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Unconventional superconductivity near a
nematic instability in a multi-
orbital system
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We analyze superconductivity in a multi-orbital fermionic system near the onset of a nematic order,
usingdopedFeSeas anexample.Weassociate nematicitywith spontaneouspolarization betweendxz
and dyz orbitals. We derive pairing interaction, mediated by soft nematic fluctuations, and show that it
is attractive, and its strength depends on the position on the Fermi surface. As the consequence, right
at thenematic quantum-critical point (QCP), superconductinggapopensupatTc only at special points
and extends into finite arcs atT < Tc. In between the arcs the Fermi surface remains intact. This leads to
highly unconventional behavior of the specific heat, with no jump at Tc and seemingly finite offset at
T = 0. We discuss gap structure and pairing symmetry away from a QCP and compare nematic and
spin-fluctuation scenarios. We apply the results to FeSe1−xSx and FeSe1−xTex.

It is widely believed that superconductivity in the cuprates, Fe-pnictides,
heavy fermion, and other correlated electron systems is of electronic origin
and at least in some portion of the phase diagram can be understood as
mediated by soft fluctuations of a particle-hole order parameter, which is
about to condense. The most studied scenario of this kind is pairing
mediated by spin fluctuations. For the cuprates, it naturally leads to dx2�y2

pairing. For Fe-pnictides, spin-mediated pairing interaction is attractive in
both s-wave (s+−) and dx2�y2 channels. The argument, why pairing holds
despite that the electron-electron interaction is repulsive, is the same in the
two cases—antiferromagnetic spin fluctuations, peaked at momentum Q,
increase the magnitude of a repulsive pairing interaction at the momentum
transfer Q (the pair hopping from (k,− k) to k+Q,− k−Q). A repulsive
pair hopping allows for a solution for a gap function, which changes sign
between Fermi points at kF and kF+Q. There is still a repulsion at small
momentum transfer, which is detrimental to any superconductivity, and the
bare Coulomb interaction is indeed larger at small momenta than at Q.
However, when spin fluctuations are strong, a repulsion at Q gets stronger
than at small momentum, and sign-changing superconducting gap does
develop. This scenario has been verified by e.g., observation of a spin
resonance peak below Tc

1–6. Spin fluctuations were also identified as the
source for spontaneous breaking of lattice rotational symmetry (nematicity)
in Fe-pnictides, as nematicity there develops in the immediate vicinity of the
stripe magnetic order with momentaQ = (π, 0) or (0, π). It has been argued
multiple times7–11that spin fluctuations create an intermediate phase with a
composite spin order, which breaks symmetry between (π, 0) and (0, π), but
reserves O(3) spin-rotational symmetry.

Situation is different, however, inbulkFe-chalcogenideFeSe,whichhas
been extensively studied in the last few years using various techniques. A
pure FeSe develops a nematic order at Tp ~ 85K, and becomes super-
conducting atTc ~ 9K. A nematic order decreases upon isovalent doping by
either S or Te (FeSe1−xSx and FeSe1−xTex) and in both cases disappears at
critical xc (0.17 for S doping and 0.53 for Te doping). There is no magnetic
order below Tp for any x.

The absence of magnetism lead to two conjectures: (i) that nematicity
in FeSe is a d−wave Pomeranchuk order, with order parameter bilinear in
fermions, rather than a composite spin order, for which an order parameter
is a 4-fermionoperator12, and (ii) that theoriginof superconductivitymaybe
different from the one in Fe-pnictides. On (i), there is a consistency between
the Pomeranchuk scenario for nematicity and the data already in pure FeSe:
a Pomeranchuk order parameter necessary changes sign between hole and
electron pockets13, consistent with the data12,14–16, and the temperature
dependence of nematic susceptibility, measured by Raman, is in line with
the Pomeranchuk scenario17–19. On (ii), superconductivity in pure FeSe is
likely still mediated by spin fluctuations20–26, as evidenced by the correlation
between NMR 1/T1 and superconducting Tc, the consistency between
ARPES data on the gap anisotropy and calculations within spin fluctuation
scenario, and the fact that a magnetic order does develop under pressure27.
However, near andabove criticalxc,magneticfluctuations are farweaker28,29,
e.g., a magnetic order does not develop until high enough pressure. This
strongly reduces the strength of spin-mediated pairing as the letter requires
inter-pocket interaction (pair-hopping) to be enhanced by spin fluctuations
to overcome intra-pocket repulsion30. It has been argued31–35 based on a
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variety of data (see below) that superconductivity for such x is qualitatively
different from the one in pure FeSe. One argument here is that the gap
anisotropy changes sign, another is that Tc in FeSe1−xTex shows a clear
dome-like behavior around xc.

In this communication, we address the issue whether super-
conductivity in dopedFeSenear xc can bemediated bynematicfluctuations.
It seems natural at first glance to replace spin fluctuations by soft nematic
fluctuations as a pairing glue. However, there are two obstacles, both related
to the fact that soft nematic fluctuations are at small momentum transfer.
First, they do not affect the pair hopping term between hole and electron
pockets, which is the key element for spin-mediated superconductivity.
Second, the bare pairing interaction at small momentum transfer is repul-
sive, and dressing it by nematic fluctuations only makes the repulsion
stronger.

We show that the pairing interaction Veff(k,− k; p,− p), mediated by
nematic fluctuations (first two momenta are incoming, last two are out-
going), does become attractive near xc, however for a rather special reason,
related to the very origin of the Pomeranchuk order. Namely, the driving
force for a d−wave Pomeranchuk order is density-density interaction
between hole and electron pockets. It does have a d−wave componentUd

he
because low-energy excitations in the band basis are constructed of dxz and
dyz orbitals. A sign-changing nematic order (a spontaneous splitting of
densities of dxz and dyz orbitals) develops

13 whenUd
he exceeds d-wave intra-

pocket repulsion, much like sign-changing s+− order develops when pair
hopping exceeds intra-pocket repulsion in the particle-particle channel. By
itself,Ud

he does not contribute to pairing, however taken at the second order,
it produces an effective attractive interaction between fermion on the same
pocket. We go beyond second order and collect all ladder and bubble dia-
grams which contain d-wave polarization bubbles at a small momentum
transfer. We show that this induced attraction is proportional to the sus-
ceptibility for a d−wave Pomeranchuk order. Because a nematic suscept-
ibility diverges at xc, the induced attraction necessary exceeds the bare intra-
pocket repulsion in some range around xc, i.e., the full intra-pocket pairing
interaction becomes attractive.

This attractive interaction Veff(k,− k; , p,− p)∝Ak,pχnem(∣k− p∣) is
rather peculiar because it inherits from Ud

he the d−wave form-factor
Ak;p ¼ cos2ðθk þ θpÞ, where θk and θp specify the location of the fermions
((in our case, this holds on the hole pocket, which is made equally out of dxz
and dyz orbitals). A similar pairing interaction has been earlier suggested for
one-band models on phenomenological grounds36–39 assuming that d−
wave nematic coupling is attractive. We show that such an interaction
emerges in the model with purely repulsive interactions, once we add the
pairing component, induced by inter-pocket density-density Ud

he.
Because χnem(k− p) diverges at k = p, the presence of the form-factor

Ak,p in Veff(k,− k; , p,− p) implies that the strength of the attraction
depends on the position of a fermion on a Fermi surface. As the con-
sequence, the gap function on the hole pocket is the largest around hot
points, specified by θh = nπ/2, n = 0− 3, and rapidly decreases in cold
regions centered at θc = nπ/2+ π/4, n = 0− 3, This has been already
emphasized in the phenomenological study36. This behavior shows upmost
spectacularly right at anematicQCP,where the gapemergesatTc only athot
spots and extends at smallerT intofinite size arcs. The arcs length grows asT
decreases, but as long as T is finite, there exist cold regions where the gap
vanishes, i.e., the system preserves pieces of the original Fermi surface. At
T = 0, the gap opens everywhere except at the cold spots θc, where nematic
form factor cos 2θ vanishes, but is still exponentially small near
them, ΔðθÞ / exp�1=ðθ � θcÞ2.

This, we argue, leads to highly unconventional behavior of the specific
heat coefficient Cv/T, which does not display a jump at Tc and instead
increases as ðTc � TÞ1=2, passes through a maximum at T ~ 0.8Tc, and
behaves at smaller T like there is a non-zero residualCv/T at T→ 0 (see Fig.
2). In reality, Cv/T vanishes at T = 0, but nearly discontinuously, as
1=ðlogðTc=TÞÞ1=2. Also, because the regions, where the gap is non-zero, are
disconnected, the gap phases are uncorrelated, and s−wave, d−wave and
two-component p−wave (kx+ eiαky) states are degenerate.

At a finite distance from aQCP and/or in the presence of non-singular
pair-hopping between hole and electron pockets, the gap function becomes
continuous, but maxima at θ = nπ/2 remain. The specific heat coefficient
C(T)/T acquires a finite jump at Tc, but holds the same behavior at inter-
mediate T as in Fig. 4, within some distance to a QCP. The condensation
energies for s−wave, d−wave and p−wave states split. Which order
developsdependson the interplaybetween the attractivepairing interaction,
mediated by nematic fluctuations, and non-singular repulsion. The letter is
far stronger in s−wave and d−wave channels, which favors p−wave
symmetry. In this case, themost likelyoutcome iskx ± iky state,whichbreaks
time-reversal symmetry.

Results
Model
The electronic structure of pure/doped FeSe in the tetragonal phase consists
of two non-equal hole pockets, centered at Γ, and two electron pockets
centered at X = (π, 0) and Y = (0, π) in the 1FeBZ. The hole pockets are
composed of dxz and dyz fermions, the X pocket is composed of dyz and dxy
fermions, and the Y pocket is composed of dxz and dxy fermions. The inner
hole pocket is quite small and likely does not play much role for nematic
order and superconductivity.Weassume thatheavydxy fermions alsodonot
playmuch role and consider an effective two-orbitalmodelwith a single dxz/
dyz circular hole pocket, and mono-orbital electron pockets (dyz X-pocket
and dxz Y-pocket).We define fermionic operators formono-orbital Y andX
pockets as f1 and f2, respectively (f1,k,σ = dxz,k+Y,σ, f2,k,σ = dyz,k+X,σ). The band
operator for the hole pocket is hk;σ ¼ cos θkdyz;k;σ þ sin θkdxz;k;σ . The
kinetic energy is quadratic in fermionic densities and there are 14 distinct
C4-symmetric interactions40 involving low-energy fermions near the hole
and the two electron pockets (see SupplementaryDiscussions I41 for details).
We take the absence of strong magnetic fluctuations in doped FeSe as an
evidence that interactions at momentum transfer between Γ and X (Y) are
far smaller than the interactions at small momentum transfer and neglect
them. This leaves 6 interactions with small momentum transfer: 3 within
hole or electron pockets and 3 between densities of fermions near different
pockets. The single interaction between hole fermions contains an angle-
independent term and terms proportional to cos 2θk cos 2θp and
sin 2θk sin 2θp, the two interactions between hole and electron pockets
contain an angle-independent and a cos 2θk term, where k belongs to the
hole pocket and the three interactions between fermions on electronpockets
contain only angle-independent terms.

Nematic susceptibility
Like we said, we associate the nematic order with a d-wave Pomeranchuk
order. In theorbital basis, this order is anorbital polarization (densities ofdxz
and dyz fermions split). In the band basis, we introduce two d−wave order
parameters on hole and electron pockets: ϕh ¼

P
k;σhhyk;σhk;σi cos 2θk and

ϕe ¼
P

khf y2;k;σ f 2;k;σi � hf y1;kσ f 1;k;σi. The set of two coupled self-consistent
equations forϕh andϕe is obtained by summing ladder and bubble diagrams
(see Supplementary Discussions II41) and is

ϕh ¼ �ϕh U
d
h Π

d
h � ϕe U

d
he Πe;

ϕe ¼ �ϕe U
d
eΠe � 2ϕh U

d
heΠ

d
h:

ð1Þ

Here, Πd
h ¼ � R

Gh
p G

h
p cos 2θp; and Πe ¼ �ð1=2ÞR p GX

p G
X
p þ GY

p G
Y
p

� �
are the polarization bubbles for the hole and the electron pockets,
(Gi

p ¼ Giðp;ωmÞ are the correspondingGreen’s functions and ∫ p stands for
T
P

ωn

R d2p
ð2πÞ2). As defined, Π

d
h and Πe are positive. The couplings Ud

h;U
d
e

andUd
he ared−wave components of intra-pocket and inter-pocketdensity-

density interactions. All interactions are positive (repulsive). The analysis of
(1) shows that the nematic order with different signs of ϕh and ϕe develops

when Ud
he is strong enough with the condition 2 ðUd

heÞ
2
≥Ud

h U
d
e .

The nematic susceptibility is inversely proportional to the determinant
of (1). Evaluating it at a small butfinitemomentumq, weobtain χnem(q)∝ 1/
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Z, where

Z ¼ 1þ Ud
h Π

d
hðqÞ

� �
1þ Ud

e ΠeðqÞ
� �� 2ðUd

heÞ
2
Πd

hðqÞΠeðqÞ: ð2Þ

Pairing interaction
Our goal is to verify whether the pairing interaction near the onset of a
nematic order is (i) attractive, (ii) scales with the nematic susceptibility, and
(iii) contains thed-wave form-factor cos2ð2θkÞ.Todo this,weuse the fact that
χnem(q) contains polarization bubblesΠd

hðqÞ andΠe(q), and obtain the fully
dressed pairing interaction by collecting infinite series of renormalizations
that contain Πd

hðqÞ and Πe(q) with small momentum q. This can be done
analytically (see refs. 41,42 for detail). Because q is small, the dressed pairing
interactions are between fermions on only hole pocket or only electron
pockets: Vh

eff ðk; qÞ ¼ Vh
eff k þ q=2
�

;�ðk þ q=2Þ; k � q=2;�ðk � q=2Þ,
Ve

eff ðk; qÞ ¼ Ve
eff k þ q=2
�

;�ðk þ q=2Þ; k � q=2;�ðk � q=2Þ. We find

Vh
eff ðk; qÞ ¼

Ud
h

1þ Ud
hΠ

d
hðqÞ

� AhðUd
heÞ

2
cos22θk χnemðqÞ þ . . . ð3Þ

Ve
eff ðk; qÞ ¼

Ud
e

1þ Ud
eΠeðqÞ

� AeðUd
heÞ

2
χnemðqÞ þ . . . ; ð4Þ

whereAh ¼ Πe

1þUd
h Π

d
hðqÞ

andAe ¼ 1
2

Πd
h

1þUd
e ΠeðqÞ

. The dots stand for other terms

which do not containΠd
hðqÞ andΠd

e ðqÞ and are therefore not sensitive to the
nematic instability.

We see that each interaction contains two terms.Thefirst is the dressed
intra-pocket pairing interaction. It does get renormalized, but remains
repulsive and non-singular at the nematic instability. The second term is the
distinct interaction, induced by Ud

he. It is (i) attractive, (ii) scales with the
nematic susceptibility, and (iii) contains the d−wave nematic form-factor
cos22θk . We emphasize that the attraction is induced by inter-pocket
density-density interaction, despite that relevant nematic fluctuations are
with smallmomenta and the pairing interactions involve fermions from the
same pocket.

Gap equation
Near a nematic QCP, χnem(q) is enhanced and the interaction, induced by
Ud

he, is the dominant one. In the absence of pair-hopping, the gap equation
decouples between hole and electron pockets. The most interesting case is
when the gap develops first on the hole pocket (the case Ah >Ae). We use

Ornstein-Zernike form χnem(q) = χ0/(δ
2+ q2), where δ is the distance to a

nematicQCP inunits ofmomentum.At small δ, relevantq are of orderδ. To
first approximation, the non-linear equation for Δh(k) then becomes local,
with angle-dependent coupling:

1 ¼ g cos22θk

Z Λ

0
dx

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þjΔhðkÞj2

p
2T

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ΔhðkÞ2

q : ð5Þ

where g ¼ mðUd
heÞ

2
χ0=ð4πkFδÞ. Because the coupling is larger at θk = nπ/

2, n = 0− 3, the gap appears atTc ¼ 1:13Λ expð�1=gÞ only at these points.
As T decreases, the range, where the gap is non-zero, extends to four finite
arcs with the width θ0ðTÞ ¼ 0:5 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g logTc=T

p
(see Fig. 1c). In the

areas between the arcs, the original Fermi surface survives. We emphasize
that this is the original Fermi surface, not the Bogoliubov one, which could
potentially develop inside the superconducting state43,44. We plot ∣Δh(k)∣
along the Fermi surface atT = 0 and afiniteT in Fig. 1a, b, andplot θ0(T) as a
function ofT/Tc in Fig. 1c.The phasesof the gap function in the four arcs are
not correlated, hence s−wave, d−wave (dx2�y2 ) and two-component
p−wave (kx+ eiαky with arbitrary α) are all degenerate. At T = 0, the arcs
ends merge at θk = nπ/2+ π/4, n = 0− 3 and the gap becomes non-zero
everywhere except these cold spots(red dots in Fig. 1a). In explicit form,
jΔhðkÞj ¼ 1:76Tc expf� tan22θk=gg. The gapnear cold spots becomes a bit
smoother if we keep the Landau damping in χnem and solve the dynamical
pairing problem, but still Δh(k) remains highly anisotropic.

Specific heat
We split the specific heat coefficient γc =Cv(T)/T into contributions from
the gapped and ungapped regions of the Fermi surface:
γcðTÞ ¼ γnc ðTÞ þ γscðTÞ. The first term, γnc ðTÞ ¼ 8N0π

3
π
4 � θ0ðTÞ
	 


which at

small T becomes: γnc ðTÞ≈ 4N0 π

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g logTc=T

p . It evolves almost discontinuously:

vanishes at T = 0, but reaches 1/3 of the normal state value already at
T = 0.01Tc. We obtained γscðTÞ numerically and show the result for the full
γc(T) in Fig. 2. We see that γc(T) does not jump at Tc. Instead, it increases
from its normal state value as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p
, passes through maximum at

T ≈ 0.8Tc and nearly linearly decreases at smaller T, apparently with a finite
offset at T = 0. It eventually drops to zero at T = 0, but only at extremely

small T, as 1=ðlogTc=TÞ1=2. We emphasize that γc(T) is a function of a
single parameter T/Tc, i.e., the smallness of the range, where γc(T) drops, is
purely numerical.

Fig. 1 | Superconductivity at the nematic QCP(δ= 0). aWeplot the absolute value
of the SC gap scaled by the transition temperature Tc,Δh/Tc(blue) on the hole pocket
at zero temperature as a function of the angle on the Fermi surface(green disk) with
radius 3 unit. The gap is exponentially small near the cold spots(red dots) while
maximum along the kx and ky axis. In (b), we plot the angular variation of the gap,

∣Δh∣/Tc on the hole pocket for three different reduced temperatures, t = 0.9, 0.7 and 0
below the transition point Tc. At finite temperature, the gap vanishes on the four
patches of the Fermi surface arcs(flat segments of the gap). In (c), we plot thewidth of
the gap, θ0(T) as a function of the reduced temperature t = T/Tc. We keep the
coupling strength g = 1 here.
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Away from a nematic QCP
At a finite δ, s−wave, d−wave, and p−wave solutions for the gap
function are no longer degenerate. If we keep only the interaction induced
byUd

he (the second term in (4)), wefind that s-wave solutionhas the lowest
condensation energy.We show the eigenvalues λs,p,d and the gap functions
in Fig. 3a, b. The gap function is smooth and finite for all angles, but
remains strongly anisotropic up to sizable δ.We define the gap anisotropy
α as the ratio of the gap function on the hole fermi surface at θ = π/
4(kx− ky axis) to θ = 0(kx axis): α = Δh(π/4)/Δh(0) and show its variation
with the nematic mass parameter δ in Fig. 3c. The specific heat coefficient
γc(T) has afinite jump atTc, whosemagnitude increaseswith δ, yet the low
temperature behavior remains nearly the same as at a QCP up to sizable δ
(Fig. 4). If we consider the full pairing interaction in (3), situation may
change as the first term in (3) has comparable repulsive s−wave and
d−wave harmonics, but a much smaller p−wave harmonic. As the
consequence, p−wave may become the leading instability. The con-
densation energy for a p-wave state is the lowest for kx+ iky and kx− iky
gap functions. A selection of one of these states breaks time-reversal
symmetry.

Comparison with experiments
We argued in this work is that pairing in doped FeSe near a nematic QCP is
mediated by nematic fluctuations rather than by spin fluctuations. This is
generally consistent with the observations in refs. 31,32,34 of two distinct
pairing states in pure FeSe and in doped FeSe1−xSx and FeSe1−xTex at x ≥ xc.
More specifically, one can distinguish between magnetic and nematic
pairing scenarios bymeasuring the angular dependence of the gap along the
hole dxz/dyz pocket.We argued that a nematic-mediated pairing gives rise to
an anisotropic gap, with maxima along kx and ky directions. Within spin-
fluctuation scenario, the gap ΔhðkÞ ¼ aþ b cos 4θ is the largest along the
diagonal directions kx ± ky (b < 0, see e.g., ref. 45). The angular dependence
of the gap in pure anddopedFeSe has been extracted fromARPESand STM
data in ref. 23,46–50. For pure and weakly doped FeSe, an extraction of
cos 4θ dependence is complicated because superconductivity co-exists with
long-rangenematic order, inwhich case the gapadditionallyhas cos 2θ term
due to nematicity-induced mixing of s−wave and d−wave
components24,51. Still, the fits of the ARPES data in refs. 23,46 yielded a
negative b, consistent with spin-fluctuation scenario. A negative b is also

Fig. 3 | Superconductivity away from the nematic QCP(δ ≠ 0). In (a), we plot the
largest eigenvalue λ of the linearized gap equation defined in Supplementary Dis-
cussions VIII41 in different angular momentum channels labeled as λs, λd and λp for
the s, d and p−wave respectively as a function of the nematic mass parameter δ. We
show how the ratio of these eigenvalues vary with δ in the inset and find λp/λs < λd/
λs < 1 which indicates that s−wave is the leading instability. With δ going to zero,

the ratios become closer to each other, indicating possible degeneracy among dif-
ferent pairing channels. In (b) we plot the angular variation(θ) of the gap function,
Δh(θ)/Tc on the hole pocket for a set of reduced temperatures, t = T/Tc below the
transition point Tc for δ = 0.01. In (c) we plot the gap anisotropy α = Δh(θ = π/4)/
Δh(θ = 0) as a function of the nematicmass δ andfit (blue dashed line) our result upto
second order in δ with the fitting parameters α(δ) = 2.12 δ2+ 0.44 δ.

Fig. 4 | Specific heat away from the nematic QCP(δ ≠ 0).We plot the variation of
the specific heat coefficient scaled by the density of state on Fermi surface, N0 with
the reduced temperatureT/Tc for a set of values of the nematicmass δ = 0.01 and 0.1.
Here, Tc is the superconducting transition temperature. The black dashed line
represents the normal state contribution and is equal to 2π2/3. There is a finite
specific heat jump at the transition point represented by the vertical line for both
values of δ.

Fig. 2 | Specific heat at the nematic QCP(δ= 0).We plot the specific heat coeffi-
cient scaled by the density of state on Fermi surface, N0 as a function of the reduced
temperature, T/Tc for the coupling strength g = 1.0 in the main frame and for
g = 0.6, 0.4 and 0.2 in the inset. The black dashed line represents the normal state
contribution and is equal to 2π2/3.
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consistent with the flattening of the gap on the hole pocket near θ = π,
observed in the STM study47. A negative prefactor for cos 4θ term was also
reported for Fe-pnictides, e.g., Ba0. 24K0.76Fe2As2, ref. 52. In contrast, gap
maximum along ky has been reported in a recent laser ARPES study of
FeSe0.78S0.22 (ref. 48). Further, recent STM data for FeSe0.81S0.19 (ref. 49,50)
detected a clear gap maxima along kx and ky. For Te-doped case, STM data
for tetragonal FeSe0.45Te0.55 (ref. 53) also found the maximal gap along kx
and ky directions, consistent with the pairing by nematic fluctuations. This
STM data is in contradiction to earlier ARPES data for the same material,
which reported a near-isotropic gap on the hole pocket54. However, the gap
magnitude is only 2 meV, which calls for laser ARPES analysis. The gap
anisotropy has also been analyzed in ref. 55, using angle-resolved specific
heat data, but the authors of that work focused on the gap on the electron
pockets. Taken together, these data strongly support the idea about different
pairing mechanisms in pure FeSe and in doped ones at x≥xc, and are con-
sistent with the change of the pairing glue from spin fluctuations at x < xc to
nematic fluctuations at x ≥ xc.

Next, we argued that right at a nematic QCP, the gap vanishes in the
cold regions on the Fermi surface, and this leads to highly unconventional
behavior of the specific heat coefficient γc(T). This holds when we neglect
pair hopping between hole and electron pockets. In the presence of pair
hopping, the gap becomes non-zero everywhere except, possibly, special
symmetry-related points. Still, in the absence of magnetism nearby, pair-
hopping is a weak perturbation, and the gap in cold regions is small. The
specific heat of FeSe1−xSx has beenmeasured in refs. 33,56. The data clearly
indicate that the jumpofγc(T) atTc decreaseswith increasing x andvanishes
at around xc. At smallerT, γc(T) passes through amaximumat around 0.8Tc
and then decreases nearly linearly towards apparently a finite value atT = 0.
The authors of ref. 31 argued that this behavior is not caused by fluctuations
because residual resistivity does not exhibit a noticeable increase around xc
(ref. 57). Other experiments58 also indicated that fluctuation effects get
weaker with increasing x.

The behavior of γc(T) around xc was first interpreted as potential BCS-
BEC crossover32 and later as a potential evidence of an exotic pairing that
creates a Bogolubov Fermi surface in the superconducting state43,48,59. We
argue that the specific heat data are consistent with the nematic-mediated
pairing, in which near xc the gap develops in the arcs near kx and ky and
nearly vanishes in between the arcs. This explanation is also consistent with
recent observation60 that superfluid density in FeSe1−xSx drops at x≥xc,
indicating that some fermions remain unpaired.

Finally, recent μSR experiments60,61 presented evidence for time-
reversal symmetry breaking in FeSe. The μSR signal is present below Tc for
all x, however in FeSe1−xTex it clearly increases above xc. This raises a
possibility that the superconducting state at x > xc breaks time-reversal
symmetry, at least in FeSe1−xTex. Within our nematic scenario, this would
indicate a p−wave pairing with kx ± iky gap structure. We argued that
p−wave pairing, mediated by nematic fluctuations, is a strong competitor
to s+− pairing.

There is one recent data set, which we cannot explain at the moment.
LaserARPES study of FeSe0.78S0.22 (ref. 48) detected superconducting gap in
the polarizarion of light, which coversmomenta near theXdirection, but no
gap inpolarization selectingmomentanearY. Taken at a face value, this data
implies that superconducting order strongly breaks C4 symmetry. In our
nematic scenario, pure kx (or ky) order is possible, but has smaller con-
densation energy than kx ± iky. More analysis is needed to resolve this issue.

Discussion
In this paper, we derived an effective pairing interaction near the onset of a
nematic order in a 2D two-orbital/three band systemof fermions andapplied
the results to doped FeSe. The model consists of a hole band, centered at Γ
andmade equally ofdxz anddyz fermions, and twoelectronbands, centered at
X and Y and made out of dyz and dxz fermions, respectively. The nematic
order is a spontaneous polarization between dxz and dyz orbitals, which
changes sign between hole and electron pockets. We found the pairing
interaction as the sum of two terms: a dressed bare interaction, which

remains non-singular and repulsive, and the term, induced by inter-pocket
density-density interaction Ud

he. This last term contains the square of the
nematic form-factor and scales with the nematic susceptibility, and is the
dominant pairing interaction near the onset of a nematic order.Weobtained
the gap function and found that it is highly anisotropic with gap maxima
along kx and ky directions. This is in variance with pairing by spin fluctua-
tions, for which the gap has maxima along diagonal directions kx ± ky. Right
at the nematic QCP, the gap develops in four finite arcs around kx and ky,
while in between the arcs the original Fermi surface survives. Such a gap
function, degenerate between s-wave, d−wave, and p−wave, gives rise to
highly unconventional behavior of the specific heat coefficient with no jump
atTc and seeminglyfinite value atT = 0 (the actualCv(T)/T vanishes atT = 0,
but drops only at extremely low T ~ 10−2Tc). In the tetragonal phase away
from a QCP, the degeneracy is lifted, and there is a competition between
s−waveandkx ± iky, the latter breaks time-reversal symmetry. Inbothcases,
the gap remains strongly anisotropic, withmaxima alongX andYdirections.
We compared our theory with existing experiments in some details.

Methods
Analytical calculations
Analytic calculations have been performed using diagrammatic theory. We
obtained the susceptibility of the sign-changing d-wave nematic order by
summing bubble and ladder series of diagrams for the renormalization of
the nematic vertex, and obtained the pairing vertex by summing up ladder,
bubble, and maximally crossed diagrams for the bare intra-pocket pairing
interaction and for the pairing interaction induced by inter-pocket density-
density interaction. We present the details of the calculations in Supple-
mentary Discussion I–VIII.

Numerical calculations
We numerically solved the non-linear integral equation for the super-
conducting gap andused the results to compute the specific heat. The details
are presented in the Supplementary Discussion VIII.

Data availability
The details of the analytical calculations are fully displayed in Supplemen-
taryDiscussion I–VIII. Since thisworkdidnot require substantial numerical
calculation, numerical data that are used in this study will be available upon
the reasonable request from the first author.
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