
also lacking a chondrocyte control group.

In vitro characterization of ACPCs after isolation

Isolated ACPCs are characterized based on their proliferative
potential, CFE, differentiation potential, and expression of markers
that are also used for their isolation (Table 2). ACPCs could be
maintained in culture for up to 30-60 population doublings'”1837-3°
and early-passage cells were able to form colonies in cul-
ture”/161819:28323946526566  Moreover, human ACPCs were found
to maintain telomere length and telomerase activity up to at least 20
population doublings'®*”. However, ACPCs derived from OA
cartilage contained a subpopulation of cells that have reduced
proliferative potential and undergo early senescence when cultured
in vitro'®,

ACPCs could be differentiated into the chondrogenic, osteo-
genic, and adipogenic lineage, a feature that MSCs also possess®’.
There is one report of reduced osteogenic differentiation potential
of ACPCs*?, while 20% of the studies looking into multilineage
potential found indications for reduced osteogenesis'>13:19.20:5068,

Surface marker expression of ACPCs was in general similar to
MSCs, with ACPCs being positive for CD90, CD105, CD73, and
CD166, while negative for hematopoietic markers, highlighting the
challenge to distinguish the two cell types'31928:30:40-42,51,52,56,63
Of note, about half of the studies mentioned here examine
immunophenotype Of Ce"S in cultureB,'I 9,22,28,30,34,40,42,44,47,5'I,56,61,66,69,
while cells tend to change their phenotype during in vitro
expansion’®”!, Moreover, investigating marker expression by gene
expression or flow cytometry on the bulk populations makes it
problematic to define whether these markers are co-expressed or not.

In vitro comparison of ACPCs to other cell types with regard to
surface marker expression

Cell surface marker expression and in vitro performance of ACPCs
were directly compared to MSCs from various sources, like bone
marrow'371530.32344051.555964 " 5dipose tissue?>3%%, and infrapa-
tellar fat pad*®>°°, Other cell types compared are chondro-
cytes17,19,22,25,29,32,34,37,41,42,46,48,53,65,66,72 and other intra-articular
cells, like synoviocytes>>°%°, synovial fluid cells®®, and periosteal
cells>96%6% (Table 2).

A clear distinction between MSCs and ACPCs based on the
expression of markers was only reported once, when equine
ACPCs were compared to bone marrow-derived MSCs, an
increase in gene expression for CD44 was found'3. One-third of
the studies directly compare ACPCs to chondrocytes, as these also
reside in adult hyaline cartilage, and distinction of these cell types
is crucial for isolation and application. The proliferation of ACPCs
was faster than chondrocytes in one study'®, but slower in a
different report*?. In addition, ACPCs were found to form more
colonies compared to chondrocytes®2. A distinction was made
between chondrocytes and ACPCs based on high expression of
CD90'7-*>34, CD44%%, CD105%¢, CD166¢, Notch-1'7, and HLA-
ABC?® in ACPCs while culture-expanded chondrocytes showed
little to no expression of these markers. Co-expression of CD44
and CD90 was found to distinguish between rat chondrocytes
and ACPCs®*%>, When ACPCs were sorted from the total pool of
chondrocytes by CD49e-expression, a difference was found in the
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expression of CD29 in chondrocytes (50%) versus ACPCs (100%)%.
When ACPCs were treated with platelet lysate, an increased
expression of CD166 and decreased expression of CD106
compared to chondrocytes was found'.

Differences between species

Identification of similarities and differences in ACPCs between
species is challenging, due to the diversity of isolation procedures
and variety of study objectives. Colony formation was identified in
several human studies, as well as in the first report on bovine
ACPCs. CFE in bovine cartilage cells was reported to be 0.6%'®,
while all other literature on non-human cells lacked this analysis.
In human cells, consistency is found to some extent. CFE in
healthy cartilage cells on fibronectin-coated dishes was 1.47%>°,
while this was almost double (2.8%) in OA cells in the same study.
Others reported on CFEs of <0.1%'® and 0.66%°° of OA cells on
fibronectin-coated dishes. When OA cells were seeded on
uncoated culture plastic, a CFE of <0.01% was found®’~>°. The
percentage of colony forming cells increased when cells were
culture expanded. Passage one OA cells (isolation method not
specified) had 18% CFE3° and the same passage cells that
migrated from OA tissue in response to platelet lysate had 7.8%
CFE™. Cells that migrated from OA tissue with NGF and were
expanded for four passages had increased their CFE to 38.6%°2.
When CD105"/CD166*-sorted cells were quantified, CFEs of 3.5%
(healthy) and 8% (OA) were found in one study'® and 15%
(healthy) and 17% (OA) were found in another®*. Of note, the
latter used cells that were culture expanded for one passage.
Overall, when comparing human ACPC studies, it seems that OA
tissue contains more colony forming cells than healthy cartilage.
Also, CFE increases after culture expansion, possibly as a
consequence of culture-related changes in immunophenotype”’.

Differences between ACPCs from healthy and osteoarthritic
cartilage

ACPCs have been identified in hyaline cartilage from different
pathological states. Identification and characterization can con-
tribute to our understanding of their role in homeostasis and
disease, as well as their accessibility for clinical use.

In healthy articular cartilage, ACPCs most likely reside in the
superficial zone, as Notch-1-expressing cells are found here'® and
possess progenitor cell characteristics'’?®?°, In addition,
enhanced expression of fibronectin and one of its receptors,
integrin-a5 and -B1, was found in the superficial zone'®. As a direct
consequence, most of the cells isolated via DAF originated from
the superficial zone. The same group also showed that the CFE of
surface zone cells is higher compared to deep zone cells'®.

Upon damage of cartilage, ACPCs seem to migrate towards the
site of injury’>. Cells that migrated into the site of injury were
found to possess progenitor-like characteristics®2. An increase of
CD271-expression was seen in ACPCs from increased OA
severity?®, Classical MSC markers CD1052'22, VCAM?®, or combina-
tions including these markers?”?® were all enhanced in OA
cartilage or upon trauma. A shift of expression of PRG43° from the
superficial layer to deeper zones was seen in OA, whereas CD271-
and CD105-positive cells shifted towards the superficial zone in
OA?8, In OA cartilage, cell clusters were observed which express
ACPC-associated markers like Notch-1, Stro-127, VCAM, FGF-2, and
Ki-672533, These cells proliferated faster and produced more
cartilaginous nodules in vitro compared to cells isolated from
macroscopically healthy cartilage®>. Contradictory, others found
that ACPCs derived from healthy cartilage proliferated faster than
OA-derived ACPCs®3. Lastly, a high number of CD105/CD166-
positive'® and CD146-positive cells?> was found in OA cartilage
and these cells had multilineage potential. OA-derived cells also
formed more colonies compared to cells from normal human
cartilage®® and this increased with OA severity®,

npj Regenerative Medicine (2022) 2

In vitro culture of ACPCs

Three studies made an attempt to optimize growth kinetics
examining factors like seeding density, culture systems, and serum
concentrations’#~’%, The authors reported on optimal expansion
conditions when the medium was supplemented with fetal bovine
serum (FBS) and transforming growth factor (TGF)-B1 at 40% and
1 ng/mL, respectively’*. However, more recent studies have not
used FBS concentrations that were as high as 40%. A passage
length of 5 days was optimal for cell yield and the authors
reported on reduced costs of expansion by 60%’°. Furthermore, a
method for expansion on microcarriers eliminated the need for a
harvesting step and was thus suggested to prevent dedifferentia-
tion”>. A direct comparison of fibronectin versus laminin, another
important cell adhesion molecule, for differential adhesion of
ACPCs resulted in higher population doubling, increased gene
expression of type Il collagen, and increased osteogenic and
adipogenic differentiation potential of laminin-selected ACPCs®°,
Likewise, expansion with platelet lysate compared to FBS showed
more population doublings and increased expression of chon-
drogenic genes aggrecan and type Il collagen, but at the same
time expression of type X collagen was also increased’”. Others
found increased gene expression of aggrecan, type Il collagen,
and Sox9, as well as proteoglycan and type Il collagen production
of ACPCs by application of intermittent hydrostatic pressure*® or
mechanical stimulation in a bioreactor system’, and inhibition of
CFE by high glucose levels during growth culture®®. Moreover,
normoxic versus hypoxic conditions revealed greater production
of glycosaminoglycans, low alkaline phosphatase expression, and
weaker type | collagen staining in both conditions compared to
MSCs?°. In line, consistently low levels of type X collagen were
expressed by ACPCs when normoxia and hypoxia were com-
pared®®. A reduction of oxygen tension during culture is also
known to delay chondrocyte aging and improve their chondro-
genic potential”®%°,

In brief, the optimization of culture conditions for ACPCs has
been investigated extensively. There are no uniform protocols for
expansion and optimal differentiation for cartilage formation.
Consensus on these matters would aid in comparing outcomes of
studies in the future.

Upon ex vivo injury of bovine cartilage, migratory cells with
progenitor characteristics were found®*3>. Additional research
showed that the phagocytic capacity of these ACPCs was higher
compared to chondrocytes and comparable to synoviocytes and
macrophages, suggesting a macrophage-like role for ACPCs in
cartilage injury®'. After treating ACPCs with supernatant from
injured explants, proliferation, migration, and expression of
immunomodulatory mediators were enhanced, while chondro-
genic capacity was impaired?’.

Stimulation of chondrogenesis in ACPCs was successful by
inhibition of the nuclear factor-kB pathway, the major signaling
pathway involved in OA®2, Inhibition of this pathway was achieved
by an inhibiting peptide®** and magnoflorine®*, both resulting in
increased chondrogenesis. Interleukin-1B and tumor necrosis
factor-a, inflammatory factors involved in OA, were reported to
inhibit migration of ACPCs®'. Similarly, B-Catenin and NGF are
elevated in OA®38%  Inhibition of the Wnt/B-Catenin pathway
promoted proliferation and differentiation®?, while NGF failed to
stimulate chondrogenesis in ACPCs>2. The specific role of these
compounds in OA remains to be investigated.

Alternatively, chondrogenesis could be triggered by the direct
activation of chondrogenic pathways. Combined mechanical
stimulation and shear stress-induced chondrogenesis through an
increase in endogenously produced TGF-31, while overexpression
of BMP2 reduced chondrogenesis’®. Also, BMP9 was a potent
stimulator of chondrogenesis®®. Direct treatment of ACPCs with
extracellular matrix components Link protein N-terminal peptide**
or nidogen-23' increased expression of chondrogenic genes.

Published in partnership with the Australian Regenerative Medicine Institute



The proliferation of ACPCs was promoted by kartogenin®, a small
molecule that induces chondrogenic differentiation of MSCs.
Finally, sex hormones estrogen and testosterone influenced
human ACPC performance®’.

To summarize, initial results indicate that ACPCs respond to
injury and chondrogenesis can be induced in vitro, which could
make the cells interesting as therapeutic targets. These findings
could be used to provoke neo-cartilage formation or inhibit
inflammation in OA.

Application and translation of progenitors

The potential of ACPCs for tissue engineering, biofabrication, and
clinical application has been investigated widely (Table 3).
Biofabrication allows for the production of constructs consisting
of (bio)materials, bioactive cues, and/or cells, with a detailed
predefined architecture®®. The extensive proliferative potential of
ACPCs combined with their chondrogenic capacity make these
cells good candidates to use in tissue engineering and biofabrica-
tion approaches to repair or regenerate articular cartilage.

Under the influence of intermittent hydrostatic pressure, the
performance of rabbit ACPCs embedded in alginate was
enhanced significantly. These cultures were pretreated for 1 week
with a TGF-B3-containing medium but did not receive any
exogenous growth factors thereafter. After two and four weeks,
glycosaminoglycan, collagen, and DNA content were significantly
higher than groups not treated with intermittent hydrostatic
pressure?®, Two studies investigating equine ACPC performance in
hydrogels both reported good outcomes. When the cells were
embedded in gelatin methacrolyl (geIMA) hydrogel cultured in a
chondrogenic medium, mainly a difference was found in the
expression of zonal markers compared to bone marrow-derived
MSCs. Expression of PRG4 was increased in ACPC-loaded gels,
while type X collagen expression was decreased compared to
MSCs'3. Furthermore, when equine ACPCs were embedded in
gelMA/gellan and gelMA/gellan/HAMA hydrogels and cultured in
a chondrogenic medium, these produced more glycosaminogly-
cans and type Il collagen than chondrocytes, whereas the
performance of MSCs in the same gels was comparable to
ACPCs®. Similar to hydrogels, printed scaffolds have also been
successfully seeded with ACPCs. Human ACPCs seeded on fibrin-
polyurethane composite scaffolds were responsive to mechanical
stimulation. The cells produced more glycosaminoglycans and
aggrecan gene expression was increased without the addition of
exogenous growth factors’®. Furthermore, human ACPCs could
also be seeded onto polycaprolactone/polylactic electrospun
nanofibrous scaffolds where the cells attached and spread over
the fibers. Further research has to shed light on the chondrogenic
performance of the cells in this specific setting®.

Besides tissue engineering, ACPCs were successfully used in
several biofabrication techniques. It was shown that equine ACPCs
have the potential to be bioprinted and while exact mechanisms
remain to be elucidated, an interplay between MSCs, ACPCs, and
chondrocytes was found to be important for neo-cartilage
synthesis'®>, The same cells were also successfully used for
encapsulation in various hydrogels®*®3 in combination with
biofabrication techniques like extrusion-based bioprinting'>2°,
digital light processing®, and volumetric bioprinting®®, while
maintaining cell viability. While these are only the first indications
to use ACPCs with various techniques, additional research is
necessary to assess chondrogenic performance of the cells in
these settings. Nevertheless, initial results are promising to move
forward with this cell population.

Several attempts were made to take the next steps in the
application of ACPCs for in vivo cartilage formation and repair.
These are important to translate in vitro findings and define the
potential of ACPCs for the clinic.

Published in partnership with the Australian Regenerative Medicine Institute
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When DAF-selected ACPCs were applied in a caprine model for
cartilage defect filling using a cell-seeded type I/lll collagen
membrane (Chondro-Gide®), ACPC-seeded scaffolds showed good
lateral integration with the surrounding tissue and type Il
collagen-positive repair tissue. However, no difference was found
between chondrocyte- or ACPC-treated defects'’. In the same
study, engraftment into the growth plate of developing chick hind
limbs of isolated and culture-expanded ACPCs was shown.
Contradictory, DAF-selected bovine ACPCs that were injected
intramuscularly in immune-deficient mice failed to produce
cartilage matrix®®. In an equine model, DAF-selected ACPCs were
applied in a layered biofabricated osteochondral plug and showed
good integration with the native cartilage, but the repair tissue
contained mainly type | collagen®’. When autologous and
allogeneic ACPCs were directly compared in an equine cartilage
defect model, an advantage of autologous over allogeneic cells
was seen in histological outcomes®.

When human ACPCs were used in immune-deficient mice, the
cells were successful in the production of cartilage matrix,
whereas MSCs produced mainly bone®®. The cells in this study
were not isolated using any distinct method for ACPC isolation
but were 2D expanded in low density with low glucose.
Furthermore, migratory human ACPCs expanded using platelet
lysate outperformed chondrocytes in an in vivo ectopic chon-
drogenesis assay in athymic mice'®.

Finally, an attempt was made to proceed to human application,
by using ACPCs to replace chondrocytes for matrix-assisted
autologous chondrocyte transplantation, similar to the caprine
study mentioned earlier. The pilot study with 15 patients'?
reported on repair tissue rich in type Il collagen and proteoglycans
and without types | and X collagen. Furthermore, IKDC and
Lysholm questionnaire scores improved significantly. However,
there was no direct comparison between ACPCs and expanded
chondrocytes in this study.

While the discussed studies provide initial evidence of
in vivo chondrogenic potential of these cells, further investiga-
tion is essential to ascertain promise cartilage repair and
clinical translatability.

DISCUSSION

With this review, we aimed to systemically evaluate the available
literature on adult ACPCs and their use for cartilage tissue
engineering and repair therapies. We are the first to provide a
thorough overview of research from the last two decades that
demonstrates the presence of a progenitor cell population
residing in adult hyaline cartilage (Fig. 2). Although a great effort
was made to study the identity and applications of ACPCs, many
uncertainties remain. As a result of differences in isolation
protocols, characterization, and culture expansion, most cell
populations discussed in the literature are likely to be hetero-
geneous populations and difficult to compare between labora-
tories. This stresses the need for this systematic review to expose
certain inconsistencies and arrive at a shared definition of ACPCs.

The reviewed literature employs a wide variety of procedures
for the isolation and characterization of ACPCs. Broadly speak-
ing, three main methods for ACPC isolation are described. The
method using DAF, used in 42% of the investigated studies, is
based on the enriched expression of integrin-a531, as first
described by Dowthwaite et al.'®. The other two main methods
are based on the expression of (a combination of) cell surface
markers (19%)'>°° or migratory capacity (6%)°'. Most popula-
tions isolated through these methods employed multilineage
potential, responded to acute injury or mobilized during OA, and
were able to produce hyaline cartilage extracellular matrix
in vitro or in vivo.

The heterogeneity in isolation and characterization creates
discrepancies between donors and laboratories. Direct
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Fig. 2
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Isolation, characterization, and application of articular cartilage-derived progenitor cells. Schematic overview of the identification

of articular cartilage-derived progenitor cells (ACPCs) in cartilage, isolation methods, and applications of ACPCs. Created with BioRender.com.

comparisons of ACPC populations isolated through different
procedures are lacking and would aid to improve our under-
standing of the populations. The identification of a unique cell
marker would facilitate extensive and coordinated research into
the cell type. This could pave the way towards clinical
application or cell targeting to promote cartilage regeneration
in OA. Recently, Gdf5-expressing cells in developing joints were
identified to contribute to joint cell lineages®”. Co-expression of
Lgr5 and Col22a1 was identified as an important lineage marker
towards juvenile articular chondrocytes in the developing
mouse joint®®. Additionally, single-cell RNA sequencing has
revealed several novel markers that are potentially specific for
ACPCs in human OA cartilage®®.

The available literature suggests that ACPCs resemble MSCs®”
in vitro based on surface marker expression and multilineage
potential. The comparison to MSCs is often made due to the fact
that MSCs (derived from various tissues) are a useful cell type for
clinical application and are currently applied®. As the general
view on the origin and role of MSCs is changing'®’, character-
ization of ACPCs based on MSC features might not be the way to
go and other routes should be investigated. More recent work
has shed light on the cellular basis of bone and cartilage
formation by identifying skeletal stem cells in mice and
humans'192 a3 cell type that might be closer related to (the
origin of) ACPCs in adult hyaline cartilage. Although the
comparison to clinically used chondrocytes is relevant, research
into similarities between ACPCs and skeletal stem cells or more
downstream progenitor cells is lacking and finding resembling
features would contribute to knowledge about the origin and
identity of ACPCs.

Establishing the role of ACPCs in cartilage development and
homeostasis, as well as their response upon injury or in OA would
provide additional insights into their physiological function in
mature cartilage. Regeneration in the early stages of OA could be
stimulated or progression of the disease halted. Several studies
discussed here suggested that ACPCs have a possible role in
immunomodulation, based on their capacity to migrate upon
injury®>3>, excretion of inflammatory mediators?” and phagocytic
capacities®’. Others found a higher prevalence of these cells upon
cartilage damage and QA2'2226-28.3032-35 Of note, these are all
in vitro indications for which in vivo validation is essential. During
OA, cell density and clustering in cartilage increases'%, for which
ACPCs might partly be responsible. On the other hand, there is
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contradicting evidence that Prg4-expressing cells from the
synovium migrate into sites of acute cartilage injury and
contribute to cartilage repair®”. In order to expand the application
of ACPCs to OA besides repair of chondral defects alone,
immunomodulatory properties should be demonstrated in vivo
as is known for MSCs'%%,

The described ACPC populations generally surpassed other
cell types in proliferative potential and producing cartilage
extracellular matrix in vitro'%20254246 |n addition, most studies
implanting animal-derived ACPCs in vivo confirmed their
chondrogenic potential’’3%°!, and even two studies using
human cells reported on successful neo-cartilage formation'®>>,
As isolation methods do not seem to be associated with in vivo
outcomes of cell performance and tissue formation, the
challenge remains to compare findings between studies.
Furthermore, differences between species and pathological
states could influence cell performance. Donor age might play
an important role, although none of the studies investigated this
specifically. Nevertheless, the cells’ potency of prolonged in vitro
expansion'”'937  combined with limited tendency towards
hypertrophic differentiation’3'%1968 and their ability to form
neo-cartilage can make ACPCs an appropriate cell type for repair
of focal chondral defects.

Despite the great deal of research that has been done on
ACPCs, certain actions need to take place in order to close the
gaps and reach consensus between researchers and laboratories.
As noted before, isolation based on a unique marker is crucial to
ascertain similarity in cell population between laboratories.
Comparison of culture media and additives for ACPCs in a recent
systematic review'?® highlights the importance of consistency to
align research. As ACPCs currently have no discrete set of cell
surface markers that can be used to isolate the cells from tissue,
the question remains whether ACPCs are a distinct cell type or it
refer to a heterogeneous mix of many cell types. The establish-
ment of a cell marker and consistency in isolation and culture
protocols ascertain comparability between populations. Another
limitation might be the availability of tissue for cell isolation.
Cartilage from OA patients is generally more accessible than
healthy cartilage, as it is redundant after knee replacement
surgery. A direct comparison of ACPC populations of healthy and
OA cartilage would shed light on differences in performance. In
the same view, investigation of allogeneic use of ACPCs is
valuable, as this would greatly improve the potential of
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application by availability, reduction of costs, and preselection of
chondrogenic cells.

The current systematic review is limited by the restriction to cell
populations that are isolated from adult hyaline cartilage. The
comparison and relation to cell types in the developing joint are
lacking and would contribute to our further understanding of the
origin of the populations discussed here and their role in joint
development and homeostasis. However, the current review and
discussed literature are predominantly directed at clinical transla-
tion as opposed to etiology or the role of a cartilage progenitor
cell in development.

Arriving at a shared definition of a homogenous cell
population that can be isolated and characterized in a
comparable manner is crucial. This work could be used as a
basis for research groups and clinicians to harmonize study
protocols and characterization. First, studies should report on
the origin of the cell in terms of species, anatomical location of
the hyaline cartilage, and disease state. Second, the method of
isolation should be described in detail and preferably identical
to one of the established protocols. Finally, the phenotype of
the isolated populations should be examined directly following
isolation and culture media (and additives) as well as
expansion time and/or passage number should be reported
and synchronized.

To conclude, the available literature indicates that a cell
population with progenitor-like characteristics resides in adult
hyaline cartilage, which has extensive chondrogenic and pro-
liferative potential. These features highlight the suitability of
ACPCs as a cell source for focal chondral repair. In addition, it is
crucial to investigate the role of ACPCs in development and
disease, in order to determine their potential to slow down or
reverse OA. If the current challenges can be overcome and
consensus can be reached on this population, ACPCs hold great
potential as a cell type for tissue engineering and for the repair of
cartilage damage in both focal cartilage injury and OA.

METHODS
Literature search

A systematic search of the literature was conducted according to
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines on adult endogenous ACPCs. The review
protocol was prospectively registered with PROSPERO (registra-
tion number CRD42020184775). The electronic databases of
EMBASE and PubMed were searched using the following search
terms: (cartilage AND (articular OR hyaline OR knee OR hip OR
ankle)) AND (progenitor OR progenitor cell OR multipotent cell
OR chondroprogenitor OR multipotent cell OR cartilage-derived
OR articular cartilage-derived OR (stem cell OR MSC OR
mesenchymal stem cell OR mesenchymal stromal cell AND
(cartilage-derived OR cartilage resident))). A final search was
performed on 17 February 2021. Two authors (M.R. and JV.K)
independently screened all selected studies for eligibility, first by
title and abstract followed by full-text screening. After duplicate
removal, inconsistencies between the researchers were discussed
in a consensus meeting.

Inclusion and exclusion criteria

Inclusion criteria that were used during the title, abstract, and full-
text screening for eligible studies included: adult endogenous
cartilage stem/progenitor cells; knee, hip, or ankle cartilage;
in vitro and/or in vivo and/or in man studies; English language;
reviews, case reports, conference papers, studies of which the full
texts were not retrievable, studies investigating cell line of
chondroprogenitors, cells other than endogenous cartilage-
derived progenitors, and lineage-tracing studies were excluded.
Extracted data from the selected studies included species,
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anatomical location of cartilage, isolation procedure, cell char-
acterization, and application of the cells. The quality of a study was
considered inferior if methods or results are poorly reported.
Study limitations/inconsistencies are discussed at the end of a
paragraph in the results.
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